JP2004233287A - Calibration method of deflection measuring device - Google Patents

Calibration method of deflection measuring device Download PDF

Info

Publication number
JP2004233287A
JP2004233287A JP2003024724A JP2003024724A JP2004233287A JP 2004233287 A JP2004233287 A JP 2004233287A JP 2003024724 A JP2003024724 A JP 2003024724A JP 2003024724 A JP2003024724 A JP 2003024724A JP 2004233287 A JP2004233287 A JP 2004233287A
Authority
JP
Japan
Prior art keywords
rod
bending
amount
displacement
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024724A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yamashita
勝俊 山下
Keiichi Azuma
敬一 東
Toshio Sakamoto
俊夫 坂本
Takaya Ogawa
孝也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003024724A priority Critical patent/JP2004233287A/en
Publication of JP2004233287A publication Critical patent/JP2004233287A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration method of a deflection measuring device capable of calibration without using a calibration rod having high straightness. <P>SOLUTION: This measuring device has a constitution wherein at least three displacement measuring means are arranged at intervals in the conveyance direction of a rod member conveyed in the longitudinal direction, in the directions mutually crossing in a plane vertical to the conveyance direction. The rod member is allowed to pass the measuring device, and deflections at a plurality of points are measured in the longitudinal direction, and the standard position of displacement is corrected based on the plurality of deflection measured values. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、棒状体の曲がり量を測定する曲がり量測定装置を較正する方法に関する。
【0002】
【従来の技術】
従来、棒鋼などの棒状体の曲がり量を測定する方法として、特許文献1あるいは特許文献2に開示された方法が知られているが、特許文献1に開示された方法は、長手方向と直交する方向に移動する被測定棒材が所定位置に達したときの曲がり量を測定するため、検出器を設置した部分での曲がり量は測定できるものの、被測定棒材を長手方向に搬送しながら曲がり量を測定することができず、被測定棒材の長手方向の単位長さあたりの曲がりを、所定のピッチ(例えば100mmピッチ)で、被測定棒材の全長にわたって測定することができないなどの問題がある。一方、特許文献2に開示された方法は、片持状態で支持された管の先端部分の曲がり量を測定する方法であるため、管のように連続して同じ曲率で曲がりが発生する場合には問題ないが、例えば棒鋼等のように連続して同一曲率になるとは限らない場合には曲がり量を測定することができない。
【0003】
そこで、かかる問題を解決するために、案内ロールにより長手方向に案内されながら搬送される棒状体の搬送方向にほぼ等間隔で配置された少なくとも三つの変位量検出器により棒状体の搬送方向と垂直な平面内で互いに交差する二つの方向における棒状体の変位量をそれぞれ検出し、これらの変位量に基づいて棒状体の曲がり量を測定するようにした曲がり量測定装置が特許文献3に開示されている。
【0004】
このような曲がり量測定装置で棒状体の曲がり量を測定する場合、案内ロール間に棒状体の撓みが発生したり、あるいは案内ロールの摩耗によりゆがみが生じると、許容範囲を越える測定誤差が生じ、棒状体の曲がり量を正確に測定することが困難となる。そこで、従来においては、棒状体の曲がり量を測定する前に、被測定材の材質、径、長さに応じた曲がりのない真っ直ぐな較正棒を使用して曲がり量測定装置を較正するようにしている。
【0005】
【特許文献1】
特開昭51−132856号公報
【特許文献2】
特開平8−94348号公報
【特許文献3】
特開2000−161944号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述した較正方法では、曲がりのない真っ直ぐな較正棒を被測定材の材質、径、長さに応じて使用しなければならないため、較正棒の製作及び管理に多大のコストがかかるという問題があった。
本発明は上述した問題点に着目してなされたものであり、被測定材の材質,径,長さ毎に、曲がりのない真っ直ぐな較正棒を使用することなく曲がり量測定装置を較正することのできる曲がり量測定装置の較正方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明は、長手方向に搬送される棒状体の搬送方向に間隔をおいて配置された少なくとも三つの変位量検出手段により前記棒状体の搬送方向と垂直な平面内で互いに交差する二つの方向における前記棒状体の変位量をそれぞれ検出し、これらの変位量に基づいて前記棒状体の曲がり量を測定する曲がり量測定装置を較正する方法であって、棒状体を曲がり量測定装置に通過させつつ、該棒状体の長手方向にわたり複数点の曲がり量を測定し、これら複数の曲がり量測定値にもとづいて前記変位量の基準位置を補正して前記曲がり量測定装置を較正するようにしたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明方法が適用される曲がり量測定装置の概略構成を示す図である。同図に示すように、この曲がり量測定装置10は棒鋼等の棒状体aを長手方向(図中矢印Z方向)に案内しながら搬送する三つの案内ロール11,12,13を備えており、これら案内ロール11〜13の近傍には、棒状体aの長手方向と垂直な平面内で互いに直交する二つ方向(図中矢印X及び矢印Y方向)における棒状体aの変位量つまり基準点からのずれ量を検出する変位量検出器21,22,23が棒状体aの長手方向にほぼ等間隔で配置されている。
【0009】
変位量検出器21〜23は棒状体aのX方向位量xm(図2参照)を検出する第1の位置検出器21aと棒状体aのY方向位量ymを検出する第2の位置検出器21bとから構成されており、これらの位置検出器21a,21bから出力された信号は、棒状体aの曲がり量S1を演算する演算装置30に供給されるようになっている。なお、位置検出器21a,21bは、図3に示すように、棒状体aを挟んで相対向するレーザ投光器211とレーザ受光器212とから構成されている。
【0010】
演算装置30は、図4に示すフローチャートに従って棒状体aの曲がり量S1を算出するように構成されている。すなわち、案内ロール11〜13により棒状体aが長手方向に搬送されると、所定時間間隔で演算装置30は変位量検出器21〜23の位置検出器21a,21bから出力された位置信号を取り込む(ステップS21)。そして、位置検出器21aで検出された棒状体aのX方向位置xmと測定に先立って設定されたX方向基準位置x0(図2参照)とに基づいて棒状体aのX方向変位量X1,X2,X3を算出するとともに、位置検出器21bで検出された棒状体aのY方向位置ymと測定に先立って設定されたY方向基準位置y0(図2参照)とに基づいて棒状体aのY方向変位量Y1,Y2,Y3を算出する(ステップS22)。
【0011】
このようにして棒状体aのX方向変位量X1,X2,X3及びY方向変位量Y1,Y2,Y3を算出すると、演算装置30は棒状体aのX方向曲がり量dx及びY方向曲がり量dyを下式(1)及び(2)から求める(ステップS23及びS24)。そして、ステップS23及びS24で求めた棒状体aのX方向曲がり量dx及びY方向曲がり量dyを基に棒状体aの曲がり量S1を下式(3)から算出する(ステップS25)。
【0012】
dx=((X1+X3)/2)−X2 (1)
dy=((Y1+Y3)/2)−Y2 (2)
S1=√dx2+dy2 (3)
このとき、前記X方向基準位置およびY方向基準位置を設定するには、真直度が高く実質曲がりのない棒状体を校正棒として前記変位量検出器の位置に設置し、この状態でX方向曲がり量dxおよびY方向曲がり基dyを測定し、測定されたX方向曲がり量dxおよびY方向曲がり量dyが零となるように、X方向基準位置x0およびY方向基準位置y0を設定すればよいのであるが、この方法によれば、案内ロール11〜13の摩耗等による校正棒のゆがみは、棒状体の材質、径、長さによっても変化するため、実際に測定する棒状体の材質、径、長さ毎に、曲がりのない校正棒を準備して基準点を再設定する必要があるが、真直度が高い校正棒の製作、管理は事実上困難であり、基準点が設定精度には限界がある。
【0013】
本実施形態では、校正棒の真直度が上記のような校正方法による場合程には必要でなく、さらに、真直度が高い校正棒を用いた従来法よりも、基準点の設定精度を向上させるために、以下に説明する方法で基準点の設定を行う。図5は本実施形態の校正方法を説明するフローチャートである。
【0014】
先ず、校正に使用する棒状体(ある程度の真直度は必要であるが、上記校正方法で用いる場合程の真直度は必要ない)を、変位量検出器に通過させる(ステップS32)。そして、棒状体を移動させつつ、所定時間間隔でX方向曲がり量dxおよびY方向曲がり量dyを測定することを繰り返す。(ステップS33〜ステップS37)具体的には、第1回目の測定として、3つの変位量検出器により変位量X1、X2、X3、Y1、Y2、Y3を測定し(ステップ33〜35)、次にこれら変位量検出値から、上記(1)式および(2)式により、曲がり量dx、dyを算出して(ステップS36)、これを第1回目の曲がり量dxn(n=1)、dyn(n=1)として記録する(ステップS37)。そして、棒状体が未だ変位量検出器を通過中である場合には、ステップS34に戻り、ステップS35〜S37にしたがつて、第2回目の測定を行い、曲がり量dxn(n=2)、dyn(n=2)を記録する。
棒状体が変位量検出器を通過し終わるまでdxn、dynの測定が繰り返され、複数の曲がり量測定値dxn(n=1、2、3 ・・・)、dyn(n=1、2、3・・・)が記録される。棒状体が変位量検出器を通過し終わると、複数の曲がり量の測定、記録が終了させ(ステップS38)、ステップS39に進む。ステップS39では
dxn’=dxn−x0
dyn’=dyn−y0
として、
Σ|dxn’(n=1,2,3・・・)|
Σ|dyn’(n=1,2,3・・・)|
がそれぞれ最小になるx0、y0を算出する。そして、ステップS39で、算出したx0、y0の値を、それぞれX方向基準位置、Y方向基準位置として設定する(ステップS40)。具体的には変位量測定値X2、Y2 について、それぞれx0、y0だけ減じる補正を行うようにすればよい。
【0015】
以上の基準位置の決定方法に従えば、棒状体を変位量検出器に通過させつつ、複数点の曲がり量測定値の平均値が零となるようにとして設定できるので、校正に使用する棒状体に部分的に曲がりが発生しているような場合でも、曲がった点の測定値があったとしても、最終的に求められる基準位置は、他の曲がりのない点の測定値と均一化され、そのため、校正棒の真直度の管理が緩和されるという効果を有する。さらに、校正棒を用いなくても、被測定棒状体の曲がり量を全長にわたって測定した後、得られた複数の曲がり量測定値dx、dyの平均値を求め、この平均値をそれぞれ基溝点x0、y0として、この基準位置を用いて全測定値を補正するようにしてもよい。
【0016】
図6は、棒状体(鋼種:S40C、外径 27.1mm×長さ 6000mm)について、変位量検出器を通過させつつ棒状体の長手方向の複数点について、X方向曲がり量とY方向曲がり量と測定した結果をプロットした図である。(a)は従来法に従い、基準位置を設定した場合を、(b)は本発明法に従い基準位置を設定した場合を示す。すなわち(a)の場合は、従来用いられている真直度の高い校正棒を変位量検出器位置に停止した状態で設置し、このときに測定された曲がり量が零(図中のdx=0、dy=0の点)となるように基準位置を設定している。一方、(b)では、棒状体長手方向にわたって複数点について、X方向曲がり量dxとY方向曲がり量dyと測定し、上記図5に示したフローに従い、複数点のdx、dy測定値から基準位置を設定した場合である。(a)と(b)とを比較すると、dx、dyの原点に対する測定点の分布に、ずれが生じていることがわかる。図7は、以上のようにしてそれぞれ基準点を決定した場合において、最大曲がり量が0.52mm/Mの棒状体(鋼種:S40C、外径 27.1mm×長さ 6000mm)を使用して、この棒状体の長手方向複数点について、X方向曲がり量dxとY方向曲がり量dyと測定した結果を示すものであり(a)は、図6(a)と同様に従来法により基準位置の設定を行った場合を、(b)は、図6(a)で説明した方法で基準位置の設定を行つた場合を示す。測定は、それぞれ、従来法、本発明法いずれについても、同一の棒状体を3回ずつ変位量検出器に通過させている。図中には1回目の測定結果を■、2回目の測定結果を○、3回目の測定結果を▽でそれぞれプロットした。同図に示すように、従来法に従って基準点を設定した場合には、1回目〜3回目のそれぞれの測定結果において、曲がり量の最大値は、1回目:0.63mm、2回目:0.63mm、3回目:0.42mmであり、ばらつきが大きかった。これに対し、本発明に従った場合には、曲がり量の最大値が、1回目:0.55mm、2回目:0.55mm、3回目:0.48mmであり、ばらつきが小さくなっていることがわかる。
【0017】
図8は棒状体の曲がりをダイヤルゲージで測定した結果を示す図で、図9は本発明方法で曲がり量測定装置10を較正した後に棒状体の曲がりを測定した結果を示す図である。これらの図から明らかように、本発明方法で曲がり量測定装置10を較正することにより棒状体の曲がりを全長にわたって精度よく測定できることがわかる。
【0018】
図10は、本発明方法で曲がり量測定装置10を較正した後、最大曲がり量が0.55mm/Mの棒状体を曲がり量測定装置10で測定した結果を示す図である。同図に示すように、本発明方法で曲がり量測定装置10を較正することにより棒状体の曲がりを全長にわたって精度よく測定できることがわかる。
【0019】
【発明の効果】
以上説明したように、本発明によれば、棒状体を曲がり量測定装置に通過させつつ、複数点の曲がり量を測定し、これら複数の曲がり量測定値にもとづいて、変位量の基準位置を補正するようにしたので、較正棒に多少の曲がりがあったとしても精度よく曲がり量測定装置を較正することができる。
【図面の簡単な説明】
【図1】棒状体の曲がり量を測定する装置の概略構成を示す図である。
【図2】図1に示す変位量検出器の出力から棒状体のX方向変位量とY方向変位量を算出する方法を説明するための説明図である。
【図3】図1に示す位置検出器の構成を示す図である。
【図4】図1に示す演算装置で棒状体の曲がり量を求める方法を説明するためのフローチャートである。
【図5】本発明の一実施形態に係る較正方法を説明するためのフローチャートである。
【図6】棒状体のX方向変位量とY方向変位量を測定した結果を示す図で、(a)は曲がり量測定装置を従来の較正方法により較正した場合の棒状体のX方向変位量とY方向変位量を測定した結果を示す図、(b)は曲がり量測定装置を本発明の較正方法により較正した場合の棒状体のX方向変位量とY方向変位量を測定した結果を示す図である。
【図7】最大曲がり量が0.52mm/mの棒状体を使用して棒状体のX方向変位量とY方向変位量を測定した結果を示す図で、(a)は曲がり量測定装置を従来の較正方法により較正した場合の棒状体のX方向変位量とY方向変位量を測定した結果を示す図で、(b)は曲がり量測定装置を本発明の較正方法により較正した場合の棒状体のX方向変位量とY方向変位量を測定した結果を示す図である。
【図8】棒状体の曲がり量をダイヤルゲージで測定した結果を示す図である。
【図9】本発明方法で曲がり量測定装置を較正した後に棒状体の曲がり量を曲がり量測定装置で測定した結果を示す図である。
【図10】本発明方法で曲がり量測定装置を較正した後、最大曲がり量が0.55mm/Mの棒状体を曲がり量測定装置で測定した結果を示す図である。
【符号の説明】
10 曲がり量測定装置
11,12,13 案内ロール
21,22,23 変位量検出器
21a,21b 位置検出器
30 演算装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for calibrating a bending amount measuring device for measuring a bending amount of a rod.
[0002]
[Prior art]
Conventionally, a method disclosed in Patent Document 1 or Patent Document 2 is known as a method for measuring the amount of bending of a rod-shaped body such as a steel bar, but the method disclosed in Patent Document 1 is orthogonal to the longitudinal direction. In order to measure the amount of bending when the bar to be measured that moves in the direction reaches a predetermined position, the amount of bending can be measured at the part where the detector is installed, but it bends while transporting the bar to be measured in the longitudinal direction. The problem is that the amount cannot be measured and the bending per unit length in the longitudinal direction of the measured bar cannot be measured at a predetermined pitch (for example, 100 mm pitch) over the entire length of the measured bar. There is. On the other hand, the method disclosed in Patent Literature 2 is a method of measuring the amount of bending of a tip portion of a tube supported in a cantilever state, and therefore, when bending occurs continuously at the same curvature like a tube. Although there is no problem, the amount of bending cannot be measured in the case where the curvature is not always the same, such as a steel bar.
[0003]
Therefore, in order to solve such a problem, at least three displacement amount detectors arranged at substantially equal intervals in the transport direction of the rod conveyed while being guided in the longitudinal direction by the guide roll are perpendicular to the transport direction of the rod. Patent Document 3 discloses a bending amount measuring device that detects the amount of displacement of a rod in two directions crossing each other in a simple plane and measures the amount of bending of the rod based on these amounts of displacement. ing.
[0004]
When measuring the amount of bending of the rod with such a bending measuring device, if the rod is bent between the guide rolls or is deformed due to wear of the guide roll, a measurement error exceeding an allowable range occurs. However, it is difficult to accurately measure the amount of bending of the rod. Therefore, conventionally, before measuring the amount of bending of the rod-shaped body, the bending amount measuring device is calibrated using a straight calibration rod having no bending according to the material, diameter, and length of the material to be measured. ing.
[0005]
[Patent Document 1]
JP-A-51-132856 [Patent Document 2]
JP-A-8-94348 [Patent Document 3]
JP 2000-161944 A
[Problems to be solved by the invention]
However, in the above-mentioned calibration method, since a straight calibration rod without bending must be used according to the material, diameter, and length of the material to be measured, there is a problem that a large cost is required for manufacturing and managing the calibration rod. was there.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to calibrate a bending amount measuring device without using a straight calibration rod without bending for each material, diameter and length of a material to be measured. It is an object of the present invention to provide a method for calibrating a bending amount measuring device capable of performing the following.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that at least three displacement amount detecting means arranged at intervals in the conveying direction of the bar conveyed in the longitudinal direction and the direction of conveyance of the bar are conveyed. A method of calibrating a bending amount measuring device that detects the amount of displacement of the rod in two directions intersecting each other in a vertical plane and measures the amount of bending of the rod based on the amount of displacement. While passing the rod-like body through the bending amount measuring device, measuring the bending amount of a plurality of points over the longitudinal direction of the rod-like body, correcting the reference position of the displacement amount based on the plurality of bending amount measurement values, The bending amount measuring device is calibrated.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a bending amount measuring device to which the method of the present invention is applied. As shown in FIG. 1, the bending amount measuring device 10 includes three guide rolls 11, 12, and 13 that transport a rod-shaped body a such as a steel bar while guiding the rod-shaped body a in the longitudinal direction (the direction of arrow Z in the figure). In the vicinity of these guide rolls 11 to 13, the displacement of the rod-shaped body a in two directions (arrows X and Y directions in the drawing) orthogonal to each other in a plane perpendicular to the longitudinal direction of the rod-shaped body a, that is, from the reference point. Displacement detectors 21, 22, and 23 for detecting the amount of displacement are arranged at substantially equal intervals in the longitudinal direction of the rod-shaped body a.
[0009]
The displacement detectors 21 to 23 are a first position detector 21a for detecting a position xm in the X direction of the rod a (see FIG. 2) and a second position detection for detecting a position ym in the Y direction of the rod a. The signals output from the position detectors 21a and 21b are supplied to an arithmetic unit 30 that calculates the amount of bending S1 of the rod-shaped body a. As shown in FIG. 3, the position detectors 21a and 21b are composed of a laser projector 211 and a laser receiver 212 which face each other with the rod-shaped member a interposed therebetween.
[0010]
The arithmetic unit 30 is configured to calculate the bending amount S1 of the rod-shaped body a according to the flowchart shown in FIG. That is, when the rod-shaped body a is transported in the longitudinal direction by the guide rolls 11 to 13, the arithmetic unit 30 takes in the position signals output from the position detectors 21a and 21b of the displacement detectors 21 to 23 at predetermined time intervals. (Step S21). Then, based on the X-direction position xm of the bar-shaped object a detected by the position detector 21a and the X-direction reference position x0 (see FIG. 2) set prior to the measurement, the X-direction displacement amount X1, X2 and X3 are calculated, and based on the Y direction position ym of the bar a detected by the position detector 21b and the Y direction reference position y0 (see FIG. 2) set prior to the measurement, The Y-direction displacement amounts Y1, Y2, and Y3 are calculated (step S22).
[0011]
When the X-direction displacement amounts X1, X2, X3 and the Y-direction displacement amounts Y1, Y2, Y3 of the rod a are calculated in this way, the arithmetic unit 30 calculates the X-direction bending dx and the Y-direction bending dy of the rod a. Is obtained from the following equations (1) and (2) (steps S23 and S24). Then, the bending amount S1 of the rod-shaped body a is calculated from the following equation (3) based on the X-direction bending amount dx and the Y-direction bending amount dy of the rod-shaped body a obtained in steps S23 and S24 (step S25).
[0012]
dx = ((X1 + X3) / 2) -X2 (1)
dy = ((Y1 + Y3) / 2) -Y2 (2)
S1 = √dx2 + dy2 (3)
At this time, in order to set the X-direction reference position and the Y-direction reference position, a rod having high straightness and substantially no bending is set as a calibration rod at the position of the displacement detector, and in this state, the X-direction bending is performed. The X-direction reference position x0 and the Y-direction reference position y0 may be set so that the amount dx and the Y-direction bending base dy are measured, and the measured X-direction bending amount dx and Y-direction bending amount dy become zero. However, according to this method, the distortion of the calibration rod due to abrasion of the guide rolls 11 to 13 also changes depending on the material, diameter, and length of the rod, so that the material, diameter, It is necessary to prepare a calibration rod with no bending for each length and reset the reference point.However, it is practically difficult to manufacture and manage a calibration rod with high straightness, and the reference point is limited in setting accuracy. There is.
[0013]
In the present embodiment, the straightness of the calibration rod is not required as much as in the case of the above-described calibration method, and further, the accuracy of setting the reference point is improved as compared with the conventional method using a calibration rod having a high straightness. For this purpose, a reference point is set by the method described below. FIG. 5 is a flowchart illustrating the calibration method according to the present embodiment.
[0014]
First, a rod-like body used for calibration (a certain degree of straightness is required, but not as straight as that used in the above-described calibration method) is passed through a displacement detector (step S32). Then, the measurement of the X-direction bending amount dx and the Y-direction bending amount dy is repeated at predetermined time intervals while moving the rod-shaped body. (Steps S33 to S37) Specifically, as the first measurement, the displacement amounts X1, X2, X3, Y1, Y2, and Y3 are measured by the three displacement amount detectors (steps 33 to 35). From these displacement amount detection values, the bending amounts dx and dy are calculated by the above equations (1) and (2) (step S36), and are calculated as the first bending amounts dxn (n = 1) and dyn. (N = 1) is recorded (step S37). If the rod is still passing through the displacement detector, the process returns to step S34, and the second measurement is performed according to steps S35 to S37, and the bending amount dxn (n = 2), Record dyn (n = 2).
The measurement of dxn and dyn is repeated until the rod-shaped object has passed the displacement detector, and a plurality of measured bending amounts dxn (n = 1, 2, 3,...) And dyn (n = 1, 2, 3) ...) are recorded. When the rod has passed through the displacement detector, measurement and recording of a plurality of bends are completed (step S38), and the process proceeds to step S39. In step S39, dxn '= dxn-x0
dyn '= dyn-y0
As
Σ | dxn '(n = 1, 2, 3,...) |
Σ | dyn '(n = 1, 2, 3 ...) |
Are calculated as x0 and y0, respectively. Then, in step S39, the calculated values x0 and y0 are set as an X-direction reference position and a Y-direction reference position, respectively (step S40). More specifically, the displacement measurement values X2 and Y2 may be corrected to be reduced by x0 and y0, respectively.
[0015]
According to the above-described method of determining the reference position, the rod-shaped body used for calibration can be set so that the average value of the measured values of the bending amounts at a plurality of points becomes zero while passing the rod-shaped body through the displacement detector. Even if there is a partial bend, even if there is a measured value at a bent point, the finally obtained reference position is uniformed with the measured values at other non-bent points, Therefore, there is an effect that management of the straightness of the calibration rod is eased. Further, without using the calibration rod, after measuring the amount of bending of the rod-shaped body to be measured over the entire length, an average value of the obtained plurality of measured bending amounts dx and dy is obtained, and the average value is used as a base groove point. As x0 and y0, all the measured values may be corrected using this reference position.
[0016]
FIG. 6 shows the amount of bending in the X direction and the amount of bending in the Y direction at a plurality of points in the longitudinal direction of the rod-shaped body (steel type: S40C, outer diameter 27.1 mm × length 6000 mm) while passing through a displacement detector. It is the figure which plotted the result of having measured. (A) shows the case where the reference position is set according to the conventional method, and (b) shows the case where the reference position is set according to the method of the present invention. That is, in the case of (a), a conventionally used calibration rod having a high straightness is installed in a state where it is stopped at the position of the displacement detector, and the bending amount measured at this time is zero (dx = 0 in the figure). , Dy = 0). On the other hand, in (b), the bending amount dx in the X direction and the bending amount dy in the Y direction are measured at a plurality of points in the longitudinal direction of the rod-like body, and a reference is obtained from the measured values of dx and dy at the plurality of points according to the flow shown in FIG. This is the case where the position is set. A comparison between (a) and (b) shows that the distribution of the measurement points with respect to the origin of dx and dy is shifted. FIG. 7 shows the case where the reference point is determined as described above, using a rod-shaped body (steel type: S40C, outer diameter 27.1 mm × length 6000 mm) having a maximum bending amount of 0.52 mm / M. FIG. 6A shows the measurement results of the bending amount dx in the X direction and the bending amount dy in the Y direction at a plurality of points in the longitudinal direction of the rod-like body. FIG. 6A shows the setting of the reference position by the conventional method as in FIG. (B) shows the case where the reference position is set by the method described with reference to FIG. 6 (a). In the measurement, the same rod was passed through the displacement detector three times in each of the conventional method and the method of the present invention. In the figure, the first measurement result is plotted as ■, the second measurement result as ○, and the third measurement result as ▽. As shown in the figure, when the reference point is set according to the conventional method, the maximum value of the amount of bending is 0.63 mm for the first measurement and 0.2 mm for the second measurement in each of the first to third measurement results. 63 mm, third time: 0.42 mm, and the variation was large. On the other hand, according to the present invention, the maximum value of the bending amount is 0.55 mm for the first time, 0.55 mm for the second time, and 0.48 mm for the third time, and the variation is small. I understand.
[0017]
FIG. 8 is a diagram showing the result of measuring the bending of the rod using a dial gauge, and FIG. 9 is a diagram showing the result of measuring the bending of the rod after calibrating the bending measuring device 10 by the method of the present invention. As is apparent from these figures, the calibration of the bending amount measuring device 10 by the method of the present invention makes it possible to accurately measure the bending of the rod-like body over the entire length.
[0018]
FIG. 10 is a diagram showing a result of measuring a rod having a maximum bending amount of 0.55 mm / M with the bending amount measuring device 10 after the bending amount measuring device 10 is calibrated by the method of the present invention. As shown in the figure, it is understood that the bending of the rod-shaped body can be accurately measured over the entire length by calibrating the bending amount measuring device 10 by the method of the present invention.
[0019]
【The invention's effect】
As described above, according to the present invention, while passing the rod-shaped object through the bending amount measuring device, the bending amount at a plurality of points is measured, and the reference position of the displacement amount is determined based on the plurality of bending amount measurement values. Since the correction is performed, the bending amount measuring device can be accurately calibrated even if the calibration rod has some bending.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an apparatus for measuring a bending amount of a rod-shaped body.
FIG. 2 is an explanatory diagram for explaining a method of calculating an X-direction displacement amount and a Y-direction displacement amount of a rod-shaped body from an output of a displacement amount detector shown in FIG.
FIG. 3 is a diagram showing a configuration of a position detector shown in FIG.
FIG. 4 is a flowchart for explaining a method for calculating the amount of bending of a rod-like body using the arithmetic device shown in FIG. 1;
FIG. 5 is a flowchart illustrating a calibration method according to an embodiment of the present invention.
6A and 6B are diagrams showing the results of measuring the X-direction displacement amount and the Y-direction displacement amount of the rod-like body, and FIG. 6A shows the X-direction displacement amount of the rod-like body when the bending amount measuring device is calibrated by a conventional calibration method. And (b) shows the results of measuring the X-direction displacement and the Y-direction displacement of the rod when the bending amount measuring device is calibrated by the calibration method of the present invention. FIG.
FIG. 7 is a diagram showing the results of measuring the X-direction displacement and the Y-direction displacement of a rod using a rod having a maximum bending amount of 0.52 mm / m. FIG. 7A shows a bending amount measuring apparatus. FIG. 7B is a diagram showing the results of measuring the X-direction displacement amount and the Y-direction displacement amount of the rod-like body when calibrated by the conventional calibration method. FIG. 6B shows the rod-like body when the bending amount measuring device is calibrated by the calibration method of the present invention. It is a figure showing the result of having measured the X direction displacement amount and the Y direction displacement amount of the body.
FIG. 8 is a diagram showing the result of measuring the amount of bending of a rod-like body using a dial gauge.
FIG. 9 is a view showing the result of measuring the amount of bending of a rod-like body by using the bending amount measuring device after calibrating the bending amount measuring device by the method of the present invention.
FIG. 10 is a view showing a result of measuring a rod having a maximum bending amount of 0.55 mm / M with the bending amount measuring device after calibrating the bending amount measuring device by the method of the present invention.
[Explanation of symbols]
10 Bending amount measuring devices 11, 12, 13 Guide rolls 21, 22, 23 Displacement amount detectors 21a, 21b Position detector 30 Arithmetic unit

Claims (1)

長手方向に搬送される棒状体の搬送方向に間隔をおいて配置された少なくとも三つの変位量検出手段により前記棒状体の搬送方向と垂直な平面内で互いに交差する二つの方向における前記棒状体の変位量をそれぞれ検出し、これらの変位量に基づいて前記棒状体の曲がり量を測定する曲がり量測定装置を較正する方法であって、棒状体を曲がり量測定装置に通過させつつ、該棒状体の長手方向にわたり複数点の曲がり量を測定し、これら複数の曲がり量測定値にもとづいて前記変位量の基準位置を補正して前記曲がり量測定装置を較正するようにしたことを特徴とする曲がり量測定装置の較正方法。The rod-like body in two directions crossing each other in a plane perpendicular to the transport direction of the rod-like body by at least three displacement amount detecting means arranged at intervals in the transport direction of the rod-like body transported in the longitudinal direction. A method of calibrating a bending amount measuring device that detects the amount of displacement and measures the amount of bending of the rod based on these amounts of displacement, wherein the rod is passed through the bending amount measuring device, The amount of bending at a plurality of points is measured in the longitudinal direction, and the reference position of the displacement is corrected based on the plurality of measured values of the amount of bending to calibrate the bending amount measuring device. How to calibrate a quantity measuring device.
JP2003024724A 2003-01-31 2003-01-31 Calibration method of deflection measuring device Pending JP2004233287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024724A JP2004233287A (en) 2003-01-31 2003-01-31 Calibration method of deflection measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024724A JP2004233287A (en) 2003-01-31 2003-01-31 Calibration method of deflection measuring device

Publications (1)

Publication Number Publication Date
JP2004233287A true JP2004233287A (en) 2004-08-19

Family

ID=32953183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024724A Pending JP2004233287A (en) 2003-01-31 2003-01-31 Calibration method of deflection measuring device

Country Status (1)

Country Link
JP (1) JP2004233287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970305A (en) * 2021-06-16 2022-01-25 广西大学 Method for measuring axial displacement of compression bar through deflection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970305A (en) * 2021-06-16 2022-01-25 广西大学 Method for measuring axial displacement of compression bar through deflection

Similar Documents

Publication Publication Date Title
JP4323212B2 (en) Calibration method for surface texture measuring instrument, calibration program for surface texture measuring instrument, recording medium recording this calibration program, and surface texture measuring instrument
KR20120083478A (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
CN105698686A (en) Device and method of detecting crack width measuring instrument indication value errors
Kunzmann et al. Results of the international comparison of ball plate measurements in CIRP and WECC
JP2004233287A (en) Calibration method of deflection measuring device
US10982956B2 (en) Method for measuring amount of applied coating
JP7190153B2 (en) Bend detection system for long materials
JP5353495B2 (en) Method and apparatus for manufacturing welded H-section steel
CN100498200C (en) Caliper for measuring distance between roller and object and distance measuring method
JP2000161944A (en) Instrument for measuring curvature amount of bar-like object
JPS5985930A (en) Profile detecting device
JP2011242254A (en) Steel plate thickness measuring instrument and calibration method thereof
JP6015577B2 (en) Measuring device for bending amount of rod-shaped body
JPH08141643A (en) Large tube shape correcting method and device for measuring dimension and shape of large tube
JP2004037253A (en) Method for measuring thickness of metal strip
JP4559907B2 (en) Measuring device for bending of rod-shaped body
JP2991932B2 (en) Steel plate flatness measurement method
JP2021056087A (en) Shape measuring device
JP2558044B2 (en) METHOD FOR DETERMINING OBJECT INSERTION POSITION IN HOLLOW BODY AND INTERNAL SHAPE MEASURING DEVICE FOR HOLLOW BODY USED IN THE METHOD
JPH06241701A (en) Excess weld metal height gauge and method for measuring excess weld metal height using it
JP2680528B2 (en) Plane camber straightening method
JP2833480B2 (en) Steel strip tension measuring device
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
JP3350272B2 (en) Material testing equipment
JP2023045542A (en) External diameter measurement device, calibration device, and external diameter measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113