JP2004234998A - Heating device, image forming apparatus and heating body - Google Patents

Heating device, image forming apparatus and heating body Download PDF

Info

Publication number
JP2004234998A
JP2004234998A JP2003021655A JP2003021655A JP2004234998A JP 2004234998 A JP2004234998 A JP 2004234998A JP 2003021655 A JP2003021655 A JP 2003021655A JP 2003021655 A JP2003021655 A JP 2003021655A JP 2004234998 A JP2004234998 A JP 2004234998A
Authority
JP
Japan
Prior art keywords
heating element
substrate
resistance
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021655A
Other languages
Japanese (ja)
Inventor
Satoru Taniguchi
悟 谷口
Noriyuki Ito
紀之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003021655A priority Critical patent/JP2004234998A/en
Publication of JP2004234998A publication Critical patent/JP2004234998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent rising of temperature in a paper non-passage part without deteriorating the specification of a device, at low cost and in a simple constitution in a heating device heating the material to be heated by a heating body 3 provided with a resistance heating body 6 which is heated by being fed power. <P>SOLUTION: The rising of the temperature in the paper non-passage part is prevented in the simple constitution by effectively using NTC characteristic of graphite. Specifically, a ceramics substrate 7 such as aluminum oxide or aluminum nitride are made into recessed sectional shapes to form a resistant heating body 6 containing the graphite in a recessed part 7a and a glass coating 8 is applied over it. The material of the resistant heating body 6 has graphite and glass as main components. When the aluminum oxide is used for the substrate 7, it is made a front surface heating type and when the aluminum nitride is used for the substrate 7 it is made the back surface heating type. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、複写機、レーザービームプリンタ等の画像形成装置において、未定着トナー画像を形成担持させた記録材を加熱して画像を永久固着画像として定着させる加熱定着装置として用いて好適な加熱装置に関する。
【0002】
更には、該加熱装置を像加熱装置として具備した画像形成装置、及び、該加熱装置に使用される加熱体に関する。
【0003】
【従来の技術】
従来、例えば画像の加熱定着等のための記録材の加熱装置には、所定の温度に維持された加熱ローラと、弾性体層を介して前記加熱ローラに圧接する加圧ローラとによって被加熱材としての記録材を挟持搬送しつつ加熱する熱ローラ方式が多用されている。また、このほかにもフラッシュ加熱方式、オープン加熱方式、熱板加熱方式等種々の方式、構成のものが知られており、実用されている。
【0004】
最近では、このような方式に代わって、加熱体(ヒータ)と、加熱体の支持体(ステー)と、加熱体に対向圧接しつつ搬送される耐熱性フィルム(定着フィルム)と、定着フィルムを介して被加熱材としての記録材を加熱体に密着させる加圧体(加圧ローラ)を有し、加熱体の熱を定着フィルムを介して記録材へ付与することで記録材面に形成担持されている未定着画像を記録材面に加熱定着させる方式、構成の画像加熱定着方式(フィルム加熱方式の加熱装置)が考案されている(例えば、特許文献1〜4参照)。
【0005】
このようなフィルム加熱方式の加熱装置ないしは画像加熱定着装置においては加熱体として低熱容量の加熱体を用いることができる。このため、従来の接触加熱方式である熱ローラ方式、ベルト加熱方式等の装置に比べ省電力及びウェイトタイムの短縮化(クイックスタート)が可能になる。
【0006】
従来のフィルム加熱方式の加熱装置においては、加熱体の基板として酸化アルミニウムや窒化アルミニウムといったセラミックスを用いている。酸化アルミニウムを用いる場合は、基板の表面(フィルム摺動面)に抵抗発熱体を形成し、基板の裏面(非フィルム摺動面)に加熱体の温度を検知し温度制御を行うための検温素子を設ける構成が一般的である(表面発熱タイプ)。
【0007】
一方、窒化アルミニウムを用いる場合は、酸化アルミニウムより熱伝導率が高いため、基板の裏面(非フィルム摺動面)に抵抗発熱体を形成し、その上から絶縁層を介して検温素子を当接し温度制御する構成の方が熱効率が良い(裏面発熱タイプ)。
【0008】
前述のフィルム加熱方式の加熱装置において、通紙可能な最大サイズ(以下、大サイズ紙と記す)よりもある程度小さな幅の記録材(以下、小サイズ紙と記す)を通紙した場合、加熱体もしくは被加熱材加熱部の温度制御は通紙部に設けられた検温素子の出力に基づいて行われる場合が多く、非通紙部では記録材に熱を奪われないため、非通紙部の温度が通紙部に比べて上昇する(非通紙部昇温)。
【0009】
また、特に小サイズ紙でかつ厚い記録材(厚紙・封筒等)が重送して通紙されてしまうような場合には、通紙部では記録材に大量の熱を奪われるため、加熱体に大量の電力が供給され非通紙部昇温が顕著になる。よって重送枚数が多い場合等には、加熱体・加圧ローラ等の劣化・破損に至る危険性がある。また、非通紙部昇温が大きくなると、小サイズ紙を通紙した直後に大サイズ紙を通紙した場合、端部で高温オフセットが発生する可能性がある。
【0010】
この非通紙部昇温を防止するために、小サイズ紙が連続して通紙される場合は非通紙部の加熱体・加圧ローラ等の保護のためスループットを下げたり(例えば、特許文献5参照)している。
【特許文献1】
特開昭63−313182号公報
【特許文献2】
特開平2−157878号公報
【特許文献3】
特開平4−44075公報
【特許文献4】
特開平4−204980号公報
【特許文献5】
特許第2727899号公報
【0011】
【発明が解決しようとする課題】
しかし、スループットを下げることは画像形成装置のスペックダウンになり、別部材を設けるのはコストアップになる。
【0012】
そこで本発明は、フィルム加熱方式等の加熱装置において、上述した非通紙部昇温の防止を、装置のスペックを低下させることなく、低コストかつ簡単な構成で達成することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、下記の構成を特徴とする加熱装置、画像形成装置、及び加熱体である。
【0014】
(1)少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体とからなる加熱体によって被加熱材を加熱する加熱装置において、前記加熱体は、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱装置。
【0015】
(2)加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触するフィルムとを有し、加熱体上をフィルムと被加熱材が一緒に移動することで加熱体の熱をフィルムを介して被加熱材へ伝達する加熱装置において、前記加熱体は、少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体とからなり、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱装置。
【0016】
(3)前記(1)又は(2)に記載の加熱装置において、前記抵抗発熱体はグラファイト・ガラスを主成分とすることを特徴とする加熱装置。
【0017】
(4)前記(1)から(3)のいづれか項に記載の加熱装置において、前記抵抗発熱体は少なくとも加熱体最大到達温度以下の温度領域において、負の抵抗温度特性を有することを特徴とする加熱装置。
【0018】
(5)前記(1)から(4)の何れか1項に記載の加熱装置において、前記基板はセラミックスであることを特徴とする加熱装置。
【0019】
(6)前記(5)に記載の加熱装置において、前記基板は形状の異なる平板状の2枚のグリーンシートを貼り合わせた後焼成して形成するものであることを特徴とする加熱装置。
【0020】
(7)前記(5)又は(6)に記載の加熱装置において、前記基板は酸化アルミニウムからなることを特徴とする加熱装置。
【0021】
(8)前記(5)又は(6)に記載の加熱装置において、前記基板は窒化アルミニウムからなることを特徴とする加熱装置。
【0022】
(9)記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、前記像加熱手段として前記(1)から(8)の何れか1項に記載の加熱装置を備えたことを特徴とする画像形成装置。
【0023】
(10)少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体を有し、被加熱材を加熱する加熱体であり、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱体。
【0024】
(11)前記(10)に記載の加熱体において、前記抵抗発熱体はグラファイト・ガラスを主成分とすることを特徴とする加熱体。
【0025】
(12)前記(10)又は(11)に記載の加熱体において、前記抵抗発熱体は少なくとも加熱体最大到達温度以下の温度領域において、負の抵抗温度特性を有することを特徴とする加熱体。
【0026】
(13)前記(10)から(12)の何れか1項に記載の加熱体において、前記基板はセラミックスであることを特徴とする加熱体。
【0027】
(14)前記(13)に記載の加熱体において、前記基板は形状の異なる平板状の2枚のグリーンシートを貼り合わせた後焼成して形成するものであることを特徴とする加熱体。
【0028】
(15)前記(13)又は(14)に記載の加熱体において、前記基板は酸化アルミニウムからなることを特徴とする加熱体。
【0029】
(16)前記(13)又は(14)に記載の加熱体において、前記基板は窒化アルミニウムからなることを特徴とする加熱体。
【0030】
すなわち、グラファイトはある温度を境にその温度以下ではNTC特性(Negative Temperature Coefficient:温度が上がると抵抗が低くなる負の抵抗温度特性)を、その温度以上ではPTC特性(Positive Temperature Coefficient:温度が上がると抵抗が高くなる正の抵抗温度特性)を示す性質があり、その変曲点温度は700℃程度である。本発明ではこのグラファイトを抵抗発熱体に含有させることで抵抗発熱体に変曲点温度以下においてNTC特性を具備させて非通紙部に対応する抵抗発熱体部分の発熱量をNTC特性にて抑制させ、これにより非通紙部昇温の防止を、装置のスペックを低下させることなく、低コストかつ簡単な構成で達成した。
【0031】
また、加熱体基板の断面形状を凹型にして、その凹部に抵抗発熱体を充填する構成をとることによって、抵抗発熱体の断面積を大きくすることができ、シート抵抗の高いグラファイトをNTC特性を損なうことなく抵抗発熱体として用いることができる。
【0032】
上記構成からなる加熱装置及び画像形成装置を用いることによって、非通紙部昇温を防止することができ、より安全で製品寿命が長く画像も良好な加熱装置及び画像形成装置を提供することが可能になる。
【0033】
【発明の実施の形態】
[実施例1]
以下、図面を参照し本発明の第1の実施例を説明する。
【0034】
(1)画像形成装置例
図1は本実施例における画像形成装置の要部の概略構成模型図である。この画像形成装置は転写式電子写真プロセス利用のレーザービームプリンタである。
【0035】
101は像担持体として有機感光ドラム、102は帯電部材としての帯電ローラ、103はレーザー露光装置、104は現像スリーブ及び現像ブレードならびに1成分磁性トナー等からなる現像装置、105はクリーニングブレード、106は転写ローラ、107は加熱定着装置である。本実施例の画像形成装置は最大通紙幅をA4サイズ(紙幅:210mm)とする。また通紙は中央基準搬送でなされるものとする。
【0036】
有機感光ドラム101は所定の周速度にて回転駆動され、帯電ローラ102によって本例の場合は負の所定電位に一様に帯電される。そしてその有機感光ドラム101の一様帯電処理面にレーザー露光装置103からのレーザービームによる画像情報の走査露光がなされて、有機感光ドラム101に走査露光パターンに対応した静電潜像が形成される。
【0037】
次に、現像装置104の中で帯電したネガトナーが有機感光ドラム101上の静電潜像の露光明部に付着して静電潜像がトナー像として可視像となる(反転現像)。
【0038】
一方、所定の給紙制御タイミングにて給紙ローラ108が回転駆動されて給紙カセット109から紙等の記録材Pが1枚分離給送されて、搬送ローラ110、レジストローラ111等を含むシートパス112を通って有機感光ドラム101と転写ローラ106との当接部である転写ニップ部に所定の制御タイミングにて導入され、記録材Pの面に有機感光ドラム101上のトナー像が順次に転写される。
【0039】
転写ニップ部を出た記録材Pは、有機感光ドラム101面から分離されて、シートパス113を通って画像加熱定着装置107に導入されてトナー像の加熱定着処理を受け、シートパス114を通って排紙トレイ115上に排出される。
【0040】
また記録材分離後の有機感光ドラム101面はクリーニングブレード105により転写残トナーの除去を受けて清掃され、繰り返して作像に供される。
【0041】
(2)画像加熱定着装置107
図2は本実施例における画像加熱定着装置(以下、定着装置と記す)107の要部の概略構成模型図である。この定着装置107は、特開平4−44075〜44083号公報、同4−204980〜204984号公報等に開示のテンションレスタイプのフィルム加熱方式の加熱装置である。
【0042】
このテンションレスタイプのフィルム加熱方式の定着装置(加熱装置)は、耐熱性フィルムとしてエンドレスベルト状もしくは円筒状のものを用い、該フィルムの周長の少なくとも一部は常にテンションフリー(テンションが加わらない状態)とし、フィルムは加圧部材の回転駆動力で回転駆動するようにした装置である。
【0043】
1はステーであり、加熱体保持部材兼フィルムガイド部材としての耐熱性・剛性部材である。3は加熱体としてのセラミックヒータであり、上記のステー1の下面にステー長手に沿って配設して保持させてある。2はエンドレス(円筒状)の耐熱性フィルムであり、加熱体3を含むフィルムガイド部材であるステー1に外嵌させてある。このエンドレスの耐熱性フィルム2の内周長と加熱体3を含むステー1の外周長はフィルム2の方を例えば3mm程度大きくしてあり、従ってフィルム2は周長に余裕を持って外嵌している。本実施例では、フィルム2の外径は18mmとした。
【0044】
ステー1はポリイミド、ポリアミドイミド、PEEK、PPS、液晶ポリマー等の高耐熱性樹脂や、これらの樹脂とセラミックス、金属、ガラス等との複合材料等で構成できる。本実施例では液晶ポリマーを用いた。
【0045】
フィルム2は熱容量を小さくしてクイックスタート性を向上させるために、フィルム膜厚は100μm以下、好ましくは50μm以下20μm以上の耐熱性のあるPTFE、PFA、FEP等の単層フィルム、或いはポリイミド、ポリアミドイミド、PEEK、PES、PPS等のフィルムの外周表面にPTFE、PFA、FEP等をコーティングした複合層フィルムを使用できる。本実施例では膜厚約50μmのポリイミドフィルムの外周表面にPTFEをコーティングしたものを用いた。
【0046】
4は加熱体3との間にフィルム2を挟んで圧接ニップ部(定着ニップ部)Nを形成し、かつフィルム2を回転駆動させるフィルム外面接触駆動手段としての加圧ローラである。この加圧ローラ4は芯金4aと弾性体層4bと最外層の離形層4cからなり、不図示の軸受け手段・付勢手段により所定の押圧力をもってフィルム2を挟ませて加熱体3の表面に圧接させて配設してある。本実施例では、芯金4aはアルミ芯金を、弾性体層4bはシリコーンゴムを、離形層4cはPFAをコーティングしたものを用いた。加圧ローラ4の外径は20mm、弾性体層4bの厚さは3mmとした。
【0047】
この加圧ローラ4は駆動系Mにより矢印の時計方向に所定の周速度で回転駆動される。この加圧ローラ4の回転駆動により、圧接ニップ部Nにおける該加圧ローラとフィルム外面との摩擦力でフィルム2に回転力が作用して、フィルム2はその内面側が圧接ニップ部Nにおいて加熱体3の表面に密着して摺動しながらステー1の外回りを矢印の反時計方向に加圧ローラ4の回転周速度とほぼ同じ周速度で従動回転状態になる。
【0048】
加熱体3は次の(3)項で詳述するように、グラファイトを含む抵抗発熱体を有するセラミックヒータであり、給電回路部12・13から抵抗発熱体に対する給電による該抵抗発熱体の発熱で迅速に昇温する。その加熱体3の昇温が検温素子5で検知され、その検知温度情報が制御回路部(CPU)11に入力する。制御回路部11は検温素子5で検知される加熱体温度が所定の温度(定着温度)に維持されるように、給電回路部12・13から加熱体3の抵抗発熱体に対する給電を制御して加熱体3を温調する。
【0049】
そして、加熱体3の温度が所定に立ち上がり、かつ加圧ローラ4の回転によるフィルム2の回転周速度が定常化した状態において、フィルム2を挟んで加熱体3と加圧ローラ4とで形成される圧接ニップ部Nに被加熱材としての画像定着すべき記録材Pが画像形成部(転写部)より導入される。そして、記録材Pがフィルム2と一緒に圧接ニップ部Nを挟持搬送されることにより加熱体3の熱がフィルム2を介して記録材Pに付与され記録材P上の未定着顕画像(トナー画像)Tが記録材P面に加熱定着される。圧接ニップ部Nを通った記録材Pはフィルム2の面から分離されて搬送される。
【0050】
(3)加熱体3
図3の(a)は加熱体3の表面側の一部切欠き平面模型図と、裏面側の平面模型図と、通電制御系のブロック回路図である。(b)は加熱体3の拡大横断面模型図である。
【0051】
本実施例の加熱体3は下記の▲1▼〜▲5▼等の要素からなる全体に低熱容量で、表面発熱タイプの加熱体である。
【0052】
▲1▼.被加熱材としての記録材Pの搬送方向aに対して直角方向を長手とする細長の耐熱性・絶縁性・良熱伝導性の基板7
▲2▼.該基板7の表面側(フィルム摺動面側)の短手方向中央部に基板長手に沿って形成具備させた凹部(凹溝部)7aに充填して具備させた抵抗発熱体6
▲3▼.該抵抗発熱体6の両端部にそれぞれ電気的に導通させて、基板両端部側の表面部分に形成具備させた第1と第2の給電用電極9・10
▲4▼.上記の第1と第2の給電用電極9・10部分は露呈させ、抵抗発熱体6を覆わせて基板表面に形成具備させた、抵抗発熱体を形成した加熱体表面(フィルム摺動面)を保護する耐熱性オーバーコート層8
▲5▼.基板7の裏面側(非フィルム摺動面側)において、基板長手方向の略中央部(最小通紙幅)内に配置した、加熱体の温度を制御するためのサーミスタ等の検温素子5。
【0053】
本実施例では基板7は酸化アルミニウム基板を用いた。この酸化アルミニウム基板7は、図4のように、2枚の平板状のグリーンシート71・72を貼り合わせた後焼成することで凹型形状となっている。14は2枚のグリーンシートの貼り合わせ面である。本実施例の加熱体の製法については後述する。
【0054】
本実施例の抵抗発熱体6は、グラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、基板7の凹部7aに形成して得たものである。本実施例においては、抵抗発熱体6の常温のシート抵抗は約40Ω/sq(厚さ10μm)のものを用い、抵抗発熱体6の常温における総抵抗は30Ωとした。
【0055】
第1と第2の給電用電極9・10は銀パラジウムのスクリーン印刷パターンを用いた。
【0056】
オーバーコート層8は、抵抗発熱体6と加熱体3表面との電気的な絶縁性とフィルム2の摺動性とを確保することが主な目的である。本実施例では、オーバーコート層8として厚さ約50μmの耐熱性ガラス層を用いた。
【0057】
検温素子5は加熱体3の裏面(非フィルム摺動面)において最小通紙幅内に設けられている。本実施例では、検温素子5として加熱体3から分離した外部当接型のサーミスタを用いている。この外部当接型サーミスタ5は、例えば支持体上に断熱層を設けその上にチップサーミスタの素子を固定し、素子を下側(加熱体裏面側)に向けて所定の加圧力により加熱体裏面に当接するような構成をとる。本実施例では、支持体として高耐熱性の液晶ポリマーを、断熱層としてセラミックスペーパーを積層したものを用いた。外部当接型サーミスタ5は制御回路部(CPU)11に通じている。
【0058】
本実施例の加熱体3において、基板7は図4の(a)のように、被加熱材搬送方向aにおいて中央部が端部よりも厚さが薄い凹型断面形状である。すなわち基板7の表面側(フィルム摺動面側)の短手方向中央部に基板長手に沿って凹部7aを具備させたものである。幅7.0mm・長さ270mm・総厚1.635mmとした。図4の(a)中のd1は0.635mm、d2は1.0mmとした。抵抗発熱体6は幅3.0mm・長さ220mm・厚さ(d2)1.0mmとした。
【0059】
このような基板7は図4の(b)のように、形状の異なる平板状の2枚のグリーンシート71と72を貼り合わせた後焼成して形成することで得られる。
【0060】
以下に本実施例の加熱体3の製法を図4を参照して述べる。まず、焼成後に厚さ0.635mmになる酸化アルミニウム基板の第1のグリーンシート71と、焼成後に厚さ1.0mmになる酸化アルミニウム基板の第2のグリーンシート72と貼り合わせる。14はグリーンシートの貼り合わせ面である。厚さ0.635mmになる第1のグリーンシート71は直方体であるが、厚さ1.0mmになる第2のグリーンシート72は抵抗発熱体6を充填する部分が型抜きされた形状になっている。2枚のグリーンシート71・72を貼り合わせた後、1500℃程度の焼成温度で焼成し、一体化された酸化アルミニウム基板7を得る。図3・4では分かりやすくするためにグリーンシート71・72の貼り合わせ面14を破線で示しているが、実際には一体化されているので境目が存在するわけではない。
【0061】
次に、第1と第2の給電用電極9・10を図4の(a)のA・Bの位置にスクリーン印刷し、800℃程度の焼成温度で焼成する。
【0062】
そして、前述した抵抗発熱体ペーストをスクリーン印刷により、基板7の凹部7aに充填し焼成する。グラファイトは700℃程度で表面酸化が始まるので、焼成温度は約600℃とした。抵抗発熱体6の長手両端部と給電用電極9・10は導通がとれるように、給電用電極9・10は基板7の凹部7aの長手方向端部の側面にも形成しておく。その後、オーバーコート層8をスクリーン印刷により形成し焼成する。グラファイトの耐熱性に考慮して、オーバーコート層8の材料は400〜500℃で焼成可能なガラスを選択した。
【0063】
この加熱体3を抵抗発熱体6を形成具備させた表面側を下向きに露呈させてステー1の下面側に保持させて固定配設してある。
【0064】
以上の構成をとることにより、加熱体全体を熱ローラ方式に比べて低熱容量にすることができ、クイックスタートが可能になる。
【0065】
加熱体3は、抵抗発熱体6の長手両端部の第1と第2の給電用電極9・10に対するAC電源13からの給電により抵抗発熱体6が長手全長にわたって発熱することで昇温する。
【0066】
検温素子5はリード線を通じて制御回路部11に導通しており、加熱体3の昇温が該検温素子5で検知され、検温素子5の出力をA/D変換し制御回路部11に取り込み、その情報に基づいてトライアック12によりAC電源13から抵抗発熱体6に通電する電力を位相、波数制御等により制御して、加熱体3の温度制御がなされる。
【0067】
即ち検温素子5の検知温度が所定の設定温度より低いと加熱体3が昇温するように、設定温度より高いと降温するように通電を制御することで、加熱体3は定着時一定温度に保たれる。なお、本実施例では位相制御により出力を0〜100%まで5%刻みの21段階で変化させている。出力100%は加熱体に全通電したときの出力を示す。
【0068】
(4)グラファイトを含む抵抗発熱体について
グラファイトはある温度を境にその温度以下ではNTC特性すなわち温度が上がると抵抗が低くなる負の抵抗温度特性を、その温度以上ではPTC特性すなわち温度が上がると抵抗が高くなる正の抵抗温度特性を示す性質があり、その変曲点温度は700℃程度である。
【0069】
本発明ではこのグラファイトを抵抗発熱体に含有させることで抵抗発熱体に変曲点温度以下においてNTC特性を具備させて非通紙部に対応する抵抗発熱体部分の発熱量をNTC特性にて抑制させ、これにより非通紙部昇温の防止を、装置のスペックを低下させることなく、低コストかつ簡単な構成で達成した。
【0070】
本実施例の加熱体3における抵抗発熱体6は、前述したように、グラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により基板7の凹部7aに形成し焼成して得た、幅3.0mm・長さ220mm・厚さ(d2)1.0mmのものである。本実施例においては、抵抗発熱体6の常温のシート抵抗は約40Ω/sq(厚さ10μm)のものを用い、抵抗発熱体6の常温における総抵抗は30Ωとした。
【0071】
図7に従来例(比較例)の表面加熱タイプの加熱体の断面図を示す。15は従来例の抵抗発熱体であり、銀パラジウム・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストを、平板の酸化アルミニウム基板7にスクリーン印刷により、幅3.0mm・長さ220mm・厚さ約10μmの線帯状に形成して得たものである。従来の抵抗発熱体15は、常温のシート抵抗が約0.4Ω/sq(厚さ10μm)であるものを用いた。総抵抗は、本実施例と同じく、常温で30Ωとした。酸化アルミニウム基板7は本実施例と同じ材質の幅7.0mm・長さ270mm・厚さ0.635mmの寸法のものを用いた。16は、オーバーコート層であり、本実施例と同じく約50μmの耐熱性ガラス層を用いた。5は、本実施例と同構成の外部当接型サーミスタである。
【0072】
図5に本実施例及び従来例の抵抗発熱体6・15の抵抗温度特性の概略図を示す。横軸は抵抗発熱体の温度を、縦軸は抵抗値を示す。細線は従来例の抵抗発熱体15の抵抗温度特性を示し、太線は本実施例の抵抗発熱体6の抵抗温度特性を示す。図5に示す通り、従来例では温度が上がると抵抗が高くなる正の抵抗温度特性(PTC特性)を示し、本実施例では温度が上がると抵抗が低くなる負の抵抗温度特性(NTC特性)を示す。なお、図5はグラファイトの変曲点温度700℃以下の温度領域を図示している。
【0073】
本実施例の抵抗発熱体6の抵抗変化率は−2000ppm/℃程度(25℃から300℃までの抵抗変化率、以下の値も同様)であり、従来例の抵抗発熱体15の抵抗変化率は1000ppm/℃程度である。
【0074】
画像形成装置の待機時は加熱体の温度は常温付近になっているので、本実施例・従来例とも抵抗は30Ω程度である。画像形成装置がプリント信号を受信すると加熱体に通電を開始し、定着温度付近まで温度が上昇するので、従来例では抵抗発熱体15の抵抗が高くなり、本実施例では抵抗発熱体6の抵抗が低くなる。定着温度を200℃とすると、抵抗発熱体の総抵抗は従来例で35.25Ω、本実施例では19.50Ωとなる。また、仮に抵抗発熱体の温度が300℃になったとすると、総抵抗は従来例で38.25Ω、本実施例では13.50Ωとなる。大サイズ紙(A4縦送り:紙幅210mm)を通紙しているときは、抵抗発熱体の中央部と端部で温度はほぼ同じであるので、中央部と端部の抵抗も同じであるが、小サイズ紙を通紙すると前述した非通紙部昇温により端部の温度が中央部よりも高くなる。よって、従来例では、端部の抵抗は中央部よりも高くなり、本実施例では端部の抵抗が中央部よりも低くなる。
【0075】
図6は抵抗発熱体のモデル図である。抵抗発熱体に流れる電流をIとし、中央部の抵抗をR1、端部の抵抗をR2とした場合、中央部の発熱量W1はI・R1であり、端部の発熱量W2はI・R2である(簡単のため、抵抗がR1の領域と抵抗がR2の領域の長さは同じと考える)。
【0076】
従来例において小サイズ紙を通紙した場合を考えると、R2>R1となるので、端部の発熱量W2は中央部の発熱量W1に比べて大きくなる。発熱量が大きくなると温度が上昇するので更に抵抗が高くなりまた発熱量が増えるという循環を繰り返してしまう。
【0077】
一方、本実施例において小サイズ紙を通紙した場合を考えると、R2<R1となるので、端部の発熱量W2は中央部の発熱量W1に比べて小さくなる。従来例も本実施例も、通紙は中央基準搬送でなされ、検温素子5は最小通紙幅内である加熱体中央部にあり、どちらも中央部の温度を一定にするように温度制御を行っているので、従来例の中央部の発熱量と本実施例の中央部の発熱量はほぼ同じである。よって、本実施例の端部の発熱量の方が従来例の端部の発熱量よりも小さくなり、本実施例の方が従来例よりも端部の温度を低く抑えることができる。
【0078】
従来、フィルム加熱方式の加熱装置の抵抗発熱体は、金属とガラスの混合物が用いられており、金属が一般的に有するPTC特性により抵抗発熱体全体としてもPTC特性を有するものしか実用化されていない。本発明ではNTC特性を有するグラファイトを抵抗発熱体に含有させることで、NTC特性を有する抵抗発熱体を実現でき、非通紙部昇温を防止することができる。
【0079】
なお、従来例の加熱体のように、グラファイトを含有する抵抗発熱体を基板上に薄層状(厚さ10〜100μm程度)に形成する方法も考えられるが、グラファイトはシート抵抗が高いので、薄層状にするには抵抗を下げる材料を含有させる必要がある。抵抗を下げる材料としては金属が考えられるが、金属はPTC特性を有しているため、グラファイトのNTC特性が打ち消され抵抗変化率が大きくなってしまい非通紙部昇温防止の効果も低減する(抵抗変化率が小さいほど、非通紙部の温度を低くすることができる)。金属以外でグラファイトよりも抵抗が低い材料も存在するが、それらでは抵抗が高く抵抗発熱体の総抵抗を所望の値にすることが不可能である。また、仮に抵抗を下げる材料を含有させないで薄層状の抵抗発熱体を形成すると、抵抗発熱体の総抵抗が高くなりすぎ加熱体の立ち上げ及び通紙時の温度維持に必要な電力を得ることができなくなってしまう(総抵抗の値は画像形成装置のスループット・加熱装置の構成等によって決定される)。
【0080】
本実施例のように加熱体基板7の断面形状を凹型にして、その凹部7aに抵抗発熱体6を充填する構成をとることによって、抵抗発熱体6の断面積を大きくすることができ、シート抵抗の高いグラファイトをNTC特性を損なうことなく抵抗発熱体として用いることができる。
【0081】
単純に抵抗発熱体の断面積を大きくするだけであれば、平板の基板に厚く抵抗発熱体を形成する方法も考えられるが、グラファイトは強度があまり強くないため、常に加圧ローラ4で加圧された状態では耐久性に問題がある。よって、基板7の断面形状を凹型にして、抵抗発熱体6の両側の基板部分もフィルム2を介して加圧ローラ4に当接して圧接ニップ部Nを形成する本実施例の構成が望ましい。
【0082】
以下に本実施例の加熱装置と従来例の加熱装置との比較を示す。本実施例と従来例で加熱体以外の構成は同じとし、加熱装置が十分室温(25℃)になじんだ状態からハガキサイズ(小サイズ紙)の記録材を連続で100枚通紙したときの、非通紙部の最高温度(加熱体裏面を熱電対で測定)を比較した。定着温度は200℃とした。入力電圧は100Vとし、画像形成装置のプロセススピードは80mm/sec.とした。結果を表1に示す。
【0083】
【表1】

Figure 2004234998
【0084】
表1に示すように、本実施例の加熱装置は従来例に比べて大幅に(約50℃)非通紙部温度を下げることができた。
【0085】
次にB5サイズ(小サイズ紙)で坪量が157g/mの厚紙を強制的に重送させて通紙し、何枚重送させると加熱装置の劣化・破損に至るかを試験した。定着温度・入力電圧・プロセススピードはハガキを通紙したときと同条件とした。試験結果を表2に示す。
【0086】
【表2】
Figure 2004234998
【0087】
表2に示すように、従来例の加熱装置の場合は、非通紙部昇温により加熱体基板に発生する熱応力によって、3または4重送で加熱体の破損に至り、ステー・フィルム・加圧ローラ表層の非通紙部に劣化が認められた。
【0088】
一方、本実施例の加熱装置の場合は、2回とも10重送まで重送枚数を増やしていったが、加熱体は破損せず、ステー・フィルム・加圧ローラにも劣化は認められなかった。
【0089】
以上説明した通り、本実施例の構成をとることにより、シート抵抗の高いグラファイトをNTC特性を損なうことなしに抵抗発熱体として用いることができ、非通紙部昇温を防止することができる。
【0090】
なお、本実施例では記録材を中央基準で通紙する場合について述べたが、本実施例は記録材を端部基準で通紙する画像形成装置にも適用可能である。
【0091】
[実施例2]
本実施例では、加熱体基板として窒化アルミニウムを用いる。
【0092】
実施例1のように基板7に酸化アルミニウムを用いる場合は、基板7の表面側に抵抗発熱体6を形成し、基板7の裏面側に検温素子5を設ける構成が一般的である(表面発熱タイプ)。
【0093】
一方、窒化アルミニウムを用いる場合は、酸化アルミニウムより熱伝導率が高いため、基板の裏面側に抵抗発熱体を形成し、その上から絶縁層を介して検温素子を当接し温度制御する構成の方が熱効率が良く一般的である(裏面発熱タイプ)。よって、本実施例においても裏面発熱タイプを用いた。なお、加熱体以外の加熱装置及び画像形成装置の構成は実施例1と同じである。
【0094】
図8に本実施例の加熱体の断面図を示す。本実施例の抵抗発熱体17は、実施例1と同じく、グラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、窒化アルミニウム基板18の凹部18aに形成して得たものである。本実施例の抵抗発熱体17は、実施例1と同じく、常温のシート抵抗は約40Ω/sq(厚さ10μm)、常温の総抵抗は30Ωとした。
【0095】
19は、抵抗発熱体17のオーバーコート層であり、抵抗発熱体17と加熱体裏面との電気的な絶縁性を確保することが主な目的である。本実施例では、オーバーコート層19として厚さ約50μmの耐熱性ガラス層を用いた。20は、フィルム2の摺動性を確保するために設けられた摺動ガラス層であり、厚さ約10μmの耐熱性ガラスを材料として用いた。本実施例でも基板18は2枚のグリーンシート18・18を貼り合わせ、実施例1と同様の製法で形成されており、21はグリーンシートの貼り合わせ面である。5は実施例1と同構成の外部当接型サーミスタである。実施例1と同様に、抵抗発熱体17の長手方向両端部には、図3の(a)で示したような第1と第2の給電用電極(9・10)が存在しており、銀パラジウムのスクリーン印刷パターンを用いている。
【0096】
基板18の寸法は実施例1と同じ幅7.0mm・長さ270mm・総厚1.635mmであり、図8のd1は0.635mm、d2は1.0mmとした。つまり、実施例1の酸化アルミニウム基板7を上下反転させた形状になっている。抵抗発熱体17も実施例1と同じ幅3.0mm・長さ220mm・厚さ(d2)1.0mmとした。
【0097】
本実施例では実施例1と同じ抵抗発熱体を用いているので、抵抗変化率も変わらず−2000ppm/℃程度である。よって、非通紙部昇温防止の観点からは、実施例1と同等の効果があると考えられる。
【0098】
以下に本実施例の加熱装置と従来例の加熱装置との比較を示す。以下の比較は実施例1で述べた比較と同条件で行った。従来例は実施例1で述べた構成と同じであり、結果も同じものである。まず、加熱装置が十分室温(25℃)になじんだ状態からハガキサイズ(小サイズ紙)の記録材を連続で100枚通紙したときの、非通紙部の最高温度(加熱体裏面を熱電対で測定)を比較した。定着温度・入力電圧・プロセススピードは実施例1と同条件とした。結果を表3に示す。
【0099】
【表3】
Figure 2004234998
【0100】
表3に示すように、従来例よりも大幅に温度が低下しているのはもちろん、実施例1の結果(265℃)よりも低い温度となった。これは、窒化アルミニウムは酸化アルミニウムに比べて熱伝導率が高いため、基板長手方向における熱伝達性が高いことによる効果である。
【0101】
次にB5サイズ(小サイズ紙)で坪量が157g/mの厚紙を強制的に重送させて通紙し、何枚重送させると加熱装置の劣化・破損に至るかを試験した。定着温度・入力電圧・プロセススピードは同条件である。試験結果を表4に示す。
【0102】
【表4】
Figure 2004234998
【0103】
表4に示すように、本実施例の加熱装置は、2回とも10重送まで重送枚数を増やしていったが、加熱体の破損及びステー・フィルム・加圧ローラの劣化はなく、実施例1と同じ結果となった。
【0104】
結局、非通紙部昇温防止という観点からは、本実施例は実施例1と同等あるいはそれ以上の効果があることが分かる。
【0105】
本実施例が実施例1よりも優れているのは、熱効率が良いという点である。抵抗発熱体17で発生する熱が効率良く記録材に伝達されているか否かを判断するには、抵抗発熱体17からみた加熱体表面方向の熱抵抗と加熱体裏面方向の熱抵抗とを比較すると分かりやすい。熱抵抗とは熱の伝わりやすさを表す物理量であり、厚さがd(m)で厚さ方向と直交する面の面積がA(m)である直方体を考えたときに、その直方体の厚さ方向の熱抵抗R(K/W)は以下の式で定義される。
【0106】
R=d/(λ・A)
ここで、λは直方体の厚さ方向の熱伝導率(W/m・K)である。
【0107】
熱抵抗が小さいほど熱は伝わりやすく、大きいほど熱は伝わりにくいので、抵抗発熱体17からみて加熱体表面方向の熱抵抗は小さく、加熱体裏面方向の熱抵抗は大きい方が、効率良く記録材に熱を伝達することができる。
【0108】
表5に本実施例と実施例1の熱抵抗の比較を示す。実施例1の酸化アルミニウムの熱伝導率は20W/m・K、本実施例の窒化アルミニウムの熱伝導率は170W/m・K、ガラス層の熱伝導率は実施例1・2とも2W/m・Kである。なお、簡単のため、Aは1mとして計算している。
【0109】
【表5】
Figure 2004234998
【0110】
表5に示した熱抵抗の比が小さいほど、相対的に表面側の熱抵抗が裏面側の熱抵抗よりも小さいので熱効率が良い。よって、本実施例の方が実施例1よりも熱効率が良いことが分かる。なお、従来例の熱抵抗の比は実施例1と同じ値であるから、従来例と実施例1はほぼ同等の熱効率であると考えられる。
【0111】
以上説明した通り、本実施例の構成をとることにより、非通紙部昇温を防止することができる上に、実施例1よりも効率良く熱を記録材に伝達できるため、省電力にもなる。
【0112】
なお、本実施例では記録材を中央基準で通紙する場合について述べたが、本実施例は記録材を端部基準で通紙する画像形成装置にも適用可能である。
【0113】
[その他]
1)本発明の加熱装置は実施例の画像加熱定着装置としての使用に限られず、未定着画像を記録材に仮に定着せしめる仮定着装置、定着画像を担持した記録材を再加熱してつや等の画像表面性を改質する表面改質装置等の像加熱装置としても有効である。
【0114】
またその他、例えば、紙幣等のシワ除去用の熱プレス装置、熱ラミネート装置,紙当の含水分を蒸発させる加熱乾燥装置など、シート状部材を加熱処理する加熱装置として用いても有効であることは勿論である。
【0115】
2)また加熱装置の構成は実施例のフィルム加熱方式に限られるものではないことは勿論である。
【0116】
【発明の効果】
以上説明したように本発明によれば、給電により発熱する抵抗発熱体を有する加熱体によって被加熱材を加熱する加熱装置、該加熱装置を定着装置として搭載した画像形成装置について、NTC特性でかつ抵抗変化率の小さい抵抗発熱体を実現することができ、その特性により、装置のスペックを低下させることなくかつ低コストな構成で非通紙部昇温を防止することができ、より安全で製品寿命が長く画像も良好な加熱装置及び画像形成装置を提供することが可能になる。
【図面の簡単な説明】
【図1】実施例1における画像形成装置の要部の概略構成模型図
【図2】実施例1における加熱装置(画像加熱定着装置)の要部の概略構成模型図
【図3】加熱体の構成模型図
【図4】凹型断面形状の加熱体基板の斜視図と、その製造要領の説明図
【図5】実施例1と従来例とにおける加熱体の抵抗発熱体の抵抗温度特性の概略図
【図6】抵抗発熱体のモデル図
【図7】従来例の加熱体の拡大横断面模型図
【図8】実施例2における加熱体の拡大横断面模型図
【符号の説明】
1.ステー 2.定着フィルム 3.ヒータ(加熱体) 4.加圧ローラ(加圧体) 4a.芯金 4b.弾性体層 4c.離形層 5.外部当接型サーミスタ 6.実施例1の抵抗発熱体 7.酸化アルミニウム基板 8.16.19.オーバーコート層 9.10.給電用電極 11.制御回路部(CPU) 12.トライアック 13.AC電源 14.21.グリーンシートの貼り合わせ面15.従来例の抵抗発熱体 17.実施例2の抵抗発熱体 18.窒化アルミニウム基板 20.摺動ガラス層 N.ニップ部 P.記録材 T.トナー a.記録材搬送方向[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is suitable for use as a heat fixing device for heating a recording material having an unfixed toner image formed thereon and fixing the image as a permanently fixed image in an image forming apparatus such as a copying machine and a laser beam printer. It relates to a heating device.
[0002]
Further, the present invention relates to an image forming apparatus provided with the heating device as an image heating device, and a heating element used in the heating device.
[0003]
[Prior art]
2. Description of the Related Art Conventionally, for example, a heating device for a recording material for heating and fixing an image includes a heating roller that is maintained at a predetermined temperature and a pressing roller that presses against the heating roller via an elastic layer. A heat roller method of heating a recording material while nipping and transporting the recording material is often used. In addition, various systems and configurations such as a flash heating system, an open heating system, and a hot plate heating system are known and are in practical use.
[0004]
Recently, instead of such a method, a heating element (heater), a support (stay) of the heating element, a heat-resistant film (fixing film) conveyed while being pressed against the heating element, and a fixing film are used. A pressing member (pressing roller) for bringing a recording material as a material to be heated into close contact with the heating member via the fixing member, and applying heat of the heating member to the recording material via a fixing film to form and carry the recording material on the recording material surface A method of heating and fixing an unfixed image to a recording material surface, and an image heating fixing method (film heating method heating device) having a configuration have been devised (for example, see Patent Documents 1 to 4).
[0005]
In such a film heating type heating apparatus or image heating and fixing apparatus, a heating element having a low heat capacity can be used as the heating element. For this reason, it is possible to save power and shorten the wait time (quick start) as compared with a conventional device such as a heat roller system or a belt heating system which is a contact heating system.
[0006]
In a conventional film heating type heating apparatus, ceramics such as aluminum oxide and aluminum nitride are used as a substrate of a heating body. When aluminum oxide is used, a resistance heating element is formed on the surface of the substrate (the sliding surface of the film), and a temperature sensor for detecting and controlling the temperature of the heating element on the back surface (the non-film sliding surface) of the substrate. Is generally provided (surface heating type).
[0007]
On the other hand, when aluminum nitride is used, since the thermal conductivity is higher than that of aluminum oxide, a resistance heating element is formed on the back surface (non-film sliding surface) of the substrate, and the temperature measuring element is brought into contact therewith via an insulating layer. The temperature control configuration has better thermal efficiency (backside heat generation type).
[0008]
In the above-described film heating type heating apparatus, when a recording material (hereinafter, referred to as small size paper) having a width somewhat smaller than the maximum size that can be passed (hereinafter, referred to as large size paper) is passed, a heating element is used. Alternatively, the temperature control of the heated material heating section is often performed based on the output of a temperature detecting element provided in the paper passing section, and since the recording material does not lose heat to the non-paper passing section in the non-paper passing section, The temperature rises compared to the paper passing section (non-paper passing section temperature rise).
[0009]
In addition, especially when a small-size paper and a thick recording material (thick paper, envelope, etc.) are fed by being multi-fed, a large amount of heat is taken by the recording material in the paper passing portion. , A large amount of power is supplied to the sheet, and the temperature rise in the non-sheet passing portion becomes significant. Therefore, when the number of multi-feeds is large, there is a risk that the heating element, the pressure roller and the like may be deteriorated or damaged. In addition, when the temperature rise in the non-sheet passing portion is large, when a large size sheet is passed immediately after passing a small size sheet, a high temperature offset may occur at an end portion.
[0010]
In order to prevent the temperature rise in the non-sheet passing portion, when small-size paper is continuously passed, the throughput is reduced to protect the heating member and the pressure roller in the non-sheet passing portion (for example, see Patent Reference 5).
[Patent Document 1]
JP-A-63-313182
[Patent Document 2]
JP-A-2-15778
[Patent Document 3]
JP-A-4-44075
[Patent Document 4]
JP-A-4-204980
[Patent Document 5]
Japanese Patent No. 2727899
[0011]
[Problems to be solved by the invention]
However, lowering the throughput reduces the specifications of the image forming apparatus, and providing a separate member increases the cost.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heating device such as a film heating system, which can prevent the above-described non-sheet passing portion temperature rise with a low-cost and simple configuration without reducing the specifications of the device.
[0013]
[Means for Solving the Problems]
The present invention is a heating device, an image forming apparatus, and a heating body characterized by the following configurations.
[0014]
(1) In a heating device for heating a material to be heated by at least a heating element including a substrate and a resistance heating element provided on the substrate and generating heat by power supply, the heating element may be configured such that the substrate is in a transporting direction of the material to be heated. 3. The heating device according to claim 1, wherein the central portion has a concave cross-sectional shape whose thickness is smaller than the end portion, and the concave portion of the substrate is filled with a resistance heating element containing graphite.
[0015]
(2) having a heating element and a film having one surface in contact with and sliding on the heating element and the other surface in contact with the object to be heated, wherein the film and the object to be heated move together on the heating element; In a heating apparatus for transmitting heat to a material to be heated via a film, the heating element includes at least a substrate and a resistance heating element provided on the substrate and generating heat by power supply. A heating device characterized in that a central portion in the direction has a concave cross-sectional shape whose thickness is smaller than an end portion, and a concave portion of the substrate is filled with a resistance heating element containing graphite.
[0016]
(3) The heating device according to (1) or (2), wherein the resistance heating element is mainly composed of graphite glass.
[0017]
(4) The heating device according to any one of (1) to (3), wherein the resistance heating element has a negative resistance temperature characteristic at least in a temperature range equal to or lower than a maximum temperature of the heating element. Heating equipment.
[0018]
(5) The heating device according to any one of (1) to (4), wherein the substrate is a ceramic.
[0019]
(6) The heating device according to (5), wherein the substrate is formed by bonding two flat green sheets having different shapes and then firing the green sheets.
[0020]
(7) The heating device according to (5) or (6), wherein the substrate is made of aluminum oxide.
[0021]
(8) The heating device according to (5) or (6), wherein the substrate is made of aluminum nitride.
[0022]
(9) In an image forming apparatus including an image forming unit for forming an image on a recording material and an image heating unit for heating the image on the recording material, the image heating unit according to any one of (1) to (8), An image forming apparatus comprising the heating device according to claim 1.
[0023]
(10) At least a heating element which has a substrate and a resistance heating element provided on the substrate and generates heat by power supply, and heats a material to be heated, wherein the substrate has an end at the center in the direction of transport of the material to be heated. A heating element having a concave cross-sectional shape having a smaller thickness than that of the substrate, wherein a concave portion of the substrate is filled with a resistance heating element containing graphite.
[0024]
(11) The heating element according to (10), wherein the resistance heating element is mainly composed of graphite glass.
[0025]
(12) The heating element according to (10) or (11), wherein the resistance heating element has a negative resistance temperature characteristic at least in a temperature region equal to or lower than the maximum temperature of the heating element.
[0026]
(13) The heating element according to any one of (10) to (12), wherein the substrate is a ceramic.
[0027]
(14) The heating element according to (13), wherein the substrate is formed by bonding two flat green sheets having different shapes and then baking the green sheets.
[0028]
(15) The heating element according to (13) or (14), wherein the substrate is made of aluminum oxide.
[0029]
(16) The heating element according to (13) or (14), wherein the substrate is made of aluminum nitride.
[0030]
That is, graphite has NTC characteristics (Negative Temperature Coefficient: negative resistance temperature characteristics in which resistance decreases as the temperature rises) below a certain temperature, and PTC characteristics (Positive Temperature Coefficient: temperature rises above that temperature). And a positive resistance-temperature characteristic that increases the resistance), and its inflection point temperature is about 700 ° C. In the present invention, by including this graphite in the resistance heating element, the resistance heating element is provided with NTC characteristics below the inflection point temperature and the amount of heat generated in the resistance heating element portion corresponding to the non-sheet passing portion is suppressed by the NTC characteristic. As a result, the prevention of temperature rise in the non-sheet passing portion was achieved with a low-cost and simple configuration without reducing the specifications of the apparatus.
[0031]
Further, by adopting a configuration in which the cross-sectional shape of the heating element substrate is concave and the concave portion is filled with a resistance heating element, the cross-sectional area of the resistance heating element can be increased, and graphite having a high sheet resistance can be provided with NTC characteristics. It can be used as a resistance heating element without loss.
[0032]
By using the heating device and the image forming apparatus having the above-described configuration, it is possible to prevent a non-paper passing portion from being heated, and to provide a heating device and an image forming apparatus that are safer, have a long product life, and have good images. Will be possible.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0034]
(1) Example of image forming apparatus
FIG. 1 is a schematic diagram of a main part of an image forming apparatus according to the present embodiment. This image forming apparatus is a laser beam printer using a transfer type electrophotographic process.
[0035]
101 is an organic photosensitive drum as an image carrier, 102 is a charging roller as a charging member, 103 is a laser exposure device, 104 is a developing device including a developing sleeve and a developing blade and a one-component magnetic toner, 105 is a cleaning blade, and 106 is a cleaning blade. The transfer roller 107 is a heat fixing device. In the image forming apparatus of this embodiment, the maximum sheet passing width is A4 size (sheet width: 210 mm). In addition, it is assumed that the paper is passed by the center reference conveyance.
[0036]
The organic photosensitive drum 101 is driven to rotate at a predetermined peripheral speed, and is uniformly charged to a predetermined negative potential by the charging roller 102 in this embodiment. Scanning exposure of image information by a laser beam from the laser exposure device 103 is performed on the uniformly charged surface of the organic photosensitive drum 101, and an electrostatic latent image corresponding to the scanning exposure pattern is formed on the organic photosensitive drum 101. .
[0037]
Next, the negative toner charged in the developing device 104 adheres to the exposed portion of the electrostatic latent image on the organic photosensitive drum 101, and the electrostatic latent image becomes a visible image as a toner image (reversal development).
[0038]
On the other hand, the paper feed roller 108 is driven to rotate at a predetermined paper feed control timing, and the recording material P such as paper is separated and fed from the paper feed cassette 109 by one sheet. The toner image on the organic photosensitive drum 101 is sequentially introduced to a transfer nip portion, which is a contact portion between the organic photosensitive drum 101 and the transfer roller 106, at a predetermined control timing. Transcribed.
[0039]
The recording material P that has exited the transfer nip portion is separated from the surface of the organic photosensitive drum 101, is introduced into the image heating and fixing device 107 through a sheet path 113, undergoes a heat fixing process of a toner image, and passes through a sheet path 114. And is discharged onto the discharge tray 115.
[0040]
Further, the surface of the organic photosensitive drum 101 after the separation of the recording material is cleaned by removing the untransferred toner by the cleaning blade 105, and is repeatedly provided for image formation.
[0041]
(2) Image heat fixing device 107
FIG. 2 is a schematic model diagram of a main part of an image heating and fixing device (hereinafter, referred to as a fixing device) 107 in the present embodiment. The fixing device 107 is a tensionless type film heating type heating device disclosed in JP-A-4-44075-44083, JP-A-4-20498-204498, and the like.
[0042]
This tensionless type film heating type fixing device (heating device) uses an endless belt-shaped or cylindrical heat-resistant film, and at least a part of the circumference of the film is always tension-free (no tension is applied). State), and the film is driven to rotate by the rotational driving force of the pressing member.
[0043]
Reference numeral 1 denotes a stay, which is a heat-resistant and rigid member serving as a heating element holding member and a film guide member. Reference numeral 3 denotes a ceramic heater as a heating element, which is disposed and held on the lower surface of the stay 1 along the length of the stay. Reference numeral 2 denotes an endless (cylindrical) heat-resistant film which is fitted around a stay 1 which is a film guide member including a heating element 3. The inner peripheral length of the endless heat-resistant film 2 and the outer peripheral length of the stay 1 including the heating element 3 are larger than that of the film 2 by, for example, about 3 mm, so that the film 2 is externally fitted with a margin in the peripheral length. ing. In this embodiment, the outer diameter of the film 2 was 18 mm.
[0044]
The stay 1 can be made of a high heat resistant resin such as polyimide, polyamide imide, PEEK, PPS, liquid crystal polymer, or a composite material of these resins with ceramics, metal, glass, or the like. In this embodiment, a liquid crystal polymer was used.
[0045]
The film 2 has a film thickness of 100 μm or less, preferably 50 μm or less and 20 μm or more, and is a heat-resistant single-layer film of PTFE, PFA, FEP, or the like, or a polyimide or polyamide in order to reduce the heat capacity and improve the quick start property. A composite layer film in which PTFE, PFA, FEP, or the like is coated on the outer peripheral surface of a film such as imide, PEEK, PES, or PPS can be used. In this embodiment, a polyimide film having a film thickness of about 50 μm and having an outer peripheral surface coated with PTFE was used.
[0046]
Reference numeral 4 denotes a pressure roller as a film outer surface contact driving means for forming a pressure contact nip portion (fixing nip portion) N with the film 2 sandwiched between the heating member 3 and rotating the film 2. The pressure roller 4 includes a cored bar 4a, an elastic layer 4b, and an outermost release layer 4c. The pressure roller 4 sandwiches the film 2 with a predetermined pressing force by a bearing means and an urging means (not shown). It is arranged in pressure contact with the surface. In this embodiment, the core 4a is made of aluminum, the elastic layer 4b is made of silicone rubber, and the release layer 4c is made of PFA. The outer diameter of the pressure roller 4 was 20 mm, and the thickness of the elastic layer 4b was 3 mm.
[0047]
The pressure roller 4 is rotationally driven by a driving system M in a clockwise direction indicated by an arrow at a predetermined peripheral speed. Due to the rotational drive of the pressure roller 4, a rotational force acts on the film 2 by the frictional force between the pressure roller and the outer surface of the film at the pressure nip N, and the inner surface of the film 2 is heated at the pressure nip N by the heating element. While being in close contact with the surface of the stay 3, the stay 1 is driven to rotate around the outer periphery of the stay 1 in the counterclockwise direction of the arrow at a peripheral speed substantially equal to the rotational peripheral speed of the pressure roller 4.
[0048]
The heating element 3 is a ceramic heater having a resistance heating element containing graphite, as will be described in detail in the following section (3). The heating element 3 generates heat from the resistance heating element when power is supplied from the power supply circuit units 12 and 13 to the resistance heating element. Heat up quickly. The temperature rise of the heating element 3 is detected by the temperature detecting element 5, and the detected temperature information is input to the control circuit unit (CPU) 11. The control circuit section 11 controls power supply from the power supply circuit sections 12 and 13 to the resistance heating element of the heating element 3 so that the temperature of the heating element detected by the temperature detecting element 5 is maintained at a predetermined temperature (fixing temperature). The temperature of the heating body 3 is adjusted.
[0049]
In a state where the temperature of the heating element 3 rises to a predetermined value and the rotational peripheral speed of the film 2 due to the rotation of the pressure roller 4 is stabilized, the heating element 3 is formed by the heating element 3 and the pressure roller 4 with the film 2 interposed therebetween. A recording material P to be heated as a material to be heated is introduced from the image forming portion (transfer portion) into the pressure contact nip portion N. Then, when the recording material P is nipped and conveyed together with the film 2 through the press-contact nip portion N, the heat of the heating body 3 is applied to the recording material P via the film 2 and the unfixed visible image (toner The image T is fixed on the recording material P by heating. The recording material P that has passed through the pressure nip N is separated from the surface of the film 2 and conveyed.
[0050]
(3) Heating element 3
FIG. 3A is a partially cutaway plan model diagram on the front surface side of the heating element 3, a plan model diagram on the back surface side, and a block circuit diagram of the power supply control system. (B) is an enlarged cross-sectional model diagram of the heating element 3.
[0051]
The heating element 3 of the present embodiment is a surface heating type heating element having a low heat capacity as a whole, including the following elements (1) to (5).
[0052]
▲ 1 ▼. An elongated heat-resistant, insulating and well-heat-conductive substrate 7 having a longitudinal direction perpendicular to the conveying direction a of the recording material P as a material to be heated.
▲ 2 ▼. A resistance heating element 6 which is formed by filling a concave portion (recessed groove portion) 7a formed along the longitudinal direction of the substrate 7 at the center in the lateral direction on the surface side (film sliding surface side) of the substrate 7
(3). First and second power supply electrodes 9 and 10 formed on the surface portions on both ends of the substrate by electrically conducting to both ends of the resistance heating element 6 respectively.
▲ 4 ▼. The surface of the heating element (film sliding surface) on which the resistance heating element is formed, wherein the first and second power supply electrodes 9 and 10 are exposed, and the resistance heating element 6 is covered and formed on the substrate surface. Heat-resistant overcoat layer 8 that protects
▲ 5 ▼. A temperature detecting element 5 such as a thermistor for controlling the temperature of the heating element, which is disposed in a substantially central portion (minimum sheet passing width) in the longitudinal direction of the substrate on the back surface side (non-film sliding surface side) of the substrate 7.
[0053]
In this embodiment, an aluminum oxide substrate was used as the substrate 7. As shown in FIG. 4, the aluminum oxide substrate 7 is formed into a concave shape by baking after bonding two flat green sheets 71 and 72 together. Reference numeral 14 denotes a bonding surface of the two green sheets. The method for manufacturing the heating element of this embodiment will be described later.
[0054]
The resistance heating element 6 of this embodiment is obtained by forming a paste prepared by kneading and mixing graphite, glass powder (inorganic binder) and organic binder in the recess 7a of the substrate 7 by screen printing. is there. In this embodiment, the sheet resistance of the resistance heating element 6 at normal temperature is about 40 Ω / sq (10 μm thickness), and the total resistance of the resistance heating element 6 at normal temperature is 30 Ω.
[0055]
The first and second power supply electrodes 9 and 10 used a silver-palladium screen printing pattern.
[0056]
The main purpose of the overcoat layer 8 is to secure electrical insulation between the resistance heating element 6 and the surface of the heating element 3 and slidability of the film 2. In this embodiment, a heat-resistant glass layer having a thickness of about 50 μm was used as the overcoat layer 8.
[0057]
The temperature detecting element 5 is provided within the minimum sheet passing width on the back surface (non-film sliding surface) of the heating element 3. In this embodiment, an external contact type thermistor separated from the heating element 3 is used as the temperature detecting element 5. The external contact type thermistor 5 is provided, for example, by providing a heat insulating layer on a support, fixing the element of the chip thermistor thereon, and moving the element downward (to the rear side of the heating element) by a predetermined pressing force. Is configured to abut against In this example, a high heat-resistant liquid crystal polymer was used as a support, and ceramic paper was used as a heat insulating layer. The external contact thermistor 5 communicates with a control circuit unit (CPU) 11.
[0058]
In the heating element 3 according to the present embodiment, the substrate 7 has a concave cross-sectional shape whose thickness is smaller at the center than in the end in the heating material transport direction a, as shown in FIG. That is, a concave portion 7a is provided along the longitudinal direction of the substrate 7 at the center in the lateral direction on the front surface side (the film sliding surface side) of the substrate 7. The width was 7.0 mm, the length was 270 mm, and the total thickness was 1.635 mm. D1 in FIG. 4A was 0.635 mm, and d2 was 1.0 mm. The resistance heating element 6 had a width of 3.0 mm, a length of 220 mm, and a thickness (d2) of 1.0 mm.
[0059]
As shown in FIG. 4B, such a substrate 7 is obtained by laminating and firing two flat green sheets 71 and 72 having different shapes.
[0060]
Hereinafter, a method for manufacturing the heating element 3 of this embodiment will be described with reference to FIG. First, a first green sheet 71 of an aluminum oxide substrate having a thickness of 0.635 mm after firing is bonded to a second green sheet 72 of an aluminum oxide substrate having a thickness of 1.0 mm after firing. Reference numeral 14 denotes a green sheet bonding surface. The first green sheet 71 having a thickness of 0.635 mm is a rectangular parallelepiped, whereas the second green sheet 72 having a thickness of 1.0 mm has a shape in which a portion filled with the resistance heating element 6 is cut out. I have. After bonding the two green sheets 71 and 72 together, the green sheets are fired at a firing temperature of about 1500 ° C. to obtain an integrated aluminum oxide substrate 7. In FIGS. 3 and 4, the bonding surfaces 14 of the green sheets 71 and 72 are indicated by broken lines for simplicity, but there is no boundary since they are actually integrated.
[0061]
Next, the first and second power supply electrodes 9 and 10 are screen-printed at positions A and B in FIG. 4A and fired at a firing temperature of about 800 ° C.
[0062]
Then, the above-described resistive heating element paste is filled in the concave portion 7a of the substrate 7 by screen printing and fired. Since the surface oxidation of graphite starts at about 700 ° C., the firing temperature was set to about 600 ° C. The power supply electrodes 9 and 10 are also formed on the side surfaces of the longitudinal ends of the recesses 7a of the substrate 7 so that the longitudinal ends of the resistance heating element 6 and the power supply electrodes 9 and 10 can be electrically connected. Thereafter, the overcoat layer 8 is formed by screen printing and fired. In consideration of the heat resistance of graphite, a glass that can be fired at 400 to 500 ° C. was selected as the material of the overcoat layer 8.
[0063]
The heating element 3 is fixedly arranged so that the surface on which the resistance heating element 6 is formed is exposed downward and held on the lower surface of the stay 1.
[0064]
With the above configuration, the entire heating body can have a lower heat capacity than that of the heat roller system, and a quick start can be performed.
[0065]
The temperature of the heating element 3 rises as the resistance heating element 6 generates heat over the entire length in the longitudinal direction by supplying power from the AC power supply 13 to the first and second power supply electrodes 9 and 10 at both longitudinal ends of the resistance heating element 6.
[0066]
The temperature detecting element 5 is electrically connected to the control circuit section 11 through the lead wire, and the temperature rise of the heating element 3 is detected by the temperature detecting element 5, and the output of the temperature detecting element 5 is A / D converted and taken into the control circuit section 11. Based on the information, the power supplied from the AC power supply 13 to the resistance heating element 6 by the triac 12 is controlled by phase, wave number control, and the like, and the temperature of the heating element 3 is controlled.
[0067]
That is, by controlling the energization so that the temperature of the heating element 3 rises when the temperature detected by the temperature detecting element 5 is lower than a predetermined set temperature, and to lower the temperature when the temperature is higher than the set temperature, the temperature of the heating element 3 is maintained at a fixed temperature during fixing. Will be kept. In this embodiment, the output is changed from 0% to 100% in 21 steps of 5% steps by phase control. The output of 100% indicates the output when the heating element is fully energized.
[0068]
(4) About the resistance heating element containing graphite
Graphite has NTC characteristics at a certain temperature or lower, that is, negative resistance temperature characteristics at which the resistance decreases when the temperature rises, and PTC characteristics at a temperature higher than that, a positive resistance temperature characteristic at which the resistance increases when the temperature rises. The inflection point temperature is about 700 ° C.
[0069]
In the present invention, by including this graphite in the resistance heating element, the resistance heating element is provided with NTC characteristics below the inflection point temperature and the amount of heat generated in the resistance heating element portion corresponding to the non-sheet passing portion is suppressed by the NTC characteristic. As a result, the prevention of temperature rise in the non-sheet passing portion was achieved with a low-cost and simple configuration without reducing the specifications of the apparatus.
[0070]
As described above, the resistance heating element 6 in the heating element 3 of the present embodiment is formed by kneading graphite / glass powder (inorganic binder) / organic binder and preparing a paste by screen printing to form the recess 7a of the substrate 7. And obtained by firing and having a width of 3.0 mm, a length of 220 mm, and a thickness (d2) of 1.0 mm. In this embodiment, the sheet resistance of the resistance heating element 6 at normal temperature is about 40 Ω / sq (10 μm thickness), and the total resistance of the resistance heating element 6 at normal temperature is 30 Ω.
[0071]
FIG. 7 shows a cross-sectional view of a surface heating type heating body of a conventional example (comparative example). Reference numeral 15 denotes a conventional resistance heating element. A paste obtained by kneading and mixing silver palladium, glass powder (inorganic binder), and organic binder is screen-printed on a flat aluminum oxide substrate 7 to have a width of 3. It was obtained by forming a linear strip having a length of 0 mm, a length of 220 mm and a thickness of about 10 μm. The conventional resistance heating element 15 used had a sheet resistance of about 0.4 Ω / sq (thickness: 10 μm) at room temperature. The total resistance was 30Ω at room temperature, as in this example. The aluminum oxide substrate 7 used was the same material as in this example and had the dimensions of 7.0 mm in width, 270 mm in length, and 0.635 mm in thickness. Reference numeral 16 denotes an overcoat layer, which uses a heat-resistant glass layer of about 50 μm as in the present embodiment. Reference numeral 5 denotes an external contact type thermistor having the same configuration as that of the present embodiment.
[0072]
FIG. 5 is a schematic diagram of the resistance temperature characteristics of the resistance heating elements 6 and 15 of the present embodiment and the conventional example. The horizontal axis represents the temperature of the resistance heating element, and the vertical axis represents the resistance value. The thin line shows the resistance temperature characteristic of the resistance heating element 15 of the conventional example, and the thick line shows the resistance temperature characteristic of the resistance heating element 6 of the present example. As shown in FIG. 5, the conventional example shows a positive resistance-temperature characteristic (PTC characteristic) in which the resistance increases as the temperature rises, and this example shows a negative resistance-temperature characteristic (NTC characteristic) in which the resistance decreases as the temperature rises. Is shown. FIG. 5 illustrates a temperature range where the inflection point temperature of graphite is 700 ° C. or less.
[0073]
The resistance change rate of the resistance heating element 6 of this embodiment is about -2000 ppm / ° C. (resistance change rate from 25 ° C. to 300 ° C., the same applies to the following values), and the resistance change rate of the conventional resistance heating element 15. Is about 1000 ppm / ° C.
[0074]
When the image forming apparatus is on standby, the temperature of the heating element is around room temperature, so that the resistance of this embodiment and the conventional example is about 30Ω. When the image forming apparatus receives the print signal, the heating element starts energizing and the temperature rises to near the fixing temperature. Therefore, in the conventional example, the resistance of the resistance heating element 15 increases, and in the present embodiment, the resistance of the resistance heating element 6 increases. Becomes lower. Assuming that the fixing temperature is 200 ° C., the total resistance of the resistance heating element is 35.25Ω in the conventional example, and 19.50Ω in the present example. Further, if the temperature of the resistance heating element becomes 300 ° C., the total resistance is 38.25Ω in the conventional example and 13.50Ω in the present example. When large-size paper (A4 vertical feed: paper width 210 mm) is passed, since the temperature is almost the same at the center and the end of the resistance heating element, the resistance at the center and the end is also the same. When the small-size paper is passed, the temperature of the end portion becomes higher than that of the central portion due to the above-mentioned temperature rise in the non-sheet passing portion. Therefore, in the conventional example, the resistance at the end is higher than at the center, and in the present embodiment, the resistance at the end is lower than at the center.
[0075]
FIG. 6 is a model diagram of the resistance heating element. When the current flowing through the resistance heating element is I, the resistance at the center is R1, and the resistance at the end is R2, the heating value W1 at the center is I 2 R1 and the end heating value W2 is I 2 R2 (for simplicity, it is assumed that the length of the region of resistance R1 and the region of resistance R2 are the same).
[0076]
Considering the case where small-size paper is passed in the conventional example, since R2> R1, the heat value W2 at the end is larger than the heat value W1 at the center. When the amount of generated heat increases, the temperature rises, so that the resistance is further increased, and the cycle of increasing the amount of generated heat is repeated.
[0077]
On the other hand, considering the case where small-size paper is passed in the present embodiment, since R2 <R1, the heat value W2 at the end portion is smaller than the heat value W1 at the central portion. In both the conventional example and the present embodiment, the sheet is passed by the center reference conveyance, and the temperature detecting element 5 is located at the center of the heating element within the minimum sheet passing width, and the temperature is controlled so that the temperature at the center is constant. Therefore, the calorific value of the central portion of the conventional example is almost the same as the calorific value of the central portion of the present embodiment. Therefore, the amount of heat generated at the end of the present embodiment is smaller than the amount of heat generated at the end of the conventional example, and the temperature of the end can be suppressed lower in the present embodiment than in the conventional example.
[0078]
Conventionally, a mixture of metal and glass has been used as a resistance heating element of a film heating type heating device, and only those having PTC characteristics as the whole resistance heating element due to the PTC characteristic that metal generally has have been put to practical use. Absent. In the present invention, by including graphite having NTC characteristics in the resistance heating element, a resistance heating element having NTC characteristics can be realized, and the temperature rise in the non-paper passing portion can be prevented.
[0079]
In addition, a method of forming a resistance heating element containing graphite in a thin layer (about 10 to 100 μm in thickness) on a substrate like a heating element of a conventional example can be considered. However, graphite has a high sheet resistance. In order to form a layer, it is necessary to include a material for lowering the resistance. A metal can be considered as a material for lowering the resistance. However, since the metal has the PTC characteristic, the NTC characteristic of graphite is canceled out, the resistance change rate increases, and the effect of preventing the non-paper passing portion from rising in temperature is also reduced. (The smaller the rate of change in resistance, the lower the temperature of the non-sheet passing portion.) There are also materials other than metals having lower resistance than graphite, but they have high resistance and cannot make the total resistance of the resistance heating element a desired value. Also, if a thin layer resistance heating element is formed without containing a material for lowering the resistance, the total resistance of the resistance heating element becomes too high, and the power required to start up the heating element and maintain the temperature during paper passing is obtained. (The value of the total resistance is determined by the throughput of the image forming apparatus, the configuration of the heating device, and the like).
[0080]
By adopting a configuration in which the cross-sectional shape of the heating element substrate 7 is concave and the concave section 7a is filled with the resistance heating element 6 as in the present embodiment, the cross-sectional area of the resistance heating element 6 can be increased. High-resistance graphite can be used as a resistance heating element without deteriorating NTC characteristics.
[0081]
To simply increase the cross-sectional area of the resistance heating element, a method of forming a thick resistance heating element on a flat substrate can be considered. However, graphite is not very strong, so it is always pressed by the pressure roller 4. There is a problem in durability in the state where it was done. Therefore, it is desirable that the cross-sectional shape of the substrate 7 is concave, and the substrate portions on both sides of the resistance heating element 6 also contact the pressure roller 4 via the film 2 to form the pressure-contact nip N.
[0082]
Hereinafter, a comparison between the heating apparatus of the present embodiment and the conventional heating apparatus will be described. In the present embodiment and the conventional example, the configuration other than the heating element is the same, and when the heating device is sufficiently adjusted to room temperature (25 ° C.), 100 sheets of postcard-size (small-size paper) recording material are continuously passed. And the maximum temperature of the non-sheet passing portion (measured on the back surface of the heating body with a thermocouple). The fixing temperature was 200 ° C. The input voltage was 100 V, and the process speed of the image forming apparatus was 80 mm / sec. And Table 1 shows the results.
[0083]
[Table 1]
Figure 2004234998
[0084]
As shown in Table 1, the heating device of the present example was able to significantly (about 50 ° C.) lower the temperature of the non-sheet passing portion than the conventional example.
[0085]
Next, B5 size (small size paper) with basis weight of 157g / m 2 The cardboard was forcibly fed in a double feed, and the paper was passed. A test was conducted to determine how many sheets of the thick paper would lead to deterioration and breakage of the heating device. The fixing temperature, input voltage, and process speed were the same as when postcards were passed. Table 2 shows the test results.
[0086]
[Table 2]
Figure 2004234998
[0087]
As shown in Table 2, in the case of the heating device of the conventional example, due to the thermal stress generated in the heating body substrate due to the temperature rise in the non-sheet passing portion, the heating body was damaged by triple or quadruple feeding, and the stay film, Deterioration was observed in the non-paper passing portion of the surface layer of the pressure roller.
[0088]
On the other hand, in the case of the heating device of this embodiment, the number of multi-feeds was increased up to 10 double feeds in both cases, but the heating element was not damaged, and no deterioration was observed in the stay / film / pressure roller. Was.
[0089]
As described above, by adopting the configuration of this embodiment, graphite having a high sheet resistance can be used as a resistance heating element without deteriorating the NTC characteristics, and the temperature rise in the non-sheet passing portion can be prevented.
[0090]
In this embodiment, the case where the recording material is passed on the basis of the center has been described. However, the present embodiment is also applicable to an image forming apparatus which passes the recording material on the basis of the end.
[0091]
[Example 2]
In this embodiment, aluminum nitride is used as the heating substrate.
[0092]
When aluminum oxide is used for the substrate 7 as in the first embodiment, it is general that a resistance heating element 6 is formed on the front side of the substrate 7 and the temperature detecting element 5 is provided on the back side of the substrate 7 (surface heating). type).
[0093]
On the other hand, when aluminum nitride is used, since the thermal conductivity is higher than that of aluminum oxide, a configuration in which a resistance heating element is formed on the back side of the substrate and a temperature measuring element is brought into contact with the heating element via an insulating layer from above to control the temperature is used. Are generally good in thermal efficiency (backside heat generation type). Therefore, in this embodiment, the backside heat generation type was used. The configurations of the heating device and the image forming apparatus other than the heating element are the same as those in the first embodiment.
[0094]
FIG. 8 shows a cross-sectional view of the heating body of this embodiment. As in the first embodiment, the resistance heating element 17 of this embodiment is formed by kneading a mixture of graphite, glass powder (inorganic binder), and an organic binder and screen-printing the paste to form the recesses 18a of the aluminum nitride substrate 18. This was obtained by forming As in the first embodiment, the resistance heating element 17 of this embodiment has a sheet resistance at room temperature of about 40 Ω / sq (thickness 10 μm) and a total resistance at room temperature of 30 Ω.
[0095]
Reference numeral 19 denotes an overcoat layer of the resistance heating element 17, whose main purpose is to ensure electrical insulation between the resistance heating element 17 and the back surface of the heating element. In this embodiment, a heat-resistant glass layer having a thickness of about 50 μm was used as the overcoat layer 19. Reference numeral 20 denotes a sliding glass layer provided to secure the sliding property of the film 2, and a heat-resistant glass having a thickness of about 10 μm was used as a material. In this embodiment, the substrate 18 is also composed of two green sheets 18. 1 ・ 18 2 Are formed by the same manufacturing method as in Example 1, and reference numeral 21 denotes a bonding surface of the green sheet. Reference numeral 5 denotes an external contact thermistor having the same configuration as that of the first embodiment. As in the first embodiment, the first and second power supply electrodes (9 and 10) as shown in FIG. 3A exist at both ends in the longitudinal direction of the resistance heating element 17, A silver palladium screen printing pattern is used.
[0096]
The dimensions of the substrate 18 were 7.0 mm in width, 270 mm in length, and 1.635 mm in total thickness, which were the same as those in Example 1. d1 in FIG. 8 was 0.635 mm, and d2 was 1.0 mm. That is, the aluminum oxide substrate 7 of the first embodiment is turned upside down. The resistance heating element 17 was also 3.0 mm in width, 220 mm in length, and 1.0 mm in thickness (d2) as in Example 1.
[0097]
In this embodiment, since the same resistance heating element as that of the first embodiment is used, the resistance change rate is not changed and is about -2000 ppm / ° C. Therefore, from the viewpoint of preventing the temperature rise of the non-sheet passing portion, it is considered that the same effect as in the first embodiment is obtained.
[0098]
Hereinafter, a comparison between the heating apparatus of the present embodiment and the conventional heating apparatus will be described. The following comparison was performed under the same conditions as the comparison described in Example 1. The conventional example has the same configuration as that described in the first embodiment, and the result is also the same. First, when 100 sheets of postcard-size (small-size paper) recording material are continuously passed from a state in which the heating device is sufficiently adjusted to room temperature (25 ° C.), the maximum temperature of the non-sheet passing portion (the back surface of the heating body is thermoelectrically heated). (Measured in pairs). The fixing temperature, input voltage and process speed were the same as in Example 1. Table 3 shows the results.
[0099]
[Table 3]
Figure 2004234998
[0100]
As shown in Table 3, the temperature was significantly lower than that of the conventional example, and was lower than the result of Example 1 (265 ° C.). This is due to the fact that aluminum nitride has a higher thermal conductivity than aluminum oxide, and thus has higher heat transfer in the longitudinal direction of the substrate.
[0101]
Next, B5 size (small size paper) with basis weight of 157g / m 2 The cardboard was forcibly fed in a double feed, and the paper was passed. A test was conducted to determine how many sheets of the thick paper would lead to deterioration and breakage of the heating device. The fixing temperature, input voltage, and process speed are the same. Table 4 shows the test results.
[0102]
[Table 4]
Figure 2004234998
[0103]
As shown in Table 4, the heating apparatus of this embodiment increased the number of multi-feeds up to 10 double feeds in both cases. However, there was no breakage of the heating body and no deterioration of the stay, film, and pressure roller. The result was the same as in Example 1.
[0104]
As a result, it can be seen that the present embodiment has the same or better effect as the first embodiment from the viewpoint of preventing the temperature rise of the non-sheet passing portion.
[0105]
This embodiment is superior to the first embodiment in that thermal efficiency is good. In order to determine whether or not the heat generated by the resistance heating element 17 is efficiently transmitted to the recording material, the thermal resistance in the direction toward the front surface of the heating element and the thermal resistance in the direction toward the rear surface of the heating element viewed from the resistance heating element 17 are compared. Then it is easy to understand. The thermal resistance is a physical quantity representing the ease with which heat is transmitted, and the area of a surface having a thickness of d (m) and orthogonal to the thickness direction is A (m 2 ), The thermal resistance R (K / W) in the thickness direction of the rectangular parallelepiped is defined by the following equation.
[0106]
R = d / (λ · A)
Here, λ is the thermal conductivity (W / m · K) in the thickness direction of the rectangular parallelepiped.
[0107]
The smaller the thermal resistance, the more easily the heat is transmitted, and the larger the thermal resistance, the less the heat is transmitted. Therefore, when viewed from the resistance heating element 17, the thermal resistance in the direction toward the surface of the heating element is small, and the thermal resistance in the direction toward the back of the heating element is large. Can transfer heat to
[0108]
Table 5 shows a comparison of the thermal resistance between the present embodiment and the first embodiment. The thermal conductivity of the aluminum oxide of Example 1 was 20 W / m · K, the thermal conductivity of the aluminum nitride of this example was 170 W / m · K, and the thermal conductivity of the glass layer was 2 W / m in Examples 1 and 2. -It is K. A is 1 m for simplicity. 2 Is calculated as
[0109]
[Table 5]
Figure 2004234998
[0110]
The smaller the ratio of the thermal resistance shown in Table 5, the better the thermal efficiency because the thermal resistance on the front side is relatively smaller than the thermal resistance on the back side. Therefore, it can be seen that the present embodiment has better thermal efficiency than the first embodiment. Since the thermal resistance ratio of the conventional example is the same as that of the first embodiment, it is considered that the conventional example and the first embodiment have substantially the same thermal efficiency.
[0111]
As described above, by adopting the configuration of the present embodiment, it is possible to prevent the temperature rise in the non-sheet passing portion and to transfer heat to the recording material more efficiently than in the first embodiment. Become.
[0112]
In this embodiment, the case where the recording material is passed on the basis of the center has been described. However, the present embodiment is also applicable to an image forming apparatus which passes the recording material on the basis of the end.
[0113]
[Others]
1) The heating device according to the present invention is not limited to the use as the image heating and fixing device of the embodiment, but may be a temporary attachment device for temporarily fixing an unfixed image to a recording material, a glossing device for reheating a recording material carrying a fixed image, and the like. It is also effective as an image heating device such as a surface modifying device for modifying the image surface properties.
[0114]
In addition, the present invention is also effective when used as a heating device for heat-treating a sheet-like member, such as a hot press device for removing wrinkles of bills, a heat laminating device, and a heating and drying device for evaporating moisture contained in paper. Of course.
[0115]
2) The structure of the heating device is not limited to the film heating method of the embodiment.
[0116]
【The invention's effect】
As described above, according to the present invention, a heating device that heats a material to be heated by a heating element having a resistance heating element that generates heat by power supply, an image forming apparatus equipped with the heating device as a fixing device, have NTC characteristics and A resistance heating element with a small rate of change in resistance can be realized, and due to its characteristics, it is possible to prevent the temperature rise in the non-sheet passing portion without reducing the specifications of the apparatus and at a low cost, thereby providing a safer product. It is possible to provide a heating device and an image forming apparatus having a long life and good images.
[Brief description of the drawings]
FIG. 1 is a schematic configuration model diagram of a main part of an image forming apparatus according to a first embodiment.
FIG. 2 is a schematic configuration diagram of a main part of a heating device (image heating and fixing device) in Embodiment 1.
FIG. 3 is a structural model diagram of a heating body.
FIG. 4 is a perspective view of a heater substrate having a concave cross-sectional shape and an explanatory view of a manufacturing procedure thereof.
FIG. 5 is a schematic diagram of resistance temperature characteristics of a resistance heating element of a heating element according to the first embodiment and a conventional example
FIG. 6 is a model diagram of a resistance heating element.
FIG. 7 is an enlarged cross-sectional model view of a conventional heating element.
FIG. 8 is an enlarged cross-sectional model view of a heating element according to the second embodiment.
[Explanation of symbols]
1. Stay 2. 2. Fixing film Heater (heating body) Pressure roller (pressure body) 4a. Core 4b. Elastic layer 4c. Release layer 5. External contact type thermistor 6. 6. Resistance heating element of Example 1 Aluminum oxide substrate 8.16.19. Overcoat layer 9.10. Power supply electrode 11. Control circuit unit (CPU) 12. Triac 13. AC power supply 14.21. 14. Green sheet bonding surface Conventional resistance heating element 17. 17. Resistance heating element of Example 2 Aluminum nitride substrate 20. Sliding glass layer Nip part Recording material T. Toner a. Recording material transport direction

Claims (16)

少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体とからなる加熱体によって被加熱材を加熱する加熱装置において、前記加熱体は、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱装置。In a heating device for heating a material to be heated by at least a heating element including a substrate and a resistance heating element that is provided on the substrate and generates heat by power supply, the heating element is configured such that the substrate has a central portion in a direction in which the heated material is transported. Has a concave cross-sectional shape having a thickness smaller than that of an end portion, and a concave portion of the substrate is filled with a resistance heating element containing graphite. 加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触するフィルムとを有し、加熱体上をフィルムと被加熱材が一緒に移動することで加熱体の熱をフィルムを介して被加熱材へ伝達する加熱装置において、前記加熱体は、少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体とからなり、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱装置。It has a heating element and a film in which one surface comes into contact with the heating element and slides on the other side and comes into contact with the material to be heated. In the heating device for transmitting the heat to the material to be heated, the heating element includes at least a substrate and a resistance heating element provided on the substrate and generating heat by power supply. A heating device characterized in that the portion has a concave cross-sectional shape whose thickness is smaller than the end portion, and the concave portion of the substrate is filled with a resistance heating element containing graphite. 請求項1又は2に記載の加熱装置において、前記抵抗発熱体はグラファイト・ガラスを主成分とすることを特徴とする加熱装置。The heating device according to claim 1, wherein the resistance heating element is mainly composed of graphite glass. 請求項1から3のいづれか項に記載の加熱装置において、前記抵抗発熱体は少なくとも加熱体最大到達温度以下の温度領域において、負の抵抗温度特性を有することを特徴とする加熱装置。The heating device according to any one of claims 1 to 3, wherein the resistance heating element has a negative resistance temperature characteristic at least in a temperature range equal to or lower than a maximum temperature of the heating element. 請求項1から4の何れか1項に記載の加熱装置において、前記基板はセラミックスであることを特徴とする加熱装置。The heating device according to any one of claims 1 to 4, wherein the substrate is made of ceramic. 請求項5に記載の加熱装置において、前記基板は形状の異なる平板状の2枚のグリーンシートを貼り合わせた後焼成して形成するものであることを特徴とする加熱装置。6. The heating device according to claim 5, wherein the substrate is formed by bonding two flat green sheets having different shapes and then sintering the green sheets. 請求項5又は6に記載の加熱装置において、前記基板は酸化アルミニウムからなることを特徴とする加熱装置。The heating device according to claim 5, wherein the substrate is made of aluminum oxide. 請求項5又は6に記載の加熱装置において、前記基板は窒化アルミニウムからなることを特徴とする加熱装置。7. The heating device according to claim 5, wherein the substrate is made of aluminum nitride. 記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、前記像加熱手段として請求項1から8の何れか1項に記載の加熱装置を備えたことを特徴とする画像形成装置。9. The image forming apparatus according to claim 1, further comprising: an image forming unit configured to form an image on the recording material; and an image heating unit configured to heat the image on the recording material. An image forming apparatus, comprising: 少なくとも、基板と、該基板に具備させた、給電により発熱する抵抗発熱体を有し、被加熱材を加熱する加熱体であり、基板が被加熱材搬送方向において中央部が端部よりも厚さが薄い凹型断面形状であり、この基板の凹部にグラファイトを含有した抵抗発熱体が充填されていることを特徴とする加熱体。A heating element for heating a material to be heated, the heating element having at least a substrate and a resistance heating element provided on the substrate and generating heat by power supply, wherein the substrate is thicker at a central portion than at an end in a direction in which the material is transported. A heating element, characterized in that the heating element has a thin concave cross-sectional shape, and the concave portion of the substrate is filled with a resistance heating element containing graphite. 請求項10に記載の加熱体において、前記抵抗発熱体はグラファイト・ガラスを主成分とすることを特徴とする加熱体。11. The heating element according to claim 10, wherein the resistance heating element is mainly composed of graphite glass. 請求項10又は11に記載の加熱体において、前記抵抗発熱体は少なくとも加熱体最大到達温度以下の温度領域において、負の抵抗温度特性を有することを特徴とする加熱体。12. The heating element according to claim 10, wherein the resistance heating element has a negative resistance temperature characteristic at least in a temperature range equal to or lower than the maximum temperature of the heating element. 13. 請求項10から12の何れか1項に記載の加熱体において、前記基板はセラミックスであることを特徴とする加熱体。13. The heating element according to claim 10, wherein the substrate is made of ceramic. 請求項13に記載の加熱体において、前記基板は形状の異なる平板状の2枚のグリーンシートを貼り合わせた後焼成して形成するものであることを特徴とする加熱体。14. The heating element according to claim 13, wherein the substrate is formed by bonding two flat plate-shaped green sheets having different shapes and then firing. 請求項13又は14に記載の加熱体において、前記基板は酸化アルミニウムからなることを特徴とする加熱体。15. The heating element according to claim 13, wherein the substrate is made of aluminum oxide. 請求項13又は14に記載の加熱体において、前記基板は窒化アルミニウムからなることを特徴とする加熱体。15. The heating element according to claim 13, wherein the substrate is made of aluminum nitride.
JP2003021655A 2003-01-30 2003-01-30 Heating device, image forming apparatus and heating body Pending JP2004234998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021655A JP2004234998A (en) 2003-01-30 2003-01-30 Heating device, image forming apparatus and heating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021655A JP2004234998A (en) 2003-01-30 2003-01-30 Heating device, image forming apparatus and heating body

Publications (1)

Publication Number Publication Date
JP2004234998A true JP2004234998A (en) 2004-08-19

Family

ID=32950930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021655A Pending JP2004234998A (en) 2003-01-30 2003-01-30 Heating device, image forming apparatus and heating body

Country Status (1)

Country Link
JP (1) JP2004234998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157322A (en) * 2016-02-29 2017-09-07 東芝ライテック株式会社 Heater and fixation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157322A (en) * 2016-02-29 2017-09-07 東芝ライテック株式会社 Heater and fixation device

Similar Documents

Publication Publication Date Title
JP5253240B2 (en) Image heating apparatus and heater used in the image heating apparatus
JP6436812B2 (en) Fixing device
JP2007025474A (en) Heating device and image forming apparatus
JP2000250340A (en) Fixing device and image forming device
JP2001324892A (en) Image heating device, and image forming device provided with the same
WO2009075380A1 (en) Image heating device, and heater for use in the image heating device
US11573513B2 (en) Heating device, fixing device, and image forming apparatus
JP2005209493A (en) Heating device and image forming device
JP2002169413A (en) Image forming device
JP5074711B2 (en) Image heating apparatus and heating body used in the apparatus
JP2013011649A (en) Image heating device
JP2009192993A (en) Heating device and image forming apparatus
JP2009103881A (en) Heating element and heater
JP4208587B2 (en) Fixing device
JP2002236426A (en) Fixing device and image forming apparatus
JP2003337484A (en) Heating device and image forming apparatus
JP2012083606A (en) Heating body, image heating device, and image forming apparatus
JP6415044B2 (en) Image forming apparatus
JP2004234998A (en) Heating device, image forming apparatus and heating body
JP3754960B2 (en) Heating device
JP2004047247A (en) Electrode structure, heating body, heating device, and image forming apparatus
JP2006317512A (en) Heat fixing-device
JP2003347011A (en) Heating element, thermal fixing device and image forming device
JP2004070180A (en) Heating body, heating device, and image forming device
JP2003282220A (en) Heater, fixing device and image forming device