JP2004233373A - Magnetic detecting element - Google Patents

Magnetic detecting element Download PDF

Info

Publication number
JP2004233373A
JP2004233373A JP2004133294A JP2004133294A JP2004233373A JP 2004233373 A JP2004233373 A JP 2004233373A JP 2004133294 A JP2004133294 A JP 2004133294A JP 2004133294 A JP2004133294 A JP 2004133294A JP 2004233373 A JP2004233373 A JP 2004233373A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
layer
gmr element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133294A
Other languages
Japanese (ja)
Other versions
JP3967733B2 (en
Inventor
Motohisa Taguchi
元久 田口
Izuru Shinjo
出 新條
Yuji Kawano
裕司 川野
Tatsuya Fukami
達也 深見
Kazuhiko Tsutsumi
和彦 堤
Ikuya Kawakita
生也 川喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004133294A priority Critical patent/JP3967733B2/en
Publication of JP2004233373A publication Critical patent/JP2004233373A/en
Application granted granted Critical
Publication of JP3967733B2 publication Critical patent/JP3967733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably form a final protective film of a giant magnetoresistive element, used for a magnetic detecting element and to improve the reliability of the magnetic detecting element. <P>SOLUTION: In the magnetic detecting element, the side of a resistive pattern, constituting the giant magnetoresistive element 7, is tapered so that it forms an angle of not smaller than 20° and not larger than 80°, with respect to the surface of a substrate for supporting the giant magnetoresistive element. In addition, the side of the resistive pattern, constituting the giant magnetoresistive element, is tapered so that it forms an angle not smaller than 40° and not larger than 65°, with respect to the surface of the substrate supporting the giant magnetoresistive element. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、磁界の変化を検出する磁気検出素子に関するものである。   The present invention relates to a magnetic detection element that detects a change in a magnetic field.

一般に、磁気抵抗素子(以下、MR(Magnetoresistance)素子という)は、強磁性体(例えば、Ni−Fe、Ni−Co等)薄膜の磁化方向と電流方向のなす角度によって抵抗値が変化する素子である。
このようなMR素子は、電流方向と磁化方向が直角に交わるときに抵抗値が最小になり、電流方向と磁化方向のなす角が0度、すなわち同一あるいは全く逆の方向になるときにその抵抗値が最大になる。このような抵抗値の変化をMR変化率と呼び、一般にNi−Feで2〜3%、Ni−Coで5〜6%である。
In general, a magnetoresistive element (hereinafter, referred to as MR (Magnetoresistance) element) is an element whose resistance value changes depending on an angle between a magnetization direction and a current direction of a ferromagnetic (eg, Ni—Fe, Ni—Co) thin film. is there.
In such an MR element, the resistance value becomes minimum when the current direction and the magnetization direction intersect at right angles, and when the angle between the current direction and the magnetization direction is 0 degree, that is, when the direction is the same or completely opposite, the resistance becomes smaller. The value is maximized. Such a change in the resistance value is called an MR change rate, which is generally 2 to 3% for Ni-Fe and 5 to 6% for Ni-Co.

図9及び図10は従来の磁気検出装置の構成を示す側面図及び斜視図である。
図9に示すように、従来の磁気検出装置は、回転軸41と、少なくとも1つ以上の凹凸を外周側に有し、回転軸41の回転に同期して回転する円板状の磁性回転体42と、この磁性回転体42の外周側と所定の間隙をもって配置されたMR素子43と、このMR素子43の背部に固着され、このMR素子43に磁界を与える磁石44と、MR素子43の出力を処理する集積回路45とからなり、MR素子43は、磁気抵抗パターン46と、薄膜面(感磁面)47とを備える。
このような磁気検出装置において、磁性回転体42が回転することでMR素子43の感磁面である薄膜面47を貫く磁界が変化し、磁気抵抗パターン46の抵抗値が変化する。
しかし、このような磁気検出装置で用いられている磁気検出素子のMR素子43は出力レベルが小さいため、精度の高い検出ができず、これを解決するために、出力レベルの大きな巨大磁気抵抗素子(以下、GMR(Giant Magnetoresistance)素子という。)を用いた磁気検出素子が、近時提案されている。
9 and 10 are a side view and a perspective view showing the configuration of a conventional magnetic detection device.
As shown in FIG. 9, the conventional magnetic detection device has a rotating shaft 41 and at least one or more irregularities on the outer peripheral side, and a disk-shaped magnetic rotating body that rotates in synchronization with the rotation of the rotating shaft 41. 42, an MR element 43 arranged at a predetermined gap from the outer peripheral side of the magnetic rotator 42, a magnet 44 fixed to the back of the MR element 43, and applying a magnetic field to the MR element 43; The MR element 43 includes a magnetoresistive pattern 46 and a thin film surface (magnetically sensitive surface) 47.
In such a magnetic detection device, when the magnetic rotator 42 rotates, the magnetic field penetrating the thin film surface 47 that is the magneto-sensitive surface of the MR element 43 changes, and the resistance value of the magnetoresistive pattern 46 changes.
However, since the output level of the MR element 43 of the magnetic detection element used in such a magnetic detection device is small, high-precision detection cannot be performed. To solve this, a giant magnetoresistive element having a large output level is used. A magnetic detection element using a GMR (Giant Magnetoresistance) element has been recently proposed.

図11は、従来のGMR素子の特性を示す図である。
図11の特性を示すGMR素子は、日本応用磁気学会誌Vol.15,No.51991,第813〜821頁の「人工格子の磁気抵抗効果」と題する論文に記載されている数オングストロームから数十オングストロームの厚さの磁性層と非磁性層とを交互に積層させたいわゆる人工格子膜としての積層体(Fe/Cr、パーマロイ/Cu/Co/Cu、Co/Cu、FeCo/Cu)である。この積層体は、上述のMR素子と比較して格段に大きなMR効果(MR変化率)を有するとともに、外部磁界の向きが電流に対してどのような角度であっても同じ抵抗値の変化が得られる素子である。
磁界の変化を検出するためにGMR素子で実質的に感磁面を形成し、その感磁面の各端に電極を形成してブリッジ回路を形成し、このブリッジ回路の対向する2つの電極間に定電圧、定電流の電源を接続し、GMR素子の抵抗値変化を電圧変化に変換して、このGMR素子に作用している磁界変化を検出することが考えられる。
FIG. 11 is a diagram showing characteristics of a conventional GMR element.
A GMR element having the characteristics shown in FIG. 11 is disclosed in Journal of the Japan Society of Applied Magnetics, Vol. 15, No. No. 5,1991, pages 813 to 821, entitled "Magnetoresistance effect of artificial lattice", a so-called artificial lattice in which magnetic layers and nonmagnetic layers each having a thickness of several angstroms to several tens angstroms are alternately laminated. It is a laminate (Fe / Cr, Permalloy / Cu / Co / Cu, Co / Cu, FeCo / Cu) as a film. This laminated body has a remarkably large MR effect (MR change rate) as compared with the above-described MR element, and has the same change in resistance value regardless of the direction of the external magnetic field at any angle with respect to the current. It is an element obtained.
To detect a change in the magnetic field, a GMR element is used to form a substantially magneto-sensitive surface, electrodes are formed at each end of the magneto-sensitive surface to form a bridge circuit, and a bridge circuit is formed between two opposing electrodes of the bridge circuit. It is conceivable to connect a constant-voltage and constant-current power supply to the GMR element, convert a change in the resistance value of the GMR element into a voltage change, and detect a change in the magnetic field acting on the GMR element.

図12および図13は、従来のGMR素子を用いた磁気検出装置の構成を示す側面図および斜視図である。
図12および図13において、この磁気検出装置は、回転軸41と、少なくとも1つ以上の凹凸を外周に有し、回転軸41の回転に同期して回転する磁界変化付与手段としての円板状の磁性回転体42と、この磁性回転体42の外周と所定の間隙をもって配置されたGMR素子48と、このGMR素子48に磁界を与える磁界発生手段としての磁石44と、GMR素子48の出力を処理する集積回路45とからなり、GMR素子48は、感磁パターンとしての磁気抵抗パターン49と、薄膜面50とを有する。
このような磁気検出装置では、磁性回転体42が回転することで、GMR素子48の薄膜面(感磁面)50を貫く磁界が変化し、磁気抵抗パターン49の抵抗値が変化する。
FIG. 12 and FIG. 13 are a side view and a perspective view showing a configuration of a magnetic detection device using a conventional GMR element.
12 and 13, this magnetic detection device has a rotating shaft 41 and at least one or more irregularities on its outer periphery, and has a disk shape as a magnetic field change imparting means that rotates in synchronization with the rotation of the rotating shaft 41. , A GMR element 48 disposed at a predetermined gap from the outer periphery of the magnetic rotator 42, a magnet 44 as a magnetic field generating means for applying a magnetic field to the GMR element 48, and an output of the GMR element 48. The GMR element 48 includes a magnetoresistive pattern 49 as a magneto-sensitive pattern and a thin film surface 50.
In such a magnetic detection device, when the magnetic rotator 42 rotates, the magnetic field penetrating the thin film surface (magnetically sensitive surface) 50 of the GMR element 48 changes, and the resistance value of the magnetoresistive pattern 49 changes.

図14は従来のGMR素子を用いた磁気検出装置を示すブロック図であり、図15は従来のGMR素子を用いた磁気検出装置の詳細を示すブロック図である。
図14および図15に示す磁気検出装置は、磁性回転体42と所定の間隙をもって配置され、磁石44より磁界が与えられるGMR素子48を用いたホイートストンブリッジ回路51と、このホイートストンブリッジ回路51の出力を増幅する差動増幅回路52と、この差動増幅回路52の出力を基準値と比較して“0”または“1”の信号を出力する比較回路53と、この比較回路53の出力を受けてスイッチングする出力回路54とを備える。
FIG. 14 is a block diagram showing a conventional magnetic detection device using a GMR element, and FIG. 15 is a block diagram showing details of a conventional magnetic detection device using a GMR element.
The magnetic detection device shown in FIGS. 14 and 15 is arranged with a predetermined gap from the magnetic rotator 42 and uses a GMR element 48 to which a magnetic field is applied by a magnet 44, and a Wheatstone bridge circuit 51, and an output of the Wheatstone bridge circuit 51. , An output of the differential amplifier 52 is compared with a reference value to output a signal of “0” or “1”, and an output of the comparator 53 is received. And an output circuit 54 that performs switching.

図16は従来のGMR素子を用いた磁気検出装置の回路構成の一例を示す図である。
図16において、ホイートストンブリッジ回路51は、例えば各辺にそれぞれGMR素子48a,48b,48cおよび48dを有し、GMR素子48aとGMR素子48cは電源端子VCCに接続され、GMR素子48bとGMR素子48dは接地され、GMR素子48aとGMR素子48bの各他端は接続点55に接続され、GMR素子48cとGMR素子48dの各他端は接続点56に接続される。
FIG. 16 is a diagram showing an example of a circuit configuration of a magnetic detection device using a conventional GMR element.
In FIG. 16, a Wheatstone bridge circuit 51 has, for example, GMR elements 48a, 48b, 48c and 48d on each side. The GMR elements 48a and 48c are connected to a power supply terminal VCC, and the GMR elements 48b and 48d Are grounded, the other ends of the GMR elements 48a and 48b are connected to a connection point 55, and the other ends of the GMR elements 48c and 48d are connected to a connection point 56.

ホイートストンブリッジ回路51の接続点55が抵抗器57を介して差動増幅回路58のアンプ59の反転入力端子に接続され、接続点56が抵抗器60を介してアンプ59の非反転入力端子に接続されるとともに、更に抵抗器61を介して、電源端子VCCから供給される電圧にもとづいて基準電圧を構成する分圧回路62に接続される。
また、アンプ59の出力端子は抵抗器63を介して自己の反転入力端子に接続されるとともに、比較回路64のアンプ65の反転入力端子に接続され、アンプ65の非反転入力端子は、電源端子VCCから供給される電圧にもとづいて基準電圧を構成する分圧回路66に接続されるとともに、抵抗器67を介してアンプ65の出力端子に接続される。
そして、比較回路64の出力端は、出力回路68のトランジスタ69のベースに接続され、トランジスタ69のコレクタは、出力回路68の出力端子70に接続されるとともに、抵抗器71を介して電源端子VCCに接続され、そのエミッタは接地される。
A connection point 55 of the Wheatstone bridge circuit 51 is connected via a resistor 57 to an inverting input terminal of an amplifier 59 of a differential amplifier circuit 58, and a connection point 56 is connected via a resistor 60 to a non-inverting input terminal of the amplifier 59. At the same time, it is further connected via a resistor 61 to a voltage dividing circuit 62 forming a reference voltage based on a voltage supplied from a power supply terminal VCC.
The output terminal of the amplifier 59 is connected to its own inverting input terminal via a resistor 63 and connected to the inverting input terminal of the amplifier 65 of the comparison circuit 64. The non-inverting input terminal of the amplifier 65 is connected to a power supply terminal. It is connected to a voltage dividing circuit 66 that forms a reference voltage based on a voltage supplied from VCC, and is connected to an output terminal of an amplifier 65 via a resistor 67.
The output terminal of the comparison circuit 64 is connected to the base of the transistor 69 of the output circuit 68, and the collector of the transistor 69 is connected to the output terminal 70 of the output circuit 68 and connected to the power supply terminal VCC via the resistor 71. And its emitter is grounded.

図17は、従来の磁気検出素子の構成を示す図であり、図18は、従来の磁気検出素子の動作を示す特性図である。
図17に示すように、ホイートストンブリッジは、GMR素子48(48aないし48dから構成される)を備える。
磁性回転体42が回転すると、図18に示すように、GMR素子48(48aないし48d)に供給される磁界が変化し、差動増幅回路58の出力端には図18に示すように、磁性回転体42の凹凸に対応した出力が得られる。
この差動増幅回路58の出力は、比較回路64に供給されて、その比較レベルである基準値と比較されて“0”または“1”の信号に変換され、この信号は更に出力回路68で波形整形され、この結果、その出力端子70には図18に示すようにその立ち上がり、立ち下がりの急峻な“0”または“1”の出力が得られる。
日本応用磁気学会誌Vol.15,No.51991,第813〜821頁の「人工格子の磁気抵抗効果」
FIG. 17 is a diagram showing a configuration of a conventional magnetic detecting element, and FIG. 18 is a characteristic diagram showing an operation of the conventional magnetic detecting element.
As shown in FIG. 17, the Wheatstone bridge includes a GMR element 48 (constituted from 48a to 48d).
When the magnetic rotator 42 rotates, the magnetic field supplied to the GMR elements 48 (48a to 48d) changes as shown in FIG. 18, and the output terminal of the differential amplifier circuit 58 has a magnetic field as shown in FIG. An output corresponding to the unevenness of the rotating body 42 is obtained.
The output of the differential amplifying circuit 58 is supplied to a comparing circuit 64, which compares the output with a reference value, which is the comparison level, to convert it to a signal of "0" or "1". The waveform is shaped. As a result, as shown in FIG. 18, the output terminal 70 has an output of "0" or "1" having a sharp rise and fall.
Journal of the Japan Society of Applied Magnetics Vol. 15, No. 51991, pages 813 to 821, “Magnetoresistance effect of artificial lattice”

しかしながら、上述の磁気検出素子に用いられるGMR素子は、GMR素子膜上に形成された保護膜上に写真製版技術によりレジストに素子パターンを転写し、イオンビームエッチング(IBE)を用いてエッチングを実施した後にレジスト除去して形成するが、基板に対するイオンビームの入射角を0度にてエッチングを実施しているので、レジストパターンの側壁に再付着した膜が縦方向の突起として残り、この突起がGMR素子の最終保護膜形成の障害となるという問題があった。   However, in the GMR element used for the above-described magnetic sensing element, an element pattern is transferred to a resist by photolithography on a protective film formed on the GMR element film, and etching is performed using ion beam etching (IBE). After the resist is removed, the resist is formed. However, since the etching is performed at an incident angle of the ion beam with respect to the substrate of 0 °, the film re-adhered to the side wall of the resist pattern remains as a vertical protrusion, and this protrusion is formed. There has been a problem that it becomes an obstacle to the formation of the final protective film of the GMR element.

この発明は、上述のような課題を解決するためになされたものであり、GMR素子の最終保護膜を安定して形成でき、磁気検出素子の信頼性を向上できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and has as its object to stably form a final protective film of a GMR element and improve the reliability of a magnetic sensing element. .

本発明の磁気検出素子は、巨大磁気抵抗素子となる抵抗パターンの側面がこの巨大磁気抵抗素子を保持するための基板の表面に対して20°以上でかつ80°以下となるテーパーを形成したことを特徴とする。また、巨大磁気抵抗素子となる抵抗パターンの側面がこの巨大磁気抵抗素子を保持するための基板の表面に対して40°以上でかつ65°以下となるテーパーを形成したことも特徴とする。   In the magnetic sensing element of the present invention, the side surface of the resistance pattern serving as the giant magnetoresistive element has a taper of 20 ° or more and 80 ° or less with respect to the surface of the substrate for holding the giant magnetoresistive element. It is characterized by. Further, it is also characterized in that the side surface of the resistance pattern serving as the giant magnetoresistive element has a taper of 40 ° or more and 65 ° or less with respect to the surface of the substrate for holding the giant magnetoresistive element.

本発明によれば、巨大磁気抵抗素子となる抵抗パターンの側面が基板表面に対して20°以上でかつ80°以下となるテーパーを形成したので、最終保護膜を安定して形成でき、磁気検出素子の信頼性を向上できる。また、抵抗パターンの側面が基板表面に対し40°以上でかつ65°以下のテーパーを形成したことを特徴とするので、最終保護膜をさらに安定して形成することができ、磁気検出素子の信頼性がさらに向上する。   According to the present invention, since the side surface of the resistance pattern serving as a giant magnetoresistive element has a taper of 20 ° or more and 80 ° or less with respect to the substrate surface, the final protective film can be formed stably, and The reliability of the device can be improved. Further, since the side surface of the resistance pattern is formed to have a taper of 40 ° or more and 65 ° or less with respect to the substrate surface, the final protective film can be formed more stably, and the reliability of the magnetic sensing element can be improved. The performance is further improved.

以下、この発明の実施の形態を図にもとづいて説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る磁気検出素子およびその装置を構成するGMR素子の磁気特性を示す図である。
図1に示すように、この発明の実施の形態1に係るGMR素子の磁気特性を示す磁気曲線は、磁界0の近傍に抵抗値の最大値(以下Rmaxという)を有し、磁界の増大とともに抵抗値は減少していき、充分大きな磁界(例えば2KOe以上)である飽和状態をとる。この飽和状態での抵抗値をRminと定義する。磁界を飽和磁界から戻して行くと磁界を増大させた場合とは異なる経路で磁界0まで抵抗値が上昇していく、いわゆるヒステリシスを有する。
一般に飽和磁界とは、飽和状態に達する最小磁界を意味するが、規程が曖昧であるので、本発明においては、飽和磁界を「Rminに1%抵抗値を上乗せした値(Rmin×1.01)と磁界を増大させた場合の磁気抵抗曲線との交点の磁界」と定義する。
図2及び図3に示すように、磁気検出素子を備える磁気検出装置は、外周に沿って少なくとも1つ以上の凹凸を有し、回転軸29の回転に同期して回転する円板状の磁性回転体30と、この磁性回転体30と所定の間隙をもって磁性回転体30の外周に対向するように配置された磁気検出素子28と、磁気検出素子28に備えられたGMR素子7に磁界を与える磁石31と、GMR素子7の出力を処理する集積回路45とを備える。磁石31の漏洩磁束の大きさと磁石31とGMR素子7との距離と磁性回転体30とGMR素子7の間隔によってGMR素子7で検知する磁界幅は様々に変化させることができる。それらを調整し、GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中にGMR素子7で検知する磁界幅が収まるようにする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing the magnetic characteristics of a GMR element constituting a magnetic sensing element and its device according to Embodiment 1 of the present invention.
As shown in FIG. 1, the magnetic curve showing the magnetic characteristics of the GMR element according to the first embodiment of the present invention has a maximum resistance value (hereinafter, referred to as Rmax) near magnetic field 0, and increases as the magnetic field increases. The resistance value decreases and takes a saturated state with a sufficiently large magnetic field (for example, 2 KOe or more). The resistance value in this saturated state is defined as Rmin. When the magnetic field is returned from the saturation magnetic field, the resistance value increases to the magnetic field 0 along a different path from that when the magnetic field is increased, that is, there is a so-called hysteresis.
Generally, the saturation magnetic field means a minimum magnetic field that reaches a saturated state. However, since the regulation is ambiguous, in the present invention, the saturation magnetic field is defined as a value obtained by adding 1% resistance to Rmin (Rmin × 1.01). And the magnetic field at the intersection of the magnetoresistive curve when the magnetic field is increased. "
As shown in FIGS. 2 and 3, the magnetic detection device provided with the magnetic detection element has at least one or more irregularities along the outer circumference, and has a disk-shaped magnetic structure that rotates in synchronization with the rotation of the rotating shaft 29. A magnetic field is applied to the rotator 30, the magnetic detecting element 28 arranged to face the outer periphery of the magnetic rotator 30 with a predetermined gap from the magnetic rotator 30, and the GMR element 7 provided in the magnetic detecting element 28. It comprises a magnet 31 and an integrated circuit 45 for processing the output of the GMR element 7. The width of the magnetic field detected by the GMR element 7 can be varied in accordance with the magnitude of the leakage magnetic flux of the magnet 31, the distance between the magnet 31 and the GMR element 7, and the distance between the magnetic rotator 30 and the GMR element 7. By adjusting them, the magnetic field width detected by the GMR element 7 falls within a range not less than the magnetic field at which the resistance value of the GMR element 7 becomes the maximum value and not more than the magnetic field obtained by multiplying the saturation magnetic field of the GMR element 7 by 0.8. To do.

図2では、磁性回転体30の外周に対して対面するシリコン基板等の基板1の前面に積層処理技術で設けられたGMR素子7及び集積回路45より成る磁気検出素子28が配置される。この磁気検出素子28の背面に磁石31が図外の取付け手段で配置されている。本発明の実施の形態1では、磁気検出素子28の基板1の前面に備えられたGMR素子7の感磁面における検出方向の磁界変化が、GMR素子7の抵抗値が最大値となる磁界以上で動作させる。さらに、好ましくは、GMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中で動作させるものであるので、これを満足するような配置であれば、どのような配置でもよい。例えば、図3では、磁性回転体30の凹凸面に対して磁気検出素子28に備えられたGMR素子7の面がほぼ垂直になるように配置され、GMR素子7の直上(もしくは直下であってもよい)に磁石31が配置されている。この場合も、図外の集積回路がGMR素子7の近傍に取り付けられている。   In FIG. 2, a magnetic detection element 28 including a GMR element 7 and an integrated circuit 45 provided by a lamination processing technique is disposed on the front surface of a substrate 1 such as a silicon substrate facing the outer periphery of the magnetic rotator 30. A magnet 31 is arranged on the back surface of the magnetic detecting element 28 by a mounting means (not shown). In the first embodiment of the present invention, the change in the magnetic field in the detection direction on the magneto-sensitive surface of the GMR element 7 provided on the front surface of the substrate 1 of the magnetic detection element 28 is equal to or greater than the magnetic field at which the resistance value of the GMR element 7 becomes the maximum value. To work with. Further, it is preferable that the device be operated in a range of not more than a magnetic field obtained by multiplying the saturation magnetic field of the GMR element 7 by 0.8. Therefore, any arrangement may be used as long as the arrangement satisfies this condition. . For example, in FIG. 3, the surface of the GMR element 7 provided in the magnetic sensing element 28 is arranged so as to be substantially perpendicular to the uneven surface of the magnetic rotator 30, and is directly above (or directly below) the GMR element 7. ) May be provided with a magnet 31. Also in this case, an integrated circuit (not shown) is attached near the GMR element 7.

GMR素子7が検知する磁界幅がRmaxの磁界より小さい磁界まで広がるとその磁界幅における磁気抵抗曲線のヒステリシスが大きくなり、磁性回転体30の凹凸のエッジを検出する場合の精度が低下したり、磁気検出素子28と対向する磁性回転体30の凹凸の間隔が一部狭くなっている場合のように磁界範囲がその部分だけ極端に小さくなるような場合には充分な出力信号が得られないという弊害をもたらす。
また、一般的にGMR膜の飽和磁界は、温度の上昇とともに小さくなってくるので、場合によっては、室温における飽和磁界に0.8をかけた磁界が、温度上昇とともに飽和磁界を超える場合も生じる。室温における飽和磁界近傍での抵抗変化率(%/Oe)は、もともと比較的小さな値しかなく、温度上昇とともに抵抗変化率(%/Oe)は、さらに小さくなってゆく。抵抗変化率(%/Oe)の大小が出力に係わってくるので、出力低下が大きくなる。このように、GMR素子7の飽和磁界に0.8をかけ合わせた磁界より大きな磁界までGMR素子7が検知する磁界幅が広がると高温動作時の出力低下が顕著となるという弊害をもたらす。
GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲でGMR素子7を動作させることにより上記のような弊害が解消でき、使用温度範囲の拡大と高感度化を進めることができる。
このように、実施の形態1では、磁気検出素子28に備えられたGMR素子7の感磁面における検出方向の磁界変化が、GMR素子7の抵抗値が最大値となる磁界以上でGMR素子7の飽和磁界に0.8をかけ合わせた磁界以下の範囲の中で動作させるものであるので、広い使用環境温度範囲を有し、かつ、検出感度の高い磁気検出素子を提供することができる。なお、この0.8をかけ合わせた磁界以下の下限については、次のとおりである。
「0.8をかけ合わせた磁界」をHssと仮に名づけると、高温動作時の出力低下という観点でみると
−Hss≦H≦+Hss
というのが有効範囲といえると思われる。
When the magnetic field width detected by the GMR element 7 expands to a magnetic field smaller than the magnetic field of Rmax, the hysteresis of the magnetoresistance curve in the magnetic field width increases, and the accuracy in detecting the uneven edge of the magnetic rotating body 30 decreases, If the magnetic field range is extremely small, such as when the interval between the concavities and convexities of the magnetic rotator 30 facing the magnetic detection element 28 is partially reduced, a sufficient output signal cannot be obtained. It causes evil.
In general, the saturation magnetic field of the GMR film becomes smaller as the temperature rises. In some cases, a magnetic field obtained by multiplying the saturation magnetic field at room temperature by 0.8 exceeds the saturation magnetic field as the temperature rises. . The resistance change rate (% / Oe) near the saturation magnetic field at room temperature originally has a relatively small value, and the resistance change rate (% / Oe) further decreases as the temperature rises. Since the magnitude of the resistance change rate (% / Oe) is related to the output, the output is greatly reduced. As described above, if the magnetic field width detected by the GMR element 7 is widened to a magnetic field larger than the magnetic field obtained by multiplying the saturation magnetic field of the GMR element 7 by 0.8, there is an adverse effect that the output drops significantly during high-temperature operation.
By operating the GMR element 7 in a range not less than the magnetic field at which the resistance value of the GMR element 7 becomes the maximum value and not more than the magnetic field obtained by multiplying the saturation magnetic field of the GMR element 7 by 0.8, the above-mentioned adverse effects can be solved. The working temperature range can be expanded and the sensitivity can be increased.
As described above, in the first embodiment, when the change in the magnetic field in the detection direction on the magneto-sensitive surface of the GMR element 7 provided in the magnetic detection element 28 is greater than or equal to the magnetic field at which the resistance value of the GMR element 7 becomes the maximum value, Since the operation is performed in a range of not more than the magnetic field obtained by multiplying the saturation magnetic field by 0.8, it is possible to provide a magnetic detection element having a wide use environment temperature range and high detection sensitivity. The lower limit of the magnetic field less than or equal to 0.8 multiplied by 0.8 is as follows.
Assuming that the “magnetic field multiplied by 0.8” is Hss, from the viewpoint of the output decrease during high-temperature operation, −Hss ≦ H ≦ + Hss
This seems to be the effective range.

実施の形態2.
図4は、この発明の実施の形態2に係るGMR素子の単位磁界あたりの抵抗変化率と積層回数の関係を示す図である。
図4には、上記GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層との繰り返しによりなる積層膜よりなり、かつ上記Cu層として、このCu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe(x)Co(1−x)[0≦x≦0.3]とCuをひとくくりとした積層回数との関係が示されてある。ここで、「ひとくくり」の語の定義については後述する。
図4に示す単位磁界あたりの抵抗変化率(以下では、磁界感度と称す)は、磁性層としてFe(x)Co(1−x)[0≦x≦0.3]を用いた場合には、積層回数15回から30回付近で大きな値を採り、磁気検出素子として150℃付近の高温においても充分な検出感度を有するためには、積層回数10回から40回の範囲で使用するのが良い。積層回数10回未満や40回を超えた場合には、どのサンプルでも充分な磁界感度は得られない。
このように、実施の形態2では、GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層との繰り返しによりなる積層膜よりなり、かつCu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層とをひとくくりとした積層回数を10回以上40回以下としたので、磁気検出素子28の感度向上を図ることができる。
Embodiment 2 FIG.
FIG. 4 is a diagram showing the relationship between the resistance change rate per unit magnetic field and the number of laminations of the GMR element according to the second embodiment of the present invention.
FIG. 4 shows that the GMR element 7 is composed of a laminated film formed by repeating a layer of Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] and a layer of Cu. The resistance change rate per unit magnetic field and Fe (x) Co (1-x) [0 ≦ x when using a Cu thickness where the magnetoresistance change with respect to the thickness of this Cu layer is near the second peak. .Ltoreq.0.3] and the number of laminations in which Cu is bundled together. Here, the definition of the word "hit" is described later.
The resistance change rate per unit magnetic field (hereinafter referred to as magnetic field sensitivity) shown in FIG. 4 is obtained when Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] is used as the magnetic layer. In order to take a large value around 15 to 30 times of lamination and to have sufficient detection sensitivity even at a high temperature of around 150 ° C. as a magnetic detecting element, it is necessary to use in the range of 10 to 40 times of lamination. good. If the number of laminations is less than 10 times or more than 40 times, sufficient magnetic field sensitivity cannot be obtained in any of the samples.
As described above, in the second embodiment, the GMR element 7 is formed of a laminated film formed by repeating the layer of Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] and the layer of Cu, and The resistance change rate per unit magnetic field and Fe (x) Co (1-x) [0 ≦ x ≦ 0 when a Cu thickness where the magnetoresistance change with respect to the thickness of one Cu layer is near the second peak is used. .3] and the Cu layer are grouped together in a number of 10 or more and 40 or less, so that the sensitivity of the magnetic sensing element 28 can be improved.

実施の形態3.
図5は、この発明の実施の形態3に係るGMR素子の単位磁界あたりの抵抗変化率とFeCo層の厚さとの関係を示す図である。
図5には、図4にて最も良好な特性を示したGMR素子がFe(x)Co(1−x)[x=0.1]の層とCuの層との繰り返しによりなる積層膜よりなり、かつ上記Cu層として、Cu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合の単位磁界あたりの抵抗変化率とFe0.1Co0.9の1層あたりの膜厚との関係が示されている。
図5に示す単位磁界あたりの抵抗変化率は、FeCo層の厚さが10Åの付近から急激に立ち上がり、12Åから20Å付近で充分大きな値を示し、30Åより大きくなると充分な磁界感度が得られなくなる。
従って、FeCo層1層あたりの膜厚が10Å以上30Å以下の範囲でGMR素子7を形成するのが良い。
このように、実施の形態3では、GMR素子7がFe(x)Co(1−x)[0≦x≦0.3]の層とCuの層の繰り返しによりなる積層膜よりなり、かつ上記Cu層として、Cu層1層の厚さに対する磁気抵抗変化が第2のピーク近傍となるCu厚を用いた場合のFe(x)Co(1−x)[0≦x≦0.3]の膜厚を10Å以上30Å以下としたので、磁気検出素子28の感度向上を図ることができる。
Embodiment 3 FIG.
FIG. 5 is a diagram showing a relationship between the resistance change rate per unit magnetic field and the thickness of the FeCo layer of the GMR element according to the third embodiment of the present invention.
FIG. 5 shows that the GMR element showing the best characteristics in FIG. 4 is composed of a laminated film formed by repeating a layer of Fe (x) Co (1-x) [x = 0.1] and a layer of Cu. And the rate of change in resistance per unit magnetic field and one layer of Fe0.1Co0.9 when the Cu layer has a Cu thickness where the magnetoresistance change with respect to the thickness of one Cu layer is near the second peak. The relationship with the film thickness per unit is shown.
The rate of change in resistance per unit magnetic field shown in FIG. 5 rapidly rises from the vicinity of 10 ° in the thickness of the FeCo layer, shows a sufficiently large value in the vicinity of 12 ° to 20 °, and cannot provide sufficient magnetic field sensitivity when it exceeds 30 °. .
Therefore, it is preferable to form the GMR element 7 in a range where the film thickness per FeCo layer is 10 ° or more and 30 ° or less.
As described above, in the third embodiment, the GMR element 7 is formed of a laminated film formed by repeating a layer of Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] and a layer of Cu. Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] in the case where a Cu thickness where the magnetoresistance change with respect to the thickness of one Cu layer is near the second peak as the Cu layer is used. Since the thickness is set to 10 ° or more and 30 ° or less, the sensitivity of the magnetic sensing element 28 can be improved.

実施の形態4.
図6ないし図7は、この発明の実施の形態4に係るGMR素子の膜構成を示す断面図である。
まず、図6に示すように、GMR素子膜5の形成過程において、例えば、Si基板などの基板1上に形成されたSi熱酸化膜等の下地層2の表面に、FeCoの層9aを形成してから、その上にCuの層10、Fe(x)Co(1−x)[0≦x≦0.3]の層9、Cuの層10、FeCoの層9を順次積層していく。FeCoの層9とCuの層10のペア層90を10から40回積層し、最上層が図6に示す如くFeCoの層9となるように形成する。FeCoの層9に比べて導電率の高い材料であるCuの層10を最上層とした場合には、GMR効果に寄与しない電子が表面付近を流れる確率が増え、結果として磁気抵抗変化率(MR比)の低下を招くため、最上層は図6に示す如くFeCoの層9である事が良い。
そして、図7に示すように、最上層のFeCoの層9のさらに上に続けて保護膜8としてSiNx膜を形成することによって、後の写真製版工程などでGMR素子膜5の酸化を防止でき、GMR素子7の特性を安定化させることができる。上記保護膜8としてのSiNx膜は最上層のFeCoの層9の形成後真空を破らずに続けて形成する。すなわち、Fe(x)Co(1−x)[0≦x≦0.3]の層9とCuの層10の繰り返しにより積層してなるGMR素子膜5(積層膜)を設け、このGMR素子膜5の最上層の上に保護膜8を形成して巨大磁気抵抗素子を製造するのであるが、上記最上層を真空中のスパッタリングや低温プラズマCVDや真空蒸着等の薄膜処理技術により形成した後、上記保護膜8も、真空を破ることなく、薄膜処理により形成する。このことにより、GMR素子膜5の自然酸化をも抑制することができ、安定化に対してさらに効果的に作用する。
上記保護膜8としては、SiNx膜の代わりに酸化Si膜や酸化Ta膜などの誘電体膜の他、Ti、V、Ta、Nb、Zrなどの金属膜やそれらを組み合せた金属膜やそれらの酸化膜や窒化膜を用いることができる。いずれもGMR素子膜5の特性を損なわないようにスパッタリングや低温プラズマCVDや真空蒸着によって形成することができる。
このように、この発明の実施の形態4においては、図7に示す如くGMR素子膜5の最上層をFeCo層の9としたので、GMR素子7の磁気特性を向上させることができ、GMR素子膜5形成後に保護膜8を形成したことによりGMR素子7の信頼性を向上させることができる。
ここで、前述の、「ひとくくり」の語の定義について説明する。図6や図7で示した積層構造をした膜において、図中、9がFeCoの層、10がCuの層であるが、基板1から順次、基板1/下地層2/最下部のFeCoの層9a/[Cuの層10/FeCoの層9]/[Cuの層10/FeCoの層9]/[Cuの層10/FeCoの層9]・・・/[Cuの層10/FeCoの層9]というように[Cuの層10/FeCoの層9]のペア層90の繰り返しで積層構造が出来上がっている。「ひとくくり」と言っているのは、この[Cuの層10/FeCoの層9]のペア層90のことである。最初のFeCo以外の、一組の積層構造のものと考えてよい。
この積層構造を簡略化して記述すると、最下部のFeCoの層9a/[Cuの層10/FeCoの層9]×n(ひとくくりの数がn個)となり、このときのnを積層回数として表記している。
この場合の最下部のFeCoの層9aは、必ず必要と言うものではないが、あった方が安定して製造ができるので、入れている。[Cuの層10/FeCoの層9]×nだけを表す呼び名としてCuの層10とFeCoの層9とのペア層90を「ひとくくり」と言っている。
Embodiment 4 FIG.
6 and 7 are sectional views showing a film configuration of a GMR element according to Embodiment 4 of the present invention.
First, as shown in FIG. 6, in the process of forming the GMR element film 5, an FeCo layer 9a is formed on the surface of an underlayer 2 such as a Si thermal oxide film formed on a substrate 1 such as a Si substrate. After that, a Cu layer 10, a Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] layer 9, a Cu layer 10, and a FeCo layer 9 are sequentially stacked thereon. . A pair layer 90 of the FeCo layer 9 and the Cu layer 10 is laminated 10 to 40 times, and is formed so that the uppermost layer becomes the FeCo layer 9 as shown in FIG. When the Cu layer 10 having a higher conductivity than the FeCo layer 9 is used as the uppermost layer, the probability that electrons not contributing to the GMR effect flow near the surface increases, and as a result, the magnetoresistance ratio (MR) increases. In order to reduce the ratio, the uppermost layer is preferably the FeCo layer 9 as shown in FIG.
Then, as shown in FIG. 7, by forming a SiNx film as a protective film 8 continuously above the uppermost FeCo layer 9, oxidation of the GMR element film 5 can be prevented in a later photolithography process or the like. , The characteristics of the GMR element 7 can be stabilized. The SiNx film as the protective film 8 is formed without breaking the vacuum after the formation of the uppermost FeCo layer 9. That is, a GMR element film 5 (laminated film) is formed by repeatedly stacking a layer 9 of Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] and a layer 10 of Cu. The protective film 8 is formed on the uppermost layer of the film 5 to manufacture a giant magnetoresistive element. After forming the uppermost layer by a thin film processing technique such as sputtering in a vacuum, low-temperature plasma CVD, or vacuum deposition, The protective film 8 is also formed by thin film processing without breaking vacuum. Thereby, the natural oxidation of the GMR element film 5 can also be suppressed, and it works more effectively for stabilization.
As the protective film 8, instead of the SiNx film, a dielectric film such as a Si oxide film or a Ta oxide film, a metal film such as Ti, V, Ta, Nb, or Zr, a metal film obtained by combining them, or a film thereof. An oxide film or a nitride film can be used. Any of them can be formed by sputtering, low-temperature plasma CVD, or vacuum deposition so as not to impair the characteristics of the GMR element film 5.
As described above, in the fourth embodiment of the present invention, since the uppermost layer of the GMR element film 5 is the FeCo layer 9 as shown in FIG. 7, the magnetic characteristics of the GMR element 7 can be improved, By forming the protective film 8 after the formation of the film 5, the reliability of the GMR element 7 can be improved.
Here, the definition of the above-mentioned word "hitsukuri" will be described. In the films having the laminated structure shown in FIGS. 6 and 7, in the figures, 9 is a layer of FeCo, and 10 is a layer of Cu. Layer 9a / [Cu layer 10 / FeCo layer 9] / [Cu layer 10 / FeCo layer 9] / [Cu layer 10 / FeCo layer 9] ... / [Cu layer 10 / FeCo layer As shown in [Layer 9], a layered structure is completed by repeating the pair layer 90 of [Cu layer 10 / FeCo layer 9]. The phrase "close" refers to the pair layer 90 of the [Cu layer 10 / FeCo layer 9]. It may be considered as a set of laminated structures other than the first FeCo.
If this laminated structure is described in a simplified manner, the lowermost FeCo layer 9a / [Cu layer 10 / FeCo layer 9] × n (the number of crossings is n), where n is the number of laminations Notation.
In this case, the lowermost FeCo layer 9a is not necessarily required, but is included because it can be more stably manufactured. The paired layer 90 of the Cu layer 10 and the FeCo layer 9 is referred to as "one piece" as a name representing only [Cu layer 10 / FeCo layer 9] × n.

実施の形態5.
図8(a),(b)は、この発明の実施の形態5に係るGMR素子7のパターン化を行った際の膜構成を示す断面図である。
GMR素子7は、ペア層90をn回積層して成るGMR素子膜5をパターン化することで形成されるが、このGMR素子膜5のパターン化に際しては、GMR素子膜5上に形成された保護膜8上に写真製版技術によりレジストに素子パターンを転写し、イオンビームエッチング(IBE)を用いてエッチングを行い、最後にレジスト除去をするという方法がとられている。
図8(a)は基板1に対するイオンビームの入射角を0度にてエッチングを実施した後にレジストパターンを除去したGMR素子7の断面図であるが、レジストパターンの側壁に再付着した膜11が縦方向の突起として残り、この突起がGMR素子膜5の側壁保護を主たる目的とした最終保護膜形成の障害となる。
これに対し、図8(b)は基板1に対してイオンビームに入射角度を持たせた場合のエッチングを実施した後にレジストパターンを除去したGMR素子7の断面図である。図8(a)で見られた再付着膜11の残りがなくなり、かつ側面にテーパーがつき、最終保護膜形成におけるカバーレッジを向上させる。このときのテーパー角12は20°以上80°以下で充分効果があるが、パターン幅の精度やパターン幅の縮小やパターン間の間隔の縮小などの点で40°以上がさらに好ましく、また、再付着膜11の残りが確率的にほとんど0になることを考慮した量産性を考えると65°以下がさらに好ましい。
このように、実施の形態5では、GMR素子7のパターンに20°以上80°以下、好ましくは、40°以上65°以下のテーパー角12を設けたので、GMR素子7の信頼性を向上させることができる。
なお、GMR素子7は基板1の上に積層処理技術で形成するとして説明したが、GMR素子7自体を別の基板上に製造しておいたものを、基板1の上に接着してもよい。
Embodiment 5 FIG.
FIGS. 8A and 8B are cross-sectional views showing a film configuration when the GMR element 7 according to the fifth embodiment of the present invention is patterned.
The GMR element 7 is formed by patterning the GMR element film 5 formed by stacking the pair layers 90 n times. When the GMR element film 5 is patterned, it is formed on the GMR element film 5. A method is employed in which an element pattern is transferred to a resist on the protective film 8 by a photolithography technique, etched using ion beam etching (IBE), and finally the resist is removed.
FIG. 8A is a cross-sectional view of the GMR element 7 in which the resist pattern has been removed after etching at an incident angle of the ion beam with respect to the substrate 1 of 0 °. The protrusion remains as a vertical protrusion, and this protrusion hinders formation of a final protective film mainly for protecting the side wall of the GMR element film 5.
On the other hand, FIG. 8B is a cross-sectional view of the GMR element 7 from which the resist pattern has been removed after the etching when the ion beam has an incident angle with respect to the substrate 1 and the etching has been performed. The residue of the redeposition film 11 seen in FIG. 8A is eliminated, and the side surface is tapered, thereby improving the coverage in forming the final protective film. At this time, the taper angle 12 of 20 ° or more and 80 ° or less has a sufficient effect, but is more preferably 40 ° or more in terms of accuracy of pattern width, reduction of pattern width, and reduction of interval between patterns. Considering mass productivity in consideration of the fact that the remainder of the adhesion film 11 becomes almost zero stochastically, the angle is more preferably 65 ° or less.
As described above, in the fifth embodiment, the pattern of the GMR element 7 is provided with the taper angle 12 of 20 ° or more and 80 ° or less, preferably 40 ° or more and 65 ° or less, so that the reliability of the GMR element 7 is improved. be able to.
Although the GMR element 7 has been described as being formed on the substrate 1 by the lamination processing technique, the GMR element 7 itself manufactured on another substrate may be bonded on the substrate 1. .

この発明の実施の形態1に係る磁気検出素子に用いる巨大磁気抵抗素子の磁気特性を示す図である。FIG. 3 is a diagram illustrating magnetic properties of a giant magnetoresistive element used for the magnetic detection element according to Embodiment 1 of the present invention. この発明の実施の形態1に係る磁気検出装置の構成を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration of a magnetic detection device according to Embodiment 1 of the present invention. この発明の実施の形態1に係る磁気検出装置の構成を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration of a magnetic detection device according to Embodiment 1 of the present invention. この発明の実施の形態2に係る磁気検出素子に用いる巨大磁気抵抗素子の単位磁界あたりの抵抗変化率と積層回数の関係を示す図である。FIG. 10 is a diagram showing a relationship between a resistance change rate per unit magnetic field and the number of laminations of a giant magnetoresistive element used for a magnetic detection element according to Embodiment 2 of the present invention. この発明の実施の形態3に係る磁気検出素子に用いる巨大磁気抵抗素子の単位磁界あたりの抵抗変化率とFeCoの層の厚さの関係を示す図である。FIG. 10 is a diagram showing a relationship between a resistance change rate per unit magnetic field and a thickness of a FeCo layer of a giant magnetoresistive element used in a magnetic detection element according to Embodiment 3 of the present invention. この発明の実施の形態4に係る磁気検出素子に用いる巨大磁気抵抗素子の膜構成を示す断面図である。FIG. 13 is a cross-sectional view illustrating a film configuration of a giant magnetoresistive element used for a magnetic sensing element according to Embodiment 4 of the present invention. この発明の実施の形態4に係る磁気検出素子に用いる巨大磁気抵抗素子の膜構成を示す断面図である。FIG. 13 is a cross-sectional view illustrating a film configuration of a giant magnetoresistive element used for a magnetic sensing element according to Embodiment 4 of the present invention. この発明の実施の形態5に係る磁気検出素子に用いる巨大磁気抵抗素子の側面部の断面図である。FIG. 14 is a cross-sectional view of a side surface portion of a giant magnetoresistive element used for a magnetic detection element according to Embodiment 5 of the present invention. 従来の磁気検出装置の構成を示す側面図である。It is a side view which shows the structure of the conventional magnetic detection device. 従来の磁気検出装置の構成を示す斜視図である。It is a perspective view showing the composition of the conventional magnetism detecting device. 従来のGMR素子の特性を示す図である。FIG. 9 is a diagram showing characteristics of a conventional GMR element. 従来のGMR素子を用いた磁気検出装置の構成を示す側面図である。It is a side view which shows the structure of the magnetic detection apparatus using the conventional GMR element. 従来のGMR素子を用いた磁気検出装置の構成を示す斜視図である。It is a perspective view showing the composition of the magnetic sensing device using the conventional GMR element. 従来のGMR素子を用いた磁気検出装置を示すブロック図である。FIG. 10 is a block diagram illustrating a magnetic detection device using a conventional GMR element. 従来のGMR素子を用いた磁気検出装置の詳細を示すブロック図である。It is a block diagram which shows the detail of the magnetic detection apparatus using the conventional GMR element. 従来のGMR素子を用いた磁気検出装置の回路構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a circuit configuration of a magnetic detection device using a conventional GMR element. 従来の磁気検出素子の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a conventional magnetic detection element. 従来の磁気検出素子の動作を示す特性図である。FIG. 11 is a characteristic diagram illustrating an operation of a conventional magnetic detection element.

符号の説明Explanation of reference numerals

1 基板、2 下地層、5 GMR素子膜、7 GMR素子(巨大磁気抵抗素子)、
8 窒化Si膜(保護膜)、9 Fe(x)Co(1−x)[0≦x≦0.3]の層、
10 Cuの層、11 再付着膜、12 テーパー角、28 磁気検出素子、
30 磁性回転体、31 磁石。
1 substrate, 2 underlayer, 5 GMR element film, 7 GMR element (giant magnetoresistive element),
8 Si nitride film (protective film), 9 Fe (x) Co (1-x) [0 ≦ x ≦ 0.3] layer,
10 Cu layer, 11 redeposited film, 12 taper angle, 28 magnetic sensing element,
30 magnetic rotating body, 31 magnet.

Claims (2)

巨大磁気抵抗素子となる抵抗パターンの側面がこの巨大磁気抵抗素子を保持するための基板の表面に対して20°以上でかつ80°以下となるテーパーを形成したことを特徴とする磁気検出素子。   A magnetic detecting element, wherein a side surface of a resistance pattern serving as a giant magnetoresistive element has a taper of not less than 20 ° and not more than 80 ° with respect to a surface of a substrate for holding the giant magnetoresistive element. 巨大磁気抵抗素子となる抵抗パターンの側面がこの巨大磁気抵抗素子を保持するための基板の表面に対して40°以上でかつ65°以下となるテーパーを形成したことを特徴とする磁気検出素子。   A magnetic detecting element, wherein a side surface of a resistance pattern serving as a giant magnetoresistive element has a taper of 40 ° or more and 65 ° or less with respect to a surface of a substrate for holding the giant magnetoresistive element.
JP2004133294A 2004-04-28 2004-04-28 Magnetic detection element Expired - Lifetime JP3967733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133294A JP3967733B2 (en) 2004-04-28 2004-04-28 Magnetic detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133294A JP3967733B2 (en) 2004-04-28 2004-04-28 Magnetic detection element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10592699A Division JP3562993B2 (en) 1999-04-13 1999-04-13 Magnetic detector

Publications (2)

Publication Number Publication Date
JP2004233373A true JP2004233373A (en) 2004-08-19
JP3967733B2 JP3967733B2 (en) 2007-08-29

Family

ID=32959982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133294A Expired - Lifetime JP3967733B2 (en) 2004-04-28 2004-04-28 Magnetic detection element

Country Status (1)

Country Link
JP (1) JP3967733B2 (en)

Also Published As

Publication number Publication date
JP3967733B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP5734657B2 (en) Self-pinned spin valve magnetoresistive film, magnetic sensor and rotation angle detector using the same
JP4780117B2 (en) Angle sensor, manufacturing method thereof, and angle detection device using the same
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
JP2002357489A (en) Stress sensor
JP2006269955A (en) Magnetic field detecting device
JP7022765B2 (en) Magnetic field application bias film and magnetic detection element and magnetic detection device using this
JP6842741B2 (en) Magnetic sensor
JP2006019383A (en) Magnetic field detecting element and forming method thereof
JP2008306112A (en) Magneto-resistance effect film, magnetic sensor, and rotation angle detecting device
JPWO2012090631A1 (en) Magnetic proportional current sensor
JP3562993B2 (en) Magnetic detector
JP2008084430A (en) Magnetic head and magnetic recording device
JP2002246671A (en) Method of manufacturing magnetic detection element
JP2005109243A (en) Magnetoresistance effect element and magnetic head
JP6775854B2 (en) Magnetic element
JP2000348309A (en) Spin valve type thin-film magnetic element, thin-film magnetic head and production of spin valve type thin- film magnetic element
JP2009064528A (en) Magnetoresistance effect head and manufacturing method thereof
JP2004233373A (en) Magnetic detecting element
JP2001052315A (en) Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element
JPH10208216A (en) Magnetoresistive head and method for initializing the head
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP2003282999A (en) Magnetic sensor
JP2000123328A (en) Magnetic sensor, magnetic head and magnetic encoder
JP2007256293A (en) Magnetic sensor
JP2005049262A (en) Magnetic sensor and magnetic sensor unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term