JP2004233662A - Coated optical fiber ribbon - Google Patents

Coated optical fiber ribbon Download PDF

Info

Publication number
JP2004233662A
JP2004233662A JP2003022328A JP2003022328A JP2004233662A JP 2004233662 A JP2004233662 A JP 2004233662A JP 2003022328 A JP2003022328 A JP 2003022328A JP 2003022328 A JP2003022328 A JP 2003022328A JP 2004233662 A JP2004233662 A JP 2004233662A
Authority
JP
Japan
Prior art keywords
optical fiber
contact angle
measured
coating layer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022328A
Other languages
Japanese (ja)
Other versions
JP3927128B2 (en
Inventor
Hiroto Watanabe
裕人 渡邉
Keiko Mitsuhashi
恵子 三ツ橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003022328A priority Critical patent/JP3927128B2/en
Publication of JP2004233662A publication Critical patent/JP2004233662A/en
Application granted granted Critical
Publication of JP3927128B2 publication Critical patent/JP3927128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively grasp the curabilities of a colored layer surface of a colored primary coated optical fiber and a coating layer surface of a primary coated optical fiber, and to improve single fiber isolation by exactly setting correlative conditions of the two. <P>SOLUTION: A colored primary coated optical fiber (15) is used for which the condition of α<β is satisfied by a contact angle (α) measured when a plurality of primary coated optical fibers (3) are arranged and a water droplet (W) is put on the surface, and a contact angle (β) measured when a plurality of colored primary coated optical fibers (5) are arranged and a water droplet (W) is put on the surface, and a plurality of such colored primary coated optical fibers (15) are arranged and integrated by a batch coating layer (16) to fabricate the objective coated optical fiber ribbon (10). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、光ファイバテープ心線に関するものである。
【0002】
【従来の技術】
一般に、光ファイバを複数本備えた光ファイバテープ心線と呼ばれるものがある。このような光ファイバテープ心線は、単心の光ファイバの外周面に紫外線硬化性樹脂組成物を硬化させることで被覆層を形成した光ファイバ素線を複数本用い、これらの光ファイバ素線どうしを使用の際に識別するため、各光ファイバ素線の外周面に、着色剤を含有する紫外線硬化性樹脂組成物を硬化させることで着色層を形成した光ファイバ着色素線を構成し、これらの光ファイバ着色素線を複数本並列に並べてその全体を、紫外線硬化性樹脂組成物を硬化させることで形成する一括被覆層によって一体化して構成されるものである。
【0003】
このように、光ファイバ素線の外周面に着色層を形成した光ファイバ着色素線を複数本並べて一体化した光ファイバテープ心線は、通信線路として使用される際に、光ファイバ着色素線を1本ずつ取り出す単心分離が行われる。すなわち、光ファイバテープ心線は、光ファイバ着色素線から一括被覆層を剥がして光ファイバ着色素線を単心分離することで、通信線路として実際の使用に供されるものである。そのため、光ファイバテープ心線には、単心分離が容易に行えること、つまり、単心分離性が良好であることが求められる。
【0004】
ところが、例えば、光ファイバ着色素線表面の着色層とその外側の一括被覆層との密着が、光ファイバ素線表面の被覆層とその外側の着色層との密着より強いと、単心分離を行う際に光ファイバ着色素線の表面から着色層が剥がれてしまうことから、このような着色層の剥がれ等の不都合を未然に防止しつつ単心分離を容易に行うため、光ファイバ素線表面の被覆層、着色層および一括被覆層を形成する各紫外線硬化性樹脂組成物の材料物性値について、提案がなされている。
【0005】
【特許文献1】
特開2002−90588号公報
【0006】
【特許文献2】
特開2002−221647号公報
【0007】
【発明が解決しようとする課題】
この発明の発明者らが研究したところ、光ファイバテープ心線の単心分離性は、紫外線硬化性樹脂組成物を硬化させたときの硬化物表面の硬化性に大きく依存することがわかった。例えば、紫外線硬化性樹脂組成物を硬化させた硬化物の表面に、つぎの硬化層となる液体の紫外線硬化性樹脂組成物を塗布する場合、硬化物の表面に未反応の紫外線硬化樹脂成分が残留していると、塗布した液体の紫外線硬化性樹脂組成物を硬化させるために紫外線を照射したとき、両者の界面で、硬化物表面の未反応の紫外線硬化樹脂成分と、塗布した紫外線硬化性樹脂組成物の紫外線硬化性樹脂とが反応して密着してしまうのである。このような硬化物表面の硬化性に依存する現象は、その硬化物を形成する紫外線硬化性樹脂組成物が着色剤を含有するか否かに拘わらず、形成された硬化物表面の硬化性のみに左右される。そのため、着色層の剥がれを未然に防止しつつ単心分離を容易に行うには、光ファイバ着色素線の着色層表面の硬化性が重要であるとともに、光ファイバ素線の被覆層表面の硬化性との相関条件がとりわけ重要である。
【0008】
しかしながら、特許文献1および特許文献2はいずれも、紫外線硬化性樹脂組成物を硬化させたときの硬化物表面の硬化性について言及がないため、このような硬化物表面の硬化性に基づく光ファイバテープ心線の単心分離性について論じることができないという問題があった。
【0009】
また、この発明の発明者らは、硬化物表面の硬化性を示す指標として、水滴を用いた接触角を利用することが有効であることを見出した。特許文献1および特許文献2には、液滴を用いた接触角について記載されている。但し、これらの特許文献が液滴による接触角を用いる理由は、第一の樹脂組成物の硬化物上に第二の樹脂組成物の液滴を配置したときの接触角が所定範囲内の条件を満たすと、第一の樹脂組成物の硬化物表面の微小の凹凸に対しても第二の樹脂組成物が浸透しやすくなり、第二の樹脂組成物をより斑なく均一に塗布できるからであって、硬化物表面の硬化性を示す指標としてではない。
【0010】
しかも、紫外線硬化性樹脂組成物を硬化させた硬化物の表面に、つぎの硬化層となる紫外線硬化性樹脂組成物の液滴を滴下して接触角を測定した場合、その接触角の決め手となるのは、硬化物の表面状態よりもむしろ液滴の粘度・表面張力であり、そのため、仮に、つぎの硬化層となる紫外線硬化性樹脂組成物の液滴を用いて測定した接触角を、硬化物表面の硬化性を示す指標として利用しようとしても、硬化性を正確に反映する指標とはならない。そのうえ、光ファイバに用いる紫外線硬化性樹脂組成物は、着色剤を含有するものを含めて、線材への塗布が高速で行えるように濡れ性が良好に設定されているため、接触角の絶対値が小さいという必然性があり、そのため、仮に、その接触角の変化から硬化物の表面状態の変化を探ろうとしても、接触角の微小な変化を測定しなければならないため硬化物の表面状態の変化を観測しにくい。
【0011】
さらに、特許文献1および特許文献2では、シート上に紫外線硬化性樹脂組成物を塗布し硬化させた硬化物を用いてその表面状態を評価しているため、この評価をそのまま実際の光ファイバ着色素線に当てはめることはできず、実際の光ファイバ着色素線を用いてその表面状態を評価することは困難であるという問題があった。
【0012】
この発明の課題は、上記従来のもののもつ問題点を排除して、光ファイバ着色素線の着色層表面の硬化性、および光ファイバ素線の被覆層表面の硬化性を定量的に把握して、両者の硬化性の相関条件を的確に設定することで、単心分離性を向上することのできる光ファイバテープ心線を提供することにある。
【0013】
【課題を解決するための手段】
この発明は上記課題を解決するものであって、請求項1に係る発明は、光ファイバに紫外線硬化性樹脂組成物を硬化させることで被覆層を形成した光ファイバ素線の外周面に、着色剤を含有する紫外線硬化性樹脂組成物を硬化させることで着色層を形成した光ファイバ着色素線を複数本並べて、紫外線硬化性樹脂組成物を硬化させることで形成する一括被覆層によって一体化してなる光ファイバテープ心線において、前記光ファイバ素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角αと、前記光ファイバ着色素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を用いて構成した光ファイバテープ心線である。
【0014】
請求項2に係る発明は、請求項1記載の発明において、前記光ファイバ素線の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角αと、前記光ファイバ着色素線の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、前記一括被覆層によって一体化した光ファイバテープ心線である。
【0015】
請求項3に係る発明は、請求項1または請求項2記載の発明において、前記光ファイバ素線の状態のものを複数本並べ、その表面に水滴を配置して当該光ファイバ素線の長手方向に沿った垂直面内で測定した接触角αと、前記光ファイバ着色素線の状態のものを複数本並べ、その表面に水滴を配置して当該光ファイバ着色素線の長手方向に沿った垂直面内で測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、前記一括被覆層によって一体化した光ファイバテープ心線である。
【0016】
【発明の実施の形態】
この発明の実施の形態を、図面を参照して説明する。
図1は、この発明による光ファイバテープ心線の一実施の形態を示す模式的断面図であり、この光ファイバテープ心線10は、光ファイバ11に紫外線硬化性樹脂組成物を硬化させることで被覆層12を形成した光ファイバ素線13の外周面に、着色剤を含有する紫外線硬化性樹脂組成物を硬化させることで着色層14を形成した光ファイバ着色素線15を複数本並列に並べて、紫外線硬化性樹脂組成物を硬化させることで形成する一括被覆層16によって一体化して構成されるものである。
【0017】
そして、この光ファイバテープ心線10は、光ファイバ素線13の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角αと、光ファイバ着色素線15の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を用いて構成したものである。
【0018】
また、光ファイバ素線13の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角αと、光ファイバ着色素線15の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、一括被覆層16によって一体化したものである。
【0019】
さらに、光ファイバ素線13の状態のものを複数本並べ、その表面に水滴を配置してその光ファイバ素線の長手方向に沿った垂直面内で測定した接触角αと、光ファイバ着色素線15の状態のものを複数本並べ、その表面に水滴を配置してその光ファイバ着色素線の長手方向に沿った垂直面内で測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、一括被覆層16によって一体化したものである。
【0020】
図2は、光ファイバ素線13の状態のもの(これを光ファイバ素線3として表す。)の表面に水滴を配置して接触角を測定するため、光ファイバ素線3の並べ方および接触角の測定方法についての説明図であり、図3は、光ファイバ着色素線15の状態のもの(これを光ファイバ着色素線5として表す。)の表面に水滴を配置して接触角を測定するため、光ファイバ着色素線5の並べ方および接触角の測定方法についての説明図であり、図4は、光ファイバ素線3、光ファイバ着色素線5を複数本並べる際の密度に応じて接触角がどのように変化するかを調べた結果を示す表である。
【0021】
図2〜図4を用いてこの実施の形態を具体的に説明すると、光ファイバ1に液体の紫外線硬化性樹脂組成物2Lを塗布し、この光ファイバ1を酸素濃度を調整可能な雰囲気中に置き、酸素濃度および紫外線照射量を調整しながら、紫外線硬化性樹脂組成物2Lに紫外線を照射することで、紫外線硬化性樹脂組成物2Lを硬化させて硬化物2Sすなわち被覆層2を形成し、これによって光ファイバ素線3が構成される(図2(b)(c)参照)。
【0022】
また、光ファイバ素線3の外周面に、着色剤Aを含有する液体の紫外線硬化性樹脂組成物4ALを塗布し、この光ファイバ素線3を酸素濃度を調整可能な雰囲気中に置き、酸素濃度および紫外線照射量を調整しながら、着色剤A含有の紫外線硬化性樹脂組成物4ALに紫外線を照射することで、紫外線硬化性樹脂組成物4ALを硬化させて着色剤A含有の硬化物4ASすなわち着色層4を形成し、これによって光ファイバ着色素線5が構成される(図3(b)(c)参照)。
【0023】
このようにして得られた光ファイバ素線3の表面にイオン交換水の水滴Wを滴下して接触角αを測定するため、光ファイバ素線3を複数本並べる。同様に、光ファイバ着色素線5の表面にイオン交換水の水滴Wを滴下して接触角βを測定するため、光ファイバ着色素線5を複数本並べる。このとき、光ファイバ素線3、光ファイバ着色素線5の直径をdとし、この光ファイバ素線3、光ファイバ着色素線5を長さL間にn本並べるとすると、その密度ρはρ=nd/Lとして表すことができる(図2(a)、図3(a)参照)。この密度ρを変えながら、接触角α,βを測定した結果を図4に示す。
【0024】
図4に示すように、光ファイバ素線3、光ファイバ着色素線5を並べる密度ρが下がると、隣り合う光ファイバ素線3、光ファイバ着色素線5の相互間に隙間が生じるため、水滴Wがその隙間を通り抜けて流れてしまい、接触角α,βが不安定になる。このため、光ファイバ素線3、光ファイバ着色素線5を並べる密度ρを0.95以上(ρ≧0.95)にすると、水滴Wの接触角α,βを安定して測定できることがわかる。なお、図4に示す接触角α,βは、光ファイバ素線3、光ファイバ着色素線5を並べる密度ρとの関係を調べたものであり、接触角α,βの数値そのものにそれ以外の意味はない。
【0025】
そこで、この結果を基にして、実際には、複数本の光ファイバ素線3を密度0.95以上(ρ≧0.95)に緊密に並べる。そして、その表面にイオン交換水の水滴Wを滴下して接触角αを測定する。同様に、複数本の光ファイバ着色素線5を密度0.95以上(ρ≧0.95)に緊密に並べる。そして、その表面にイオン交換水の水滴Wを滴下して接触角βを測定する。
【0026】
一般に、水滴Wの接触角α、接触角βの測定は平坦な面(平面)で行うものであるが、光ファイバ素線3、光ファイバ着色素線5を並べた表面のような平坦でない面(違方性がある面)であっても、接触角α、接触角βの測定を行うことは可能である。このとき、水滴Wの広がりは、光ファイバ素線3、光ファイバ着色素線5の長手方向と、これに直交する方向とでは異なるから、そのいずれかの方向に沿った垂直面内で水滴Wの接触角α、接触角βを測定することができる。このうち、光ファイバ素線3、光ファイバ着色素線5の長手方向の方が、これに直交する方向と比べて水滴Wの広がりが大きいが、形状の違方性による影響を受けにくいから、光ファイバ素線3、光ファイバ着色素線5の長手方向に沿った垂直面V内で水滴Wの接触角α、接触角βを測定することが好ましい。さらに詳しくは、水滴Wの中央付近にある1本の光ファイバ素線3の中心軸線を通る垂直面V内で水滴Wの接触角αを測定する(図2(b)(c)参照)。同様に、水滴Wの中央付近にある1本の光ファイバ着色素線5の中心軸線を通る垂直面V内で水滴Wの接触角βを測定する(図3(b)(c)参照)。このような接触角α、接触角βの測定は、市販されている適宜の接触角計を用いて行うことができる。
【0027】
図5は、光ファイバ1にさまざまな被覆層2を形成した直径0.245mmの複数種類の光ファイバ素線3を、いずれも0.95以上の密度ρ(ρ≧0.95)で複数本並べ、その表面にイオン交換水の水滴Wを滴下して、光ファイバ素線3の長手方向に沿った垂直面V内で測定した水滴Wの接触角α(図2(b)(c)参照)の測定結果を示す表である。
【0028】
図6は、図5で用いた各光ファイバ素線3の外周面に、酸素濃度を調整可能な雰囲気中で酸素濃度を調整しながら、また、照射量を調整可能な紫外線の照射量を調整しながら、着色剤A含有のさまざまな着色層4を形成した直径0.250mmの複数種類の光ファイバ着色素線5を、いずれも0.95以上の密度ρ(ρ≧0.95)で複数本並べ、その表面にイオン交換水の水滴Wを滴下して、光ファイバ着色素線5の長手方向に沿った垂直面V内で測定した水滴Wの接触角β(図3(b)(c)参照)の測定結果を示す表である。また、これらの各光ファイバ着色素線5を光ファイバ着色素線15として用いて作成(試作)した光ファイバテープ心線10の単心分離を行って、光ファイバ着色素線15の着色層14の剥がれの有無(単心分離性)を観察した結果を示す表である。ここで、単心分離性の評価は、各光ファイバテープ心線10の50cmを単心分離し、その作業時に着色層14の剥がれが生じた部分がある場合を×、着色層14の剥がれがない場合を〇とした。
【0029】
一般に、紫外線硬化性樹脂組成物からなる硬化物表面の硬化性は、紫外線の照射量と正の相関、酸素濃度と負の相関があるといわれている。
【0030】
図6に示すように、水滴Wの接触角βを見るかぎり、紫外線の照射量との相関および酸素濃度との相関があり、しかも、紫外線の照射量とは正の相関、酸素濃度とは負の相関があるから、紫外線硬化性樹脂組成物からなる硬化物(着色層4)表面の硬化性は、水滴による接触角の大きさと相関することになる。すなわち、水滴による接触角βが大きい場合はその着色層4の表面硬化状態が良好である一方、水滴による接触角βが小さい場合はその着色層4の表面硬化状態が不良であることになるから、水滴による接触角βの大小に応じて着色層4の表面硬化状態を評価できることになる。光ファイバ素線3の被覆層2も紫外線硬化性樹脂組成物からなる硬化物であるから、同様にして、水滴による接触角αの大小に応じて被覆層2の表面硬化状態を評価できることになる。
【0031】
紫外線硬化性樹脂組成物からなる硬化物表面の硬化性と、水滴による接触角の大きさとに相関がある理由は明らかになっていないが、硬化物表面の硬化状態によってその表面エネルギが変化するためと考えられる。一般に、高エネルギ表面では接触角が小さく、低エネルギ表面では接触角が大きくなることから、硬化物の表面硬化状態が良くなればなるほど、その表面エネルギが低下し、その結果、水滴による接触角が大きくなるものと考えられる。したがって、水滴による接触角の測定値は、紫外線硬化性樹脂組成物からなる硬化物(被覆層2、着色層4)表面の硬化性を示す指標として利用できることが明らかである。
【0032】
そして、図6から明らかなように、水滴による接触角αが58°の被覆層2を形成した光ファイバ素線3(A)の場合、着色層4表面の水滴による接触角βが69°以上であると、単心分離性が〇であり、水滴による接触角βが40°以下であると、単心分離性が×である。また、水滴による接触角αが48°の被覆層2を形成した光ファイバ素線3(B)の場合も、着色層4表面の水滴による接触角βが69°以上であると、単心分離性が〇であり、水滴による接触角βが40°以下であると、単心分離性が×である。また、水滴による接触角αが36°の被覆層2を形成した光ファイバ素線3(C)の場合、着色層4表面の水滴による接触角βが40°以上であると、単心分離性が〇であり、水滴による接触角βが20°であると、単心分離性が×である。さらに、水滴による接触角αが30°の被覆層2を形成した光ファイバ素線3(D)の場合も、着色層4表面の水滴による接触角βが40°以上であると、単心分離性が〇であり、水滴による接触角βが20°であると、単心分離性が×である。
【0033】
これらの結果から、水滴による接触角α,βがα<βの条件を満たす被覆層2を形成した光ファイバ素線3を光ファイバ素線13とし、かつ、着色層4を形成した光ファイバ着色素線5を光ファイバ着色素線15として構成される光ファイバテープ心線10は、光ファイバ素線13の被覆層12表面の水滴による接触角αに比べて、光ファイバ着色素線15の着色層14表面の水滴による接触角βの方が大きい(α<β)から、被覆層12の表面の硬化性に比べて、着色層14の表面の硬化性の方がより良好であり、そのため、光ファイバ着色素線15の着色層14とその外側の一括被覆層16との密着が、光ファイバ素線13の被覆層12とその外側の着色層14との密着より弱いから、単心分離を行う際に光ファイバ着色素線15の表面から着色層14が剥がれてしまうことは未然にしかも確実に防止されることとなる。
【0034】
以上のように構成される各光ファイバテープ心線10の中から、紫外線照射量が低く、酸素濃度が高くても、硬化物表面の接触角が小さくならない着色剤Aを含有する紫外線硬化性樹脂組成物4ALを選んで光ファイバ着色素線15の着色層14として用いるとともに、紫外線照射量が低く、酸素濃度が高くても、硬化物表面の接触角が小さくならない紫外線硬化性樹脂組成物2Lを選んで光ファイバ素線13の被覆層12として用いることで、単心分離性が良好な光ファイバテープ心線10を、簡便に製造することが可能になる。
【0035】
【発明の効果】
この発明は以上のように、光ファイバに紫外線硬化性樹脂組成物を硬化させることで被覆層を形成した光ファイバ素線の外周面に、着色剤を含有する紫外線硬化性樹脂組成物を硬化させることで着色層を形成した光ファイバ着色素線を複数本並べて、紫外線硬化性樹脂組成物を硬化させることで形成する一括被覆層によって一体化してなる光ファイバテープ心線において、光ファイバ素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角αと、光ファイバ着色素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を用いて光ファイバテープ心線を構成したので、水滴を用いた接触角を測定することによって、光ファイバ着色素線の着色層表面の硬化性、および光ファイバ素線の被覆層表面の硬化性を定量的に把握することができ、これにより、光ファイバ着色素線の着色層表面の硬化性と、光ファイバ素線の被覆層表面の硬化性との相関条件を的確に設定することで、単心分離性を向上することができる効果がある。
【図面の簡単な説明】
【図1】この発明による光ファイバテープ心線の一実施の形態を示す模式的断面図である。
【図2】光ファイバ素線の並べ方および接触角の測定方法についての説明図である。
【図3】光ファイバ着色素線の並べ方および接触角の測定方法についての説明図である。
【図4】光ファイバ素線、光ファイバ着色素線を複数本並べる際の密度に応じて接触角がどのように変化するかを調べた結果を示す表である。
【図5】光ファイバ素線の接触角αの測定結果を示す表である。
【図6】光ファイバ着色素線の接触角βの測定結果および単心分離性(着色層の剥がれの有無)の観察結果を示す表である。
【符号の説明】
10 光ファイバテープ心線
1,11 光ファイバ
2,12 被覆層
3,13 光ファイバ素線
4,14 着色層
5,15 光ファイバ着色素線
16 一括被覆層
W 水滴
α,β 接触角
ρ 密度
V 垂直面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber ribbon.
[0002]
[Prior art]
In general, there is a so-called optical fiber ribbon having a plurality of optical fibers. Such an optical fiber tape core wire uses a plurality of optical fiber wires each having a coating layer formed by curing an ultraviolet curable resin composition on the outer peripheral surface of a single-core optical fiber. In order to identify each other when using, the outer peripheral surface of each optical fiber strand, constituting an optical fiber dyed wire formed a colored layer by curing the ultraviolet curable resin composition containing a coloring agent, A plurality of these optical fiber dye lines are arranged in parallel, and the whole is integrally formed by a collective coating layer formed by curing an ultraviolet curable resin composition.
[0003]
As described above, an optical fiber ribbon, which is formed by arranging a plurality of optical fiber dye lines each having a colored layer formed on the outer peripheral surface of the optical fiber strand, is used as an optical fiber dye line when used as a communication line. Are separated one by one. That is, the optical fiber ribbon is used for actual use as a communication line by separating the optical fiber pigmented wire from the optical fiber pigmented wire by a single layer and separating the optical fiber pigmented wire. Therefore, the optical fiber ribbon is required to be able to easily perform single-core separation, that is, to have good single-core separation properties.
[0004]
However, for example, when the adhesion between the colored layer on the surface of the optical fiber dyed wire and the outer coating layer is stronger than the adhesion between the coating layer on the surface of the optical fiber and the colored layer on the outside, single-core separation occurs. Since the colored layer is peeled off from the surface of the dyed optical fiber when performing the process, the single-fiber separation is easily performed while preventing such inconveniences as peeling of the colored layer, etc. Have been proposed for the material property values of the respective UV-curable resin compositions forming the coating layer, the colored layer and the collective coating layer.
[0005]
[Patent Document 1]
JP-A-2002-90588
[Patent Document 2]
JP 2002-221647 A
[Problems to be solved by the invention]
The inventors of the present invention have studied and found that the single-core separability of the optical fiber ribbon largely depends on the curability of the cured product surface when the ultraviolet curable resin composition is cured. For example, when applying the liquid UV-curable resin composition to be the next cured layer on the surface of the cured product obtained by curing the UV-curable resin composition, the unreacted UV-curable resin component is applied to the surface of the cured product. When remaining, when irradiated with ultraviolet rays to cure the applied liquid ultraviolet curable resin composition, at the interface between the two, the unreacted ultraviolet curable resin component on the surface of the cured product and the applied ultraviolet curable resin The UV-curable resin of the resin composition reacts and adheres. The phenomenon that depends on the curability of the surface of the cured product is only the curability of the surface of the formed cured product, regardless of whether the ultraviolet curable resin composition forming the cured product contains a colorant or not. Depends on Therefore, in order to easily perform single-core separation while preventing peeling of the colored layer, the curability of the colored layer surface of the optical fiber dyeing wire is important, and the curing of the coating layer surface of the optical fiber is also important. Gender and correlation conditions are particularly important.
[0008]
However, Patent Document 1 and Patent Document 2 do not refer to the curability of the surface of the cured product when the ultraviolet-curable resin composition is cured, and therefore, an optical fiber based on the curability of the surface of the cured product. There was a problem that it was not possible to discuss the single-core separability of the tape.
[0009]
In addition, the inventors of the present invention have found that it is effective to use a contact angle using a water droplet as an index indicating the curability of the surface of a cured product. Patent Literature 1 and Patent Literature 2 describe a contact angle using a droplet. However, the reason that these patent documents use the contact angle by the droplet is that the contact angle when the droplet of the second resin composition is arranged on the cured product of the first resin composition is within a predetermined range. When satisfied, the second resin composition is easy to penetrate even minute irregularities on the surface of the cured product of the first resin composition, and the second resin composition can be more uniformly applied without unevenness. It is not an index indicating the curability of the cured product surface.
[0010]
Moreover, when the contact angle is measured by dropping a droplet of the ultraviolet curable resin composition to be the next cured layer on the surface of the cured product obtained by curing the ultraviolet curable resin composition, the contact angle is determined. What is obtained is not the surface state of the cured product, but the viscosity and surface tension of the droplet.Therefore, temporarily, the contact angle measured using the droplet of the ultraviolet-curable resin composition to be the next cured layer, Even if an attempt is made to use it as an index indicating the curability of the surface of the cured product, the index does not accurately reflect the curability. In addition, the ultraviolet curable resin composition used for optical fibers, including those containing a coloring agent, has a good wettability so that application to a wire can be performed at high speed. It is inevitable that the change in the surface state of the cured product must be measured, even if the change in the surface state of the cured product is to be determined from the change in the contact angle. Is difficult to observe.
[0011]
Further, in Patent Document 1 and Patent Document 2, the surface condition is evaluated using a cured product obtained by applying and curing an ultraviolet curable resin composition on a sheet. It cannot be applied to a dye line, and there is a problem that it is difficult to evaluate the surface state using an actual optical fiber dye line.
[0012]
An object of the present invention is to quantitatively grasp the curability of the colored layer surface of an optical fiber dyed wire, and the curability of the coating layer surface of an optical fiber, by eliminating the above-mentioned problems of the related art. It is another object of the present invention to provide an optical fiber ribbon that can improve single-core separation by properly setting a correlation condition between the two.
[0013]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the invention according to claim 1 is a method in which an ultraviolet curable resin composition is cured on an optical fiber to form a coating layer on the outer peripheral surface of the optical fiber. By arranging a plurality of optical fiber dye lines having a colored layer formed by curing an ultraviolet curable resin composition containing an agent, and integrally forming a collective coating layer formed by curing the ultraviolet curable resin composition In the optical fiber ribbon, a plurality of optical fiber strands are arranged, a contact angle α measured by arranging water droplets on the surface thereof, and a plurality of optical fiber dyed wires are measured. The contact angle β measured by arranging and arranging water droplets on the surface is an optical fiber ribbon formed by using an optical fiber coloring wire satisfying the condition of α <β.
[0014]
According to a second aspect of the present invention, in the first aspect of the present invention, a plurality of the optical fiber strands are closely arranged at a density of 0.95 or more, and a contact angle is measured by arranging a water droplet on the surface. α and the contact angle β measured by arranging a plurality of fibers in the state of the dyed optical fiber line tightly at a density of 0.95 or more and arranging water droplets on the surface thereof, satisfying the condition α <β. This is an optical fiber ribbon obtained by arranging a plurality of fiber dye lines and integrating them by the collective coating layer.
[0015]
According to a third aspect of the present invention, in the first or second aspect of the present invention, a plurality of the optical fiber strands are arranged, and water droplets are arranged on the surface of the plurality of optical fiber strands. A plurality of contact angles α measured in a vertical plane along the optical fiber dye line are arranged, water droplets are arranged on the surface thereof, and a vertical direction along the longitudinal direction of the optical fiber dye line is arranged. The contact angle β measured in the plane is an optical fiber ribbon obtained by arranging a plurality of dyed optical fiber wires satisfying the condition of α <β and integrating them by the collective coating layer.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view showing an embodiment of an optical fiber ribbon according to the present invention. The optical fiber ribbon 10 is obtained by curing an optical fiber 11 with an ultraviolet curable resin composition. A plurality of optical fiber coloring lines 15 having a coloring layer 14 formed by curing an ultraviolet curable resin composition containing a coloring agent are arranged in parallel on the outer peripheral surface of the optical fiber 13 having the coating layer 12 formed thereon. , And are integrally formed by a collective coating layer 16 formed by curing an ultraviolet curable resin composition.
[0017]
The optical fiber ribbon 10 has a contact angle α measured by arranging a plurality of optical fibers 13 in the state of an optical fiber 13 and arranging a water droplet on the surface thereof, and a state of the optical fiber dyeing line 15. Are arranged, and a contact angle β measured by arranging a water droplet on the surface thereof is configured using an optical fiber dye line satisfying the condition of α <β.
[0018]
In addition, a plurality of wires in the state of the optical fiber strand 13 are closely arranged at a density of 0.95 or more, and a contact angle α measured by arranging a water droplet on the surface thereof, and a plurality of wires in the state of the optical fiber dyed wire 15 are measured. The books are closely arranged at a density of 0.95 or more, and a plurality of optical fiber dye lines satisfying the condition of α <β are arranged with a contact angle β measured by arranging a water droplet on the surface. It is integrated.
[0019]
Further, a plurality of optical fiber strands 13 are arranged, and a contact angle α measured in a vertical plane along the longitudinal direction of the optical fiber strand with water drops placed on the surface thereof, A plurality of lines 15 are arranged, and a contact angle β measured in a vertical plane along the longitudinal direction of the optical fiber dye line with a water droplet disposed on the surface thereof satisfies the condition of α <β. A plurality of optical fiber dye lines are arranged and integrated by a collective coating layer 16.
[0020]
FIG. 2 shows the arrangement of the optical fiber wires 3 and the contact angle in order to measure the contact angle by arranging a water drop on the surface of the optical fiber wire 13 (this is represented as the optical fiber wire 3). FIG. 3 is an explanatory diagram of the measuring method. FIG. 3 shows a state of the optical fiber dyed line 15 (this is referred to as an optical fiber dyed line 5). Therefore, FIG. 4 is a diagram illustrating a method of arranging the optical fiber dyed wires 5 and a method of measuring a contact angle. FIG. 4 shows a contact according to the density when a plurality of the optical fiber wires 3 and the optical fiber dyed wires 5 are arranged. It is a table | surface which shows the result of having investigated how the angle changes.
[0021]
This embodiment will be specifically described with reference to FIGS. 2 to 4. The optical fiber 1 is coated with 2 L of a liquid ultraviolet curable resin composition, and the optical fiber 1 is placed in an atmosphere in which the oxygen concentration can be adjusted. By irradiating ultraviolet rays to the ultraviolet-curable resin composition 2L while adjusting the oxygen concentration and the amount of ultraviolet irradiation, the ultraviolet-curable resin composition 2L is cured to form a cured product 2S, that is, the coating layer 2, This forms the optical fiber 3 (see FIGS. 2B and 2C).
[0022]
Further, a liquid ultraviolet curable resin composition 4AL containing the colorant A is applied to the outer peripheral surface of the optical fiber 3 and the optical fiber 3 is placed in an atmosphere in which the oxygen concentration can be adjusted. By irradiating the ultraviolet curable resin composition 4AL containing the colorant A with ultraviolet rays while adjusting the concentration and the amount of ultraviolet irradiation, the ultraviolet curable resin composition 4AL is cured and the cured product 4AS containing the colorant A, that is, The coloring layer 4 is formed, and thereby the optical fiber coloring line 5 is formed (see FIGS. 3B and 3C).
[0023]
In order to measure the contact angle α by dropping a water droplet W of ion-exchanged water on the surface of the optical fiber 3 thus obtained, a plurality of optical fiber 3 are arranged. Similarly, in order to measure the contact angle β by dropping a water droplet W of ion-exchanged water on the surface of the optical fiber dye line 5, a plurality of the optical fiber dye lines 5 are arranged. At this time, if the diameter of the optical fiber strand 3 and the dyed-colored optical fiber 5 is d, and if n pieces of the optical fiber strands 3 and the dyed-colored optical fiber 5 are arranged along the length L, the density ρ is It can be expressed as ρ = nd / L (see FIGS. 2A and 3A). FIG. 4 shows the results of measuring the contact angles α and β while changing the density ρ.
[0024]
As shown in FIG. 4, when the density ρ at which the optical fiber strands 3 and the dyed-colored optical fibers 5 are arranged decreases, a gap is generated between the adjacent optical fiber strands 3 and the dyed-colored optical fibers 5. The water droplet W flows through the gap, and the contact angles α and β become unstable. For this reason, when the density ρ for arranging the optical fiber 3 and the dyed fiber 5 is 0.95 or more (ρ ≧ 0.95), the contact angles α and β of the water droplet W can be measured stably. . The contact angles α and β shown in FIG. 4 are obtained by examining the relationship between the optical fiber 3 and the density ρ at which the optical fiber dyed wires 5 are arranged. Does not make sense.
[0025]
Therefore, based on this result, a plurality of optical fiber strands 3 are actually closely arranged at a density of 0.95 or more (ρ ≧ 0.95). Then, a droplet W of ion-exchanged water is dropped on the surface, and the contact angle α is measured. Similarly, a plurality of optical fiber dye lines 5 are closely arranged at a density of 0.95 or more (ρ ≧ 0.95). Then, a droplet W of ion-exchanged water is dropped on the surface, and the contact angle β is measured.
[0026]
In general, the measurement of the contact angle α and the contact angle β of the water droplet W is performed on a flat surface (flat surface). However, a non-flat surface such as a surface on which the optical fiber wires 3 and the optical fiber dye lines 5 are arranged. (An anisotropic surface), it is possible to measure the contact angles α and β. At this time, the spread of the water droplet W is different between the longitudinal direction of the optical fiber strand 3 and the optical fiber dyed wire 5 and the direction orthogonal thereto, and thus the water droplet W is in a vertical plane along any one of the directions. Can be measured. Among them, the longitudinal direction of the optical fiber strand 3 and the optical fiber dyeing line 5 has a larger spread of the water droplet W than the direction orthogonal thereto, but is less affected by the anisotropic shape. It is preferable to measure the contact angle α and the contact angle β of the water droplet W in a vertical plane V along the longitudinal direction of the optical fiber wire 3 and the optical dyed wire 5. More specifically, the contact angle α of the water droplet W is measured in a vertical plane V passing through the center axis of one optical fiber 3 near the center of the water droplet W (see FIGS. 2B and 2C). Similarly, the contact angle β of the water droplet W is measured in a vertical plane V passing through the central axis of one optical fiber coloring line 5 near the center of the water droplet W (see FIGS. 3B and 3C). Such measurement of the contact angle α and the contact angle β can be performed using an appropriate commercially available contact angle meter.
[0027]
FIG. 5 shows a plurality of types of optical fiber wires 3 having a diameter of 0.245 mm in which various coating layers 2 are formed on an optical fiber 1 at a density ρ (ρ ≧ 0.95) of 0.95 or more. A water drop W of ion-exchanged water is dropped on the surface thereof, and the contact angle α of the water drop W measured in a vertical plane V along the longitudinal direction of the optical fiber 3 (see FIGS. 2B and 2C). 3) is a table showing the measurement results.
[0028]
FIG. 6 shows that the outer peripheral surface of each optical fiber 3 used in FIG. 5 is adjusted in an oxygen concentration adjustable atmosphere in an oxygen concentration adjustable atmosphere, and the irradiation amount of the ultraviolet light is adjusted. Meanwhile, a plurality of types of optical fiber dyeing wires 5 having a diameter of 0.250 mm on which various colored layers 4 containing the colorant A were formed were all formed at a density ρ (ρ ≧ 0.95) of 0.95 or more. The water droplets W of the ion-exchanged water are dropped on the surface thereof, and the contact angle β of the water droplets W measured in the vertical plane V along the longitudinal direction of the dyed optical fiber 5 (FIGS. 3B and 3C) 4) is a table showing the measurement results of (2). In addition, the single-core separation of the optical fiber tape core wire 10 prepared (prototype) using each of the optical fiber dye lines 5 as the optical fiber dye line 15 is performed, and the colored layer 14 of the optical fiber dye line 15 is separated. 4 is a table showing the results of observing the presence or absence of peeling (single-fiber separation). Here, the single-core separability was evaluated as follows: 50 cm of each optical fiber ribbon 10 was single-core separated, and when there was a portion where the colored layer 14 was peeled off during the work, x was determined. When there is no case, it was marked as 〇.
[0029]
In general, it is said that the curability of the surface of a cured product made of an ultraviolet-curable resin composition has a positive correlation with the amount of ultraviolet irradiation and a negative correlation with the oxygen concentration.
[0030]
As shown in FIG. 6, as far as the contact angle β of the water droplet W can be seen, there is a correlation with the irradiation amount of ultraviolet rays and a correlation with the oxygen concentration, and furthermore, a positive correlation with the irradiation amount of ultraviolet rays and a negative correlation with the oxygen concentration. Therefore, the curability of the surface of the cured product (colored layer 4) made of the ultraviolet curable resin composition is correlated with the contact angle due to the water droplet. That is, when the contact angle β due to the water droplet is large, the surface hardened state of the colored layer 4 is good, while when the contact angle β due to the water droplet is small, the surface hardened state of the colored layer 4 is poor. In addition, the surface hardening state of the colored layer 4 can be evaluated according to the magnitude of the contact angle β due to the water droplet. Since the coating layer 2 of the optical fiber 3 is also a cured product made of the ultraviolet curable resin composition, similarly, the surface hardening state of the coating layer 2 can be evaluated according to the magnitude of the contact angle α due to the water droplet. .
[0031]
The reason why there is a correlation between the curability of the surface of the cured product made of the ultraviolet curable resin composition and the magnitude of the contact angle due to water droplets is not clear, but since the surface energy changes depending on the cured state of the surface of the cured product. it is conceivable that. Generally, since the contact angle is small on a high energy surface and the contact angle is large on a low energy surface, the better the surface curing state of the cured product is, the lower the surface energy is, and as a result, the contact angle due to water droplets is reduced. It is thought to be larger. Therefore, it is clear that the measured value of the contact angle by the water droplet can be used as an index indicating the curability of the surface of the cured product (the coating layer 2 and the colored layer 4) made of the ultraviolet curable resin composition.
[0032]
As is apparent from FIG. 6, in the case of the optical fiber 3 (A) having the coating layer 2 having a contact angle α of 58 ° due to water droplets, the contact angle β due to water droplets on the surface of the colored layer 4 is 69 ° or more. , The single-core separability is 〇, and the single-core separability is × when the contact angle β with a water droplet is 40 ° or less. Also, in the case of the optical fiber 3 (B) having the coating layer 2 having a contact angle α of 48 ° due to water droplets, if the contact angle β due to water droplets on the surface of the colored layer 4 is 69 ° or more, single-core separation is performed. When the property is Δ and the contact angle β due to a water droplet is 40 ° or less, the single-core separation property is ×. In the case of the optical fiber 3 (C) having the coating layer 2 having a contact angle α of 36 ° due to water droplets, if the contact angle β due to water droplets on the surface of the colored layer 4 is 40 ° or more, the single-core separation property is obtained. Is Δ, and when the contact angle β due to the water droplet is 20 °, the single-core separation property is ×. Further, in the case of the optical fiber 3 (D) having the coating layer 2 having a contact angle α of 30 ° due to water droplets, if the contact angle β due to water droplets on the surface of the colored layer 4 is 40 ° or more, the single-core separation is performed. When the property is 〇 and the contact angle β with a water droplet is 20 °, the single-core separation property is ×.
[0033]
From these results, it is found that the optical fiber 3 having the coating layer 2 in which the contact angles α and β by water droplets satisfy the condition of α <β is used as the optical fiber 13 and the optical fiber having the coloring layer 4 formed thereon. The optical fiber ribbon 10 in which the dye line 5 is formed as the optical fiber dye line 15 is colored in the optical fiber dye line 15 in comparison with the contact angle α of the water droplet on the surface of the coating layer 12 of the optical fiber strand 13. Since the contact angle β due to water droplets on the surface of the layer 14 is larger (α <β), the curability of the surface of the colored layer 14 is better than the curability of the surface of the coating layer 12, Since the adhesion between the coloring layer 14 of the optical fiber coloring wire 15 and the collective coating layer 16 outside the coloring layer 14 is weaker than the adhesion between the coating layer 12 of the optical fiber strand 13 and the coloring layer 14 outside the same, single-core separation can be performed. At the time of carrying out, it attaches from the surface of Peeling of the color layer 14 is prevented beforehand and surely.
[0034]
Among the optical fiber tape cores 10 configured as described above, an ultraviolet curable resin containing a colorant A that does not reduce the contact angle on the surface of the cured product even when the amount of ultraviolet irradiation is low and the oxygen concentration is high. The composition 4AL is selected and used as the coloring layer 14 of the optical fiber dyeing line 15, and the ultraviolet curable resin composition 2L, which does not decrease the contact angle on the surface of the cured product even when the amount of ultraviolet irradiation is low and the oxygen concentration is high, is used. By selecting and using it as the coating layer 12 of the optical fiber 13, it becomes possible to easily manufacture the optical fiber ribbon 10 having good single-core separability.
[0035]
【The invention's effect】
As described above, the present invention cures an ultraviolet-curable resin composition containing a colorant on the outer peripheral surface of an optical fiber strand having a coating layer by curing the ultraviolet-curable resin composition on an optical fiber. By arranging a plurality of dyed optical fiber dye lines having a colored layer formed thereon, and in an optical fiber tape core wire integrated by a collective coating layer formed by curing the ultraviolet curable resin composition, The contact angle α measured by arranging a plurality of pieces in the state and arranging water droplets on the surface thereof, and the contact angle β measured by arranging a plurality of things in the state of optical fiber dye lines and arranging water drops on the surface thereof Since the optical fiber ribbon was configured using an optical fiber dyed wire satisfying the condition of α <β, the contact angle using a water droplet was measured to determine the color layer surface of the optical fiber dyed wire. Hardening , And the curability of the coating layer surface of the optical fiber can be quantitatively grasped, whereby the curing property of the coloring layer surface of the optical fiber dyed wire and the curing of the coating layer surface of the optical fiber can be determined. By properly setting the correlation condition with the gender, there is an effect that the single-core separability can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of an optical fiber ribbon according to the present invention.
FIG. 2 is an explanatory diagram of a method of arranging optical fiber strands and a method of measuring a contact angle.
FIG. 3 is an explanatory diagram of a method of arranging optical fiber dye lines and a method of measuring a contact angle.
FIG. 4 is a table showing a result of examining how a contact angle changes depending on a density when a plurality of optical fiber wires and dyed optical fiber wires are arranged.
FIG. 5 is a table showing measurement results of a contact angle α of an optical fiber.
FIG. 6 is a table showing a measurement result of a contact angle β of an optical fiber dyed wire and an observation result of single-core separation property (presence or absence of peeling of a colored layer).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Optical fiber ribbon 1,11 Optical fiber 2,12 Coating layer 3,13 Optical fiber wire 4,14 Coloring layer 5,15 Optical fiber coloring line 16 Collective coating layer W Water droplet α, β Contact angle ρ Density V Vertical plane

Claims (3)

光ファイバに紫外線硬化性樹脂組成物を硬化させることで被覆層を形成した光ファイバ素線の外周面に、着色剤を含有する紫外線硬化性樹脂組成物を硬化させることで着色層を形成した光ファイバ着色素線を複数本並べて、紫外線硬化性樹脂組成物を硬化させることで形成する一括被覆層によって一体化してなる光ファイバテープ心線において、
前記光ファイバ素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角αと、前記光ファイバ着色素線の状態のものを複数本並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を用いて構成したことを特徴とする光ファイバテープ心線。
A light having a colored layer formed by curing a UV curable resin composition containing a colorant on the outer peripheral surface of an optical fiber having a coating layer formed by curing the UV curable resin composition on the optical fiber. A plurality of fiber dye lines are arranged, and in an optical fiber tape core integrated by a collective coating layer formed by curing an ultraviolet curable resin composition,
A plurality of the optical fiber strands are arranged, a contact angle α measured by arranging a water droplet on the surface thereof, and a plurality of the optical fiber dye lines are arranged, and a water droplet is arranged on the surface. An optical fiber ribbon comprising an optical fiber dyed wire that satisfies the condition of α <β, wherein the contact angle β measured by the measurement is α <β.
前記光ファイバ素線の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角αと、前記光ファイバ着色素線の状態のもの複数本を密度0.95以上に緊密に並べ、その表面に水滴を配置して測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、前記一括被覆層によって一体化したことを特徴とする請求項1記載の光ファイバテープ心線。A plurality of wires in the state of the optical fiber are closely arranged at a density of 0.95 or more, a contact angle α measured by arranging a water droplet on the surface, and a plurality of wires in the state of the dyed optical fiber. A plurality of optical fiber dye lines satisfying the condition of α <β are arranged in a line with a density of 0.95 or more and a contact angle β measured by arranging a water drop on the surface, and integrated by the collective coating layer. The optical fiber ribbon according to claim 1, wherein: 前記光ファイバ素線の状態のものを複数本並べ、その表面に水滴を配置して当該光ファイバ素線の長手方向に沿った垂直面内で測定した接触角αと、前記光ファイバ着色素線の状態のものを複数本並べ、その表面に水滴を配置して当該光ファイバ着色素線の長手方向に沿った垂直面内で測定した接触角βとが、α<βの条件を満たす光ファイバ着色素線を複数本並べて、前記一括被覆層によって一体化したことを特徴とする請求項1または請求項2記載の光ファイバテープ心線。A plurality of the optical fiber strands are arranged, and a contact angle α measured in a vertical plane along a longitudinal direction of the optical fiber strand by disposing a water droplet on the surface thereof, and the optical fiber dyed wire. And a contact angle β measured in a vertical plane along the longitudinal direction of the optical fiber dye line with water droplets arranged on the surface thereof, and an optical fiber satisfying the condition of α <β 3. The optical fiber ribbon according to claim 1, wherein a plurality of coloring wires are arranged and integrated by the collective coating layer.
JP2003022328A 2003-01-30 2003-01-30 Optical fiber ribbon Expired - Lifetime JP3927128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022328A JP3927128B2 (en) 2003-01-30 2003-01-30 Optical fiber ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022328A JP3927128B2 (en) 2003-01-30 2003-01-30 Optical fiber ribbon

Publications (2)

Publication Number Publication Date
JP2004233662A true JP2004233662A (en) 2004-08-19
JP3927128B2 JP3927128B2 (en) 2007-06-06

Family

ID=32951420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022328A Expired - Lifetime JP3927128B2 (en) 2003-01-30 2003-01-30 Optical fiber ribbon

Country Status (1)

Country Link
JP (1) JP3927128B2 (en)

Also Published As

Publication number Publication date
JP3927128B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN105917261B (en) The manufacturing method of optical fiber core, fiber optic cables and optical fiber core
EP1234201A1 (en) Method for manufacturing optical fiber ribbon
JPH09325251A (en) Thermally peelable and strippable optical fiber ribbon
JPS60232517A (en) Color coded optical fiber waveguide and coloring thereof
CA2704241C (en) Process for manufacturing an optical fiber and an optical fiber so obtained
JP2009518664A (en) Optical fiber ribbon with improved peelability
WO2021084640A1 (en) Intermittent-connection-type optical fiber tape, and method for manufacturing intermittent-connection-type optical fiber tape
EP2757080A2 (en) Color coded optical fibers
CN104115049B (en) Coat optical fiber, optical-fiber-belt and optical cable
EP0856759B1 (en) Method of making optical fiber ribbon
AU2024200409A1 (en) Intermittently connected optical fiber ribbon
CN1321903A (en) Method and device for increasing UV dose and output of high-speed UV curing
JP6808686B2 (en) Manufacturing method of intermittently connected optical fiber tape and intermittently connected optical fiber tape
JP3878138B2 (en) Surface condition evaluation method for optical fiber dyed wire
EP1391439A2 (en) Methods and apparatus for coloring optical fibers during draw
JP2004233662A (en) Coated optical fiber ribbon
JP3984173B2 (en) Optical fiber ribbon
JP4845007B2 (en) Optical fiber core wire, optical fiber tape core wire and manufacturing method thereof
JP2004219240A (en) Method of evaluating surface condition of ultraviolet-curing resin
JP2004219684A (en) Ribbon of coated optical fibers
JP2004219685A (en) Ribbon of coated optical fibers
JPH11302039A (en) Production of colored optical fiber
CA1295500C (en) Optical fibre cable
JP3874811B2 (en) Optical fiber ribbon
JP2003055005A (en) Method for measuring adhesion strength of colored layer in color coated optical fiber and color coated optical fiber based on the method for measuring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070301

R151 Written notification of patent or utility model registration

Ref document number: 3927128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term