JP2004232607A - Pump driving device and control method for pump driving device - Google Patents

Pump driving device and control method for pump driving device Download PDF

Info

Publication number
JP2004232607A
JP2004232607A JP2003024826A JP2003024826A JP2004232607A JP 2004232607 A JP2004232607 A JP 2004232607A JP 2003024826 A JP2003024826 A JP 2003024826A JP 2003024826 A JP2003024826 A JP 2003024826A JP 2004232607 A JP2004232607 A JP 2004232607A
Authority
JP
Japan
Prior art keywords
pump
motor
flow rate
rotation speed
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024826A
Other languages
Japanese (ja)
Inventor
Masaharu Tajima
正晴 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2003024826A priority Critical patent/JP2004232607A/en
Publication of JP2004232607A publication Critical patent/JP2004232607A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump driving device, having high versatility and realizing energy-saving and reduction of size by restraining extra pressure loss of a pump due to a flow change caused by configuration of a piping system and opening and closing of a valve. <P>SOLUTION: This pump driving motor 6 includes a motor control circuit 7 adapted to control the pump pressure according to a flow rate on the basis of correlation (ω=ωO + coefficient A × motor current I) (wherein ωO is a motor basic rotational frequency) that when a flow rate of a fluid flowing through a pump chamber 2 changes, the rotational frequency of a rotary blade 3 body linearly changes depending on increase/decrease of a motor current. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する利用分野】
本発明は、例えば、床暖房、給湯器などに用いられるポンプ駆動装置に係り、詳しくはポンプ室に配置され流体を送り出す回転体を備えたポンプと該回転体の回転軸とロータの回転軸とが連繋してポンプを駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置及びポンプ駆動装置の制御方法に関する。
【0002】
【従来の技術】
床暖房、給湯器などの電気製品には、流体を所定の圧力で送り出す遠心ポンプが用いられる。この遠心ポンプには、ポンプ室に流体を送り出す回転羽根を備えたポンプと該回転羽根を回転駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置が開発されている。
【0003】
図3にポンプ駆動装置の一例を示す。ポンプ51は、流体が通過する配管52の一部に設けられたポンプ室53に回転羽根54が回転可能に設けられている。回転羽根54の回転軸とロータの回転軸とは連繋しており、ポンプ51にポンプ駆動モータ(ブラシレスモータ)55が一体に組み付けられている。ポンプ駆動モータ55は、安価なことからAC(交流)モータが用いられていたが、長時間運転を行うため省エネルギー化や効率の改善が図れ、更には制御性の点で優れているDC(直流)モータが用いられるようになってきた。
【0004】
直流モータを駆動制御するためには流体の圧力を測定するための圧力センサ56や流量を測定するための流量センサ57などの高価な部品を用いる必要があった。指令電圧演算回路58は、予め設定された圧力指令値(電圧換算値)P0と圧力センサ56の検出値(電圧換算値)P1との差が零になるように演算し(P0−P1=0)、演算により得られた指令電圧をモータ制御回路59へ出力する。モータ制御回路59は、指令電圧値と基準電圧値との比較からモータ制御電圧を制御してポンプ駆動モータ55の回転数を可変制御するようになっている。配管52に設けられたバルブ部60は、流体の流量を増減したり、配管系を切換えたりするため開閉が行われる。
【0005】
上記ポンプ駆動装置においては、比較的高価な圧力センサ56や流量センサ57などの部品を用いるため製造コストが嵩み、また配管系の圧力損失は流量の二乗に比例して増大することから、ポンプに流れる定格流量を確保すべく駆動制御するDCポンプの駆動制御方法が提案されている(特許文献1参照)。この駆動制御方法は、定格電圧V印加時の揚程H、定格流量Q、電流Iとの関係を示すポンプ特性データを記憶する記憶手段と、モータの巻線電流を検出する電流検出手段と、電流検出値と印加電圧の値から流量を演算する流量演算回路とを備え、該流量演算回路で演算された流量が定格流量Qになるように印加電圧を調整するものである。
【0006】
【特許文献1】
特開2001−342989号公報
【0007】
【発明が解決しようとする課題】
特許文献1に開示されたDCポンプの駆動制御方法は、あくまでポンプを流れる流体の定格流量を確保するための駆動制御方法であり、配管系に設けられるバルブ操作が考慮されていない制御方法である。従って、配管系のバルブ開度が全て一定であれば成り立つ制御方法であるが、1箇所でもバルブ開度が異なれば、ポンプに流れる定格流量が異なり、予めバルブ開度が異なるポンプについて定格電圧Vの揚程H及び流量Qとの関係を記憶手段に記憶しておく必要がある。よって、制御手段の調整に手間取り、バルブ開閉操作に制約がかかることから、配管系としては限られた用途でしか使い難い面がある。
【0008】
本発明の目的は、上記従来技術の課題を解決し、配管系の構成やバルブ開閉などに起因する流量変化によるポンプの余分な圧力損失を抑え、省エネルギー化、小型化を実現し、汎用性の高いポンプ駆動装置及びポンプ駆動装置の制御方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は次の構成を備える。
ポンプ室に配置され流体を送り出す回転体を備えたポンプと該回転体の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置において、ポンプ駆動モータは、ポンプ室を流れる流体の流量が変化すると回転体の回転数は、モータ電流の増減に応じて線形的に変化するという相関関係(数1)に基づいて、ポンプ圧力を流量に応じて制御可能な制御回路を備えていることを特徴とする。
また、モータ制御回路は、モータ電流値検出により電圧換算値で(数1)にしたがって算出された演算電圧値と、回転数検出部から検出されたロータの実回転数に対応する電圧換算値との差を零とするよう演算により得られたモータ指令電圧を出力する指令電圧演算回路を備えていることを特徴とする。具体的には、演算電圧値は、モータ基本回転数ωに対応する基準電圧値に電流検出部で検出されたモータ電流に係数Aを乗算して換算された電圧換算値を加算した演算電圧値が用いられることを特徴とする。
【0010】
また、ポンプ室に配置され流体を送り出す回転体を備えたポンプと該回転体の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置の制御方法において、ポンプ室を流れる流体の流量が変化すると回転体の回転数は、モータ電流の増減に応じて線形的に変化するという(数1)に示す相関関係に基づいてポンプ圧力を流量に応じて制御することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施の形態について添付図面と共に詳述する。
本実施例のポンプ駆動装置は、一例としてポンプ室に回転羽根が設けられた遠心式ポンプを用いたポンプ駆動装置について説明するものとする。
図1はポンプ駆動装置の構成を示す回路図、図2は流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【0012】
先ず、図1を参照してポンプ駆動装置の概略構成について説明する。
ポンプ1は、ポンプ室2に流体を送り出す回転体の一例として回転羽根3を備えている。ポンプ1は、流体を圧送りする配管4の一部に接続されている。配管4は、ポンプ1に対して直列に接続される場合、並列に接続される場合の何れも含まれる。配管4の一部にはバルブ部5が設けられており、バルブ部5を開閉することにより、配管4を流れる流体の流量を調整したり、配管系を選択することができるようになっている。
【0013】
ポンプ1にはポンプ駆動モータ(直流ブラシレスモータ)6が一体に組み付けられている。ポンプ駆動モータ6は、ロータの回転軸が回転羽根3の回転軸と連繋してポンプ1を駆動するようになっている。本実施例ではポンプ駆動モータ6として三相のブラシレスモータ(例えばアウターロータ型モータ)が用いられる。ポンプ駆動モータ6は、ポンプ室2を流れる流体の流量が増えると回転羽根3の回転数は、ステータコアのコイル6aを流れるモータ電流の増減に応じて線形的に増減するという相関関係(数1)に基づいて、ポンプ圧力を流量に対して制御するモータ制御回路(インバータ)7を備えている。
(数1)
ω=ω+係数A×モータ電流I(ω;モータ基本回転数)
ここで、モータ基本回転数ωとは、配管4を含む流体が循環する配管系に設けられたバルブ部5をすべて閉じた状態におけるモータの回転数をいう。このモータ回転数と流量との相関関係は、直流モータの電動機軸トルクと電動機電流(モータ電流)は比例関係にあり、ポンプの搬送流量が増減すると軸トルクが増減することから、ポンプ1の搬送流量の増減はモータ電流より推測できる関係を前提として成り立つ。
【0014】
また、モータ制御回路7は指令電圧演算回路8を備えており、該指令電圧演算回路8より出力された指令電圧に基づいてポンプ駆動モータ6の駆動動作を制御するようになっている。指令電圧演算回路8は、モータ電流値検出により電圧換算値で(数1)にしたがって算出された演算電圧値(モータ基本回転数ωに対応する基準電圧値にモータ電流値に係数Aを乗算した電圧換算値を加算した値)と、ロータの実回転数ωの検出に基づく実回転電圧(電圧換算値)との差が零となるように演算する。この演算により得られた指令電圧をモータ制御回路7へ出力するようになっている。
【0015】
指令電圧演算回路8には、モータ基本回転数ω(指令電圧値)、電流検出部である電流検出回路9により検出されたモータ制御回路7を流れるモータ電流値が入力され、前述した演算電圧値が演算される。また、回転数検出部である回転数検出回路10により検出された実回転数ωに対応する実回転電圧(電圧換算値)が入力されて、演算電圧値との差が零となるように演算が行われて、演算により得られた指令電圧が出力される。
尚、ポンプ駆動モータ6の回転数は、ロータマグネットの磁極位置を対応する磁極検出素子(ホール素子)などの回転数検出器11で検出される。この回転数検出器11で検出された三相分の検出信号を合成器(FG)12で合成し、合成信号を回転数検出回路10でF−V変換して実回転数ωに対応する実回転電圧値に換算される。
【0016】
モータ制御回路7は、指令電圧演算回路8より入力された指令電圧と、三角波発信回路13で生成した電圧とをコンパレータ14により比較してPWM制御信号(パルス幅変調信号)を生成し、モータ印加電圧を制御する。三相分配回路15は回転数検出器11で検出されたポンプ駆動モータ6のロータ回転位置に応じて、トランジスタQ1〜Q6をON/OFFし、ステータコイル6aに交番磁界を発生させるように通電電流を切り換え制御する。過電流検出器16はポンプ駆動モータ6に流れる過電流を検出すると、トランジスタQ1〜Q6をOFFして保護するようになっている。
【0017】
ここで、図2を参照して、ポンプ1を流れる流体の圧力と流量及び消費電力と流量との関係を示す。図2において曲線Aは何らポンプ1の回転動作を制御しない場合の圧力P−流量Q特性を示す。流量Qが増えるにしたがってポンプ内の圧力損失が大きくなったり、モータ負荷が増えてモータ回転数が低下するなどの様々な要因でポンプ圧力が減少する。
【0018】
これに対し直線Bは、本発明に係る流量Qを検出しつつモータ回転数ωを可変制御した場合の圧力P−流量Q特性を示す。前述した(数1)によるモータ回転数制御により、例えばバルブ部5が開けられて流量Qが増えるにしたがって、ポンプ駆動モータ6のモータ電流が増えるのでモータ回転数ωが上昇し、ポンプ出力(圧力P)が上昇する。また、バルブ部5が閉じられると流量Qが減り、ポンプ駆動モータ6のモータ電流が減るのでモータ回転数ωが減少するのでポンプ出力(圧力P)が低下する。よって、モータ基本回転数ω(零を含む)及び係数Aの値(制御ループが発散しないこと)をポンプ駆動モータ6の定格出力を維持できるように適性に選択することにより、流量Qの増減に応じてポンプ出力(圧力P)を増減制御できる。これにより、例えばバルブ部5の微調整でポンプ1を流れる流体の流量変化に追従してモータ回転数を変化させることができるので、ポンプで発生する圧力を流体の流量に応じて変化させることができ、バルブ部5を必要以上に絞ることなく流量が変化する。このため、バルブ部5で発生する圧力損失が少なく、モータの消費電流も抑えられるので省エネルギー化を実現できる。
【0019】
図2で破線Cはポンプ1の回転動作を制御しない場合の入力電力W−流量Q特性を示す。ポンプの回転動作を何ら制御しない場合には、流量Qが少なくなればなるほど、無駄な電力消費が発生する。これに対し破線Dは本発明に係る流量Qを検出しつつモータ回転数ωを可変制御した場合の入力電力W−流量Q特性を示す。本発明に係る駆動制御を行えば、例えばバルブ部5をわずかに閉めるよう微調整するだけでポンプ1を流れる流体の流量Qの減少に追従してモータ回転数を減じるように制御できるので、バルブ部5に発生する圧力損失を減らすことができ、無駄な電力消費を抑えることができる。特に基本回転数ωの値を低く設定するほど、破線Dの傾きが大きくなるため、省エネルギー効果は大きくなる。
また、モータ制御回路7に圧力センサや流量センサなどの高価な部品は不要であり、ポンプ駆動モータ6のモータ制御回路7内部だけでポンプ1の流量に追従した圧力制御が行え、ポンプ駆動装置全体をコンパクトに設計できる。また、ポンプ1に接続する配管4の接続形態は直列/並列を問わず、バルブの開閉状態やバルブ部の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【0020】
以上、本発明の好適な実施例について述べてきたが、上述した実施例に限定されるのものではなく、例えば、遠心式ポンプに用いられる直流モータはアウターロータ型でもインナーロータ型のいずれでも良い等、法の精神を逸脱しない範囲で多くの改変を施し得るのはもちろんである。
【0021】
【発明の効果】
本発明に係るポンプ駆動装置及びポンプ駆動装置の制御方法によれば、ポンプ駆動モータは、ポンプ室を流れる流体の流量が変化すると、回転体の回転数はモータ電流の増減に応じて線形的に変化するという相関関係(数1)に基づいて、ポンプ圧力を流量変化に追従して制御できるので、ポンプの流量変化に伴う余分な圧力損失が少なく、モータの消費電流も抑えられるので省エネルギー化を実現できる。
また、モータ制御回路は、モータ電流値検出により電圧換算値で(数1)にしたがって算出された演算電圧値と、回転数検出部からの検出されたロータの実回転数に対応する電圧換算値との差を零となるように指令電圧演算回路で演算を行い、演算により得られた指令電圧を出力してモータ印加電圧を制御するので、モータ制御回路内部だけでポンプの流量に追従した圧力制御が行え、圧力センサや流量センサなどの高価な部品は不要となる。従って、ポンプ駆動装置全体をコンパクトで安価に設計できる。また、ポンプに接続する配管の接続形態は直列/並列を問わず、バルブの開閉状態やバルブ部の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【図面の簡単な説明】
【図1】ポンプ駆動装置の構成を示す回路図である。
【図2】流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【図3】従来のポンプ駆動装置の構成を示す回路図である。
【符号の説明】
1 ポンプ
2 ポンプ室
3 回転羽根
4 配管
5 バルブ部
6 ポンプ駆動モータ
7 モータ制御回路
8 指令電圧演算回路
9 電流検出回路
10 回転数検出回路
11 回転数検出器
12 合成器
13 三角波発信回路
14 コンパレータ
15 三相分配回路
16 過電流検出器
[0001]
FIELD OF THE INVENTION
The present invention relates to, for example, a pump driving device used for floor heating, a water heater, and the like, and more specifically, a pump including a rotating body that is arranged in a pump chamber and sends out a fluid, and a rotating shaft of the rotating body and a rotating shaft of the rotor. The present invention relates to a pump driving device in which a pump driving motor that drives a pump in combination with a pump driving device is mounted, and a control method of the pump driving device.
[0002]
[Prior art]
2. Description of the Related Art A centrifugal pump that sends out a fluid at a predetermined pressure is used for electric appliances such as a floor heater and a water heater. As this centrifugal pump, a pump drive device has been developed in which a pump having rotating blades for sending a fluid to a pump chamber and a pump driving motor for rotating the rotating blades are assembled.
[0003]
FIG. 3 shows an example of the pump driving device. In the pump 51, a rotary blade 54 is rotatably provided in a pump chamber 53 provided in a part of a pipe 52 through which a fluid passes. The rotating shaft of the rotating blades 54 and the rotating shaft of the rotor are connected to each other, and a pump driving motor (brushless motor) 55 is integrated with the pump 51. As the pump drive motor 55, an AC (alternating current) motor is used because it is inexpensive. However, since the operation is performed for a long time, energy saving and improvement in efficiency can be achieved. ) Motors have been used.
[0004]
In order to drive and control the DC motor, expensive components such as a pressure sensor 56 for measuring the pressure of the fluid and a flow sensor 57 for measuring the flow rate had to be used. The command voltage calculation circuit 58 calculates so that the difference between a preset pressure command value (voltage conversion value) P0 and a detection value (voltage conversion value) P1 of the pressure sensor 56 becomes zero (P0−P1 = 0). ), And outputs the command voltage obtained by the calculation to the motor control circuit 59. The motor control circuit 59 controls the motor control voltage based on a comparison between the command voltage value and the reference voltage value to variably control the rotation speed of the pump drive motor 55. The valve section 60 provided in the pipe 52 is opened and closed to increase and decrease the flow rate of the fluid and to switch the pipe system.
[0005]
In the above-described pump driving device, since relatively expensive components such as the pressure sensor 56 and the flow rate sensor 57 are used, the manufacturing cost increases, and the pressure loss of the piping system increases in proportion to the square of the flow rate. There has been proposed a drive control method for a DC pump that performs drive control in order to ensure a rated flow rate flowing through the pump (see Patent Document 1). This drive control method includes a storage means for storing pump characteristic data indicating a relationship between a head H 0 when a rated voltage V 0 is applied, a rated flow Q 0 , and a current I 0, and a current detection for detecting a winding current of a motor. means and includes a flow rate operation circuit for calculating the flow rate from the value of the current detection value and the applied voltage, the flow rate calculated in the flow rate calculation circuit and adjusts the applied voltage such that the rated flow Q 0.
[0006]
[Patent Document 1]
JP-A-2001-342989
[Problems to be solved by the invention]
The drive control method of the DC pump disclosed in Patent Document 1 is a drive control method for ensuring the rated flow rate of the fluid flowing through the pump, and does not consider the operation of a valve provided in a piping system. . Therefore, this control method is valid if the valve openings of the piping system are all constant. However, if the valve openings are different even at one point, the rated flow rate flowing through the pump is different, and the rated voltage V the relationship between the lift H 0 and the flow rate Q 0 of 0 it is necessary to store in the storage means. Therefore, it takes time to adjust the control means and restricts the valve opening / closing operation, so that it is difficult to use the piping system only for a limited use.
[0008]
An object of the present invention is to solve the above-mentioned problems of the prior art, suppress an excessive pressure loss of a pump due to a flow rate change caused by a piping system configuration and valve opening / closing, realize energy saving, miniaturization, and achieve versatility. An object of the present invention is to provide a high pump driving device and a method of controlling the pump driving device.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration.
In a pump driving apparatus, a pump provided with a rotating body that is disposed in a pump chamber and sends out a fluid, and a DC motor that drives the pump by connecting the rotating shaft of the rotating body and the rotating shaft of the rotor to each other, is provided. Is to control the pump pressure according to the flow rate based on the correlation (Equation 1) that when the flow rate of the fluid flowing through the pump chamber changes, the rotation speed of the rotating body changes linearly according to the increase and decrease of the motor current. It is characterized by having a possible control circuit.
Further, the motor control circuit calculates the calculated voltage value calculated from the motor current value by the voltage conversion value according to (Equation 1), and the voltage conversion value corresponding to the actual rotation speed of the rotor detected by the rotation speed detection unit. And a command voltage calculation circuit for outputting a motor command voltage obtained by calculation so as to make the difference between the two zero. Specifically, the calculated voltage value is a calculated voltage obtained by multiplying the motor current detected by the current detection unit by a coefficient A and converting the reference voltage value corresponding to the motor basic rotation speed ω 0 to a converted voltage value. Value is used.
[0010]
Also, a control method of a pump driving device is provided, in which a pump provided with a rotating body arranged in a pump chamber for sending out a fluid and a DC motor for driving the pump by connecting the rotating shaft of the rotating body and the rotating shaft of the rotor are connected. In the above, when the flow rate of the fluid flowing through the pump chamber changes, the rotation speed of the rotating body linearly changes in accordance with the increase or decrease of the motor current. It is characterized by controlling.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The pump driving device according to the present embodiment will be described as a pump driving device using a centrifugal pump in which rotary vanes are provided in a pump chamber as an example.
FIG. 1 is a circuit diagram showing a configuration of a pump driving device, and FIG. 2 is a graph showing a relationship between a pressure and a flow rate of a fluid and a power consumption and a flow rate.
[0012]
First, a schematic configuration of the pump driving device will be described with reference to FIG.
The pump 1 includes a rotating blade 3 as an example of a rotating body that sends a fluid to the pump chamber 2. The pump 1 is connected to a part of a pipe 4 for feeding a fluid under pressure. The pipe 4 may be connected to the pump 1 in series or may be connected in parallel. A valve part 5 is provided in a part of the pipe 4. By opening and closing the valve part 5, the flow rate of the fluid flowing through the pipe 4 can be adjusted and a pipe system can be selected. .
[0013]
A pump driving motor (DC brushless motor) 6 is integrally assembled with the pump 1. The pump drive motor 6 drives the pump 1 by connecting the rotation axis of the rotor to the rotation axis of the rotary blade 3. In this embodiment, a three-phase brushless motor (for example, an outer rotor type motor) is used as the pump drive motor 6. The pump drive motor 6 has a correlation (Equation 1) that when the flow rate of the fluid flowing through the pump chamber 2 increases, the rotation speed of the rotary blade 3 linearly increases and decreases according to the increase and decrease of the motor current flowing through the coil 6a of the stator core. , A motor control circuit (inverter) 7 for controlling the pump pressure with respect to the flow rate.
(Equation 1)
ω = ω 0 + coefficient A × motor current I (ω 0 ; motor basic rotation speed)
Here, the motor basic rotation speed ω 0 refers to the rotation speed of the motor in a state where all the valve units 5 provided in the piping system through which the fluid including the piping 4 circulates are closed. The correlation between the motor rotation speed and the flow rate is such that the motor shaft torque of the DC motor is proportional to the motor current (motor current), and the shaft torque increases and decreases as the pumping flow rate increases and decreases. The increase / decrease of the flow rate is established on the premise that a relationship can be estimated from the motor current.
[0014]
The motor control circuit 7 includes a command voltage calculation circuit 8, and controls the drive operation of the pump drive motor 6 based on the command voltage output from the command voltage calculation circuit 8. The command voltage calculation circuit 8 calculates a calculated voltage value (a reference voltage value corresponding to the motor basic rotation speed ω 0 ) calculated by the motor current value detection according to (Equation 1) by the motor current value by a coefficient A. and then a value obtained by adding the voltage converted value) is calculated as the difference between the actual rotation voltage (voltage converted value) based on the detection of the actual rotational speed omega 1 of the rotor is zero. The command voltage obtained by this calculation is output to the motor control circuit 7.
[0015]
The command voltage calculation circuit 8 receives the motor basic rotation speed ω 0 (command voltage value) and the motor current value flowing through the motor control circuit 7 detected by the current detection circuit 9 serving as a current detection unit. The value is calculated. Moreover, the actual rotation voltage corresponding to the actual revolution speed omega 1 detected by the rotation speed detection circuit 10 is a rotation speed detector (voltage conversion value) is input, such that the difference between the operation voltage value is zero The operation is performed, and the command voltage obtained by the operation is output.
The rotation speed of the pump drive motor 6 is detected by a rotation speed detector 11 such as a magnetic pole detecting element (Hall element) corresponding to the magnetic pole position of the rotor magnet. The detection signal of the three phases detected by the rotation speed detector 11 synthesized in synthesizer (FG) 12, the corresponding combined signal at a rotational speed detection circuit 10 converts F-V to the actual revolution speed omega 1 It is converted to the actual rotation voltage value.
[0016]
The motor control circuit 7 compares the command voltage input from the command voltage calculation circuit 8 with the voltage generated by the triangular wave transmission circuit 13 by using the comparator 14 to generate a PWM control signal (pulse width modulation signal). Control the voltage. The three-phase distribution circuit 15 turns on / off the transistors Q1 to Q6 according to the rotor rotational position of the pump drive motor 6 detected by the rotational speed detector 11, and supplies current so as to generate an alternating magnetic field in the stator coil 6a. Is switched. When the overcurrent detector 16 detects an overcurrent flowing through the pump drive motor 6, the overcurrent detector 16 turns off the transistors Q1 to Q6 to protect the transistors.
[0017]
Here, the relationship between the pressure and the flow rate of the fluid flowing through the pump 1 and the power consumption and the flow rate will be described with reference to FIG. In FIG. 2, a curve A indicates a pressure P-flow rate Q characteristic when no rotation operation of the pump 1 is controlled. As the flow rate Q increases, the pump pressure decreases due to various factors such as an increase in pressure loss in the pump and an increase in the motor load and a decrease in the motor rotation speed.
[0018]
On the other hand, a straight line B indicates the pressure P-flow rate Q characteristic when the motor speed ω is variably controlled while detecting the flow rate Q according to the present invention. According to the motor rotation speed control by (Equation 1) described above, for example, as the valve unit 5 is opened and the flow rate Q increases, the motor current of the pump drive motor 6 increases, so that the motor rotation speed ω increases and the pump output (pressure P) increases. Further, when the valve section 5 is closed, the flow rate Q decreases, and the motor current of the pump drive motor 6 decreases, so that the motor speed ω decreases, so that the pump output (pressure P) decreases. Therefore, by appropriately selecting the motor basic rotational speed ω 0 (including zero) and the value of the coefficient A (the control loop does not diverge) so as to maintain the rated output of the pump drive motor 6, the flow rate Q can be increased or decreased. , The pump output (pressure P) can be controlled to increase or decrease. Thereby, for example, the motor rotation speed can be changed by following a change in the flow rate of the fluid flowing through the pump 1 by fine adjustment of the valve section 5, so that the pressure generated by the pump can be changed according to the flow rate of the fluid. As a result, the flow rate changes without reducing the valve section 5 more than necessary. For this reason, the pressure loss generated in the valve section 5 is small and the current consumption of the motor is suppressed, so that energy saving can be realized.
[0019]
In FIG. 2, a broken line C indicates the input power W-flow rate Q characteristic when the rotation operation of the pump 1 is not controlled. If the rotation of the pump is not controlled at all, the smaller the flow rate Q, the more wasteful power consumption occurs. On the other hand, the broken line D indicates the input power W-flow rate Q characteristic when the motor speed ω is variably controlled while detecting the flow rate Q according to the present invention. If the drive control according to the present invention is performed, for example, the motor speed can be controlled to decrease following the decrease in the flow rate Q of the fluid flowing through the pump 1 only by finely adjusting the valve unit 5 to slightly close it. The pressure loss generated in the section 5 can be reduced, and unnecessary power consumption can be suppressed. In particular, as the value of the basic rotation speed ω 0 is set lower, the slope of the broken line D increases, and the energy saving effect increases.
Further, expensive parts such as a pressure sensor and a flow rate sensor are not required for the motor control circuit 7, and pressure control can be performed in accordance with the flow rate of the pump 1 only inside the motor control circuit 7 of the pump drive motor 6, so that the entire pump drive device can be controlled. Can be designed compactly. Further, the connection form of the pipes 4 connected to the pump 1 may be in series or in parallel, regardless of the open / closed state of the valve and the number of valve parts, so that a highly versatile pump drive device can be provided.
[0020]
The preferred embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment. For example, a DC motor used for a centrifugal pump may be either an outer rotor type or an inner rotor type. Of course, many modifications can be made without departing from the spirit of the law.
[0021]
【The invention's effect】
According to the pump driving device and the control method of the pump driving device according to the present invention, when the flow rate of the fluid flowing through the pump chamber changes, the pump driving motor linearly changes the rotation speed of the rotating body according to the increase and decrease of the motor current. Since the pump pressure can be controlled by following the flow rate change based on the correlation (Equation 1) that changes, the extra pressure loss due to the pump flow rate change is small, and the current consumption of the motor can be suppressed, so that energy saving can be achieved. realizable.
Further, the motor control circuit is configured to calculate the voltage value calculated by the motor current value detection in accordance with the equation (1) and the voltage conversion value corresponding to the actual rotation speed of the rotor detected from the rotation speed detection unit. Is calculated by the command voltage calculation circuit so that the difference between the two becomes zero, and the command voltage obtained by the calculation is output to control the motor applied voltage. Control can be performed, and expensive components such as a pressure sensor and a flow sensor are not required. Therefore, the entire pump driving device can be designed compactly and inexpensively. In addition, the connection form of the pipes connected to the pump may be in series or in parallel, and the open / closed state of the valves and the number of valve parts may be independent. Therefore, a highly versatile pump drive device can be provided.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a pump driving device.
FIG. 2 is a graph showing the relationship between fluid pressure and flow rate and power consumption and flow rate.
FIG. 3 is a circuit diagram showing a configuration of a conventional pump driving device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pump 2 Pump room 3 Rotating blade 4 Piping 5 Valve part 6 Pump drive motor 7 Motor control circuit 8 Command voltage calculation circuit 9 Current detection circuit 10 Revolution detection circuit 11 Revolution detector 12 Combiner 13 Triangular wave transmission circuit 14 Comparator 15 Three-phase distribution circuit 16 Overcurrent detector

Claims (4)

ポンプ室に配置され流体を送り出す回転体を備えたポンプと該回転体の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置において、
ポンプ駆動モータは、ポンプ室を流れる流体の流量が変化すると回転体の回転数は、モータ電流の増減に応じて線形的に変化するという相関関係(数1)に基づいて、ポンプ圧力を流量に応じて制御可能なモータ制御回路を備えていることを特徴とするポンプ駆動装置。
(数1)
ω=ω+係数A×モータ電流I(ω;モータ基本回転数)
In a pump driving device in which a pump provided with a rotating body that sends out a fluid disposed in a pump chamber and a DC motor that drives the pump by connecting the rotating shaft of the rotating body and the rotating shaft of the rotor are assembled,
The pump drive motor converts the pump pressure to the flow rate based on a correlation (Equation 1) that when the flow rate of the fluid flowing through the pump chamber changes, the rotation speed of the rotating body changes linearly according to the increase and decrease of the motor current. A pump drive device comprising a motor control circuit that can be controlled in response to the request.
(Equation 1)
ω = ω 0 + coefficient A × motor current I (ω 0 ; motor basic rotation speed)
前記モータ制御回路は、モータ電流値検出により電圧換算値で(数1)にしたがって算出された演算電圧値と、回転数検出部から検出されたロータの実回転数に対応する電圧換算値との差を零とするよう演算により得られたモータ指令電圧を出力する指令電圧演算回路を備えていることを特徴とする請求項1記載のポンプ駆動装置。The motor control circuit calculates a voltage conversion value calculated according to (Equation 1) with a voltage conversion value by detecting a motor current value, and a voltage conversion value corresponding to the actual rotation speed of the rotor detected by the rotation speed detection unit. 2. The pump drive device according to claim 1, further comprising a command voltage calculation circuit that outputs a motor command voltage obtained by calculation to make the difference zero. 前記演算電圧値は、モータ基本回転数ωに対応する基準電圧値に電流検出部で検出されたモータ電流に係数Aを乗算して換算された電圧換算値を加算した演算電圧値が用いられることを特徴とする請求項2記載のポンプ駆動装置。As the calculated voltage value, a calculated voltage value obtained by multiplying a motor voltage detected by the current detection unit by a coefficient A and adding a converted voltage value to a reference voltage value corresponding to the motor basic rotation speed ω 0 is used. 3. The pump driving device according to claim 2, wherein: ポンプ室に配置され流体を送り出す回転体を備えたポンプと該回転体の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置の制御方法において、
ポンプ室を流れる流体の流量が変化すると回転体の回転数は、モータ電流の増減に応じて線形的に変化するという(数1)に示す相関関係に基づいてポンプ圧力を流量に応じて制御することを特徴とするポンプ駆動装置の制御方法。
(数1)
ω=ω+係数A×モータ電流I(ω;モータ基本回転数)
In a control method of a pump driving device in which a pump provided with a rotating body that sends out a fluid arranged in a pump chamber and a DC motor that drives the pump by connecting a rotating shaft of the rotating body and a rotating shaft of a rotor are assembled,
When the flow rate of the fluid flowing through the pump chamber changes, the rotation speed of the rotating body linearly changes in accordance with the increase or decrease of the motor current. A method for controlling a pump driving device, comprising:
(Equation 1)
ω = ω 0 + coefficient A × motor current I (ω 0 ; motor basic rotation speed)
JP2003024826A 2003-01-31 2003-01-31 Pump driving device and control method for pump driving device Pending JP2004232607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024826A JP2004232607A (en) 2003-01-31 2003-01-31 Pump driving device and control method for pump driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024826A JP2004232607A (en) 2003-01-31 2003-01-31 Pump driving device and control method for pump driving device

Publications (1)

Publication Number Publication Date
JP2004232607A true JP2004232607A (en) 2004-08-19

Family

ID=32953264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024826A Pending JP2004232607A (en) 2003-01-31 2003-01-31 Pump driving device and control method for pump driving device

Country Status (1)

Country Link
JP (1) JP2004232607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503155A2 (en) 2011-03-25 2012-09-26 Panasonic Corporation Pumping device and liquid circulation system with the device
EP2566041A2 (en) 2011-08-29 2013-03-06 Panasonic Corporation Motor control device, pump device, and liquid circulation device
EP3137956A4 (en) * 2014-04-29 2017-12-13 Metso Flow Control Oy Performance monitoring of a pump-valve system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503155A2 (en) 2011-03-25 2012-09-26 Panasonic Corporation Pumping device and liquid circulation system with the device
EP2566041A2 (en) 2011-08-29 2013-03-06 Panasonic Corporation Motor control device, pump device, and liquid circulation device
EP3137956A4 (en) * 2014-04-29 2017-12-13 Metso Flow Control Oy Performance monitoring of a pump-valve system
US10437265B2 (en) 2014-04-29 2019-10-08 Metso Flow Control Oy Performance monitoring of pump-valve system

Similar Documents

Publication Publication Date Title
US9425720B2 (en) Electric motor and motor control
CA2635442C (en) Engine start system with regulated permanent magnet machine
CN103262406A (en) Control of an electrical machine
JP6272077B2 (en) Turbocharger and ship
WO2012125257A2 (en) Method and system for controlling an electric motor with variable switching frequency at variable operating speeds
EP1854204A2 (en) Vsd control
JP6217667B2 (en) Electric compressor
JP2015002608A (en) Control device for fan motor
CN113439389A (en) Motor drive device and refrigeration loop application equipment
JP2004232607A (en) Pump driving device and control method for pump driving device
JP2008099467A (en) Inverter device, compressor drive device, and freezing/air-conditioning apparatus
JP2004232606A (en) Pump driving device and control method for pump driving device
JPH0510273A (en) Device for preventing light-load and over-load operation of pump device
JP6506447B2 (en) Motor drive
JP2022064817A (en) Motor drive device and refrigerator
JPH0510271A (en) Device for preventing light-load operation of pump device
JP2001342966A (en) Pump controller
CN111543002A (en) Sensorless detection of load torque for stepper motors and apparatus and method for optimizing drive current for efficient operation
RU2686018C1 (en) Pump assembly and method of control
KR100807373B1 (en) Control Method for a Synchronous Motor, Particularly for Circular Pumps
JP5791746B2 (en) Brushless DC motor and ventilation blower
KR20090049854A (en) Motor controller of air conditioner
CN110620459B (en) Driving circuit for operating BLDC motor
WO2022137406A1 (en) Ventilation blower
KR100984251B1 (en) Blcd motor controller based on maximum power algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811