JP2004232035A - Wear resistant thermal spray coating - Google Patents

Wear resistant thermal spray coating Download PDF

Info

Publication number
JP2004232035A
JP2004232035A JP2003022860A JP2003022860A JP2004232035A JP 2004232035 A JP2004232035 A JP 2004232035A JP 2003022860 A JP2003022860 A JP 2003022860A JP 2003022860 A JP2003022860 A JP 2003022860A JP 2004232035 A JP2004232035 A JP 2004232035A
Authority
JP
Japan
Prior art keywords
powder
wear
sprayed coating
phase
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022860A
Other languages
Japanese (ja)
Other versions
JP4281368B2 (en
Inventor
Makoto Azuma
誠 東
Akio Niimi
彰夫 新見
Takashi Mori
崇 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003022860A priority Critical patent/JP4281368B2/en
Publication of JP2004232035A publication Critical patent/JP2004232035A/en
Application granted granted Critical
Publication of JP4281368B2 publication Critical patent/JP4281368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wear resistant thermal spray coating which has improved wear resistance, seizure resistance, initial fitness or the like in the sliding part, and can be applied to the inside face of the cylinder bore of an engine. <P>SOLUTION: The thermal spray coating has a poly-phase mixed structure where a soft phase (graphite) is dispersed into a sprayed coating essentially consisting of Fe and Mo. Alternatively, the sprayed coating has a poly-phase mixed structure where a hard phase (chromium oxide or chromium carbide) is dispersed into a sprayed coating essentially consisting of Fe and Mo. In the method of producing the coating, an atmospheric plasma spraying method is used. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、FeとMoを主成分とする溶射皮膜において軟質相(グラファイト)あるいは硬質相(酸化クロム、炭化クロム)を分散させた多相混合組織を有する溶射皮膜に関するものである。
【0002】
【従来の技術】
従来の技術としては、基材の摺動面に、摩耗層(硬質層)、必要に応じて中間層、さらに擦り合わせ層(軟質層)を形成させた層状の組織構造を有する被膜が知られている。硬質層としては、炭化クロムや酸化クロム等の硬質粒子が埋め込まれたクロム、ニッケル、モリブデンが挙げられ、軟質層としては、モリブデン、アルミニウム、銀、ニッケル等で被覆されたグラファイトからなるものが挙げられている(例えば、特許文献1参照)。また、FeとMoからなるコーティングを溶射する技術も公知である(例えば、特許文献2参照)。
【0003】
【特許文献1】
特表平9−508688号公報
【特許文献2】
特表平11−515057号公報
【0004】
【発明が解決しようとする課題】
上記のように、金属で被覆されたグラファイト粉末を溶射する技術(例えば、特許文献1参照)は知られているが、硬質層の上に金属で被覆されたグラファイトを軟質層として溶射するもので、硬質層、軟質層が完全な層状になった組織構造の被膜であり、耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な性質には改善の余地があるものと考えられる。また、この技術は、本発明の混合組織構造とは異なっている。さらに、材料系が本発明のFe−Mo系とは異なっている。
【0005】
また、上記のように、Fe−Mo系溶射皮膜(例えば、特許文献2参照)は公知であるが、Fe系部分とMoの2相混合組織構造であり、耐摩耗性、耐焼付き性、初期なじみ性等に問題があると考えられる。また、この溶射皮膜は、本発明のFe系部分とMo部分と軟質相部分、あるいはFe系部分とMo部分と硬質相部分といった3相の混合組織構造とは、組織構造が異なっている。
【0006】
摺動部分、特に、エンジンのシリンダボアは、耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な特性が要求される。本発明は上記の諸点に鑑みなされたもので、本発明の目的は、軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜、あるいは硬質相(酸化クロム、炭化クロム)を分散させたFe−Mo系溶射皮膜とすることで、摺動部での耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な特性を向上させるようにした溶射皮膜を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の耐摩耗溶射皮膜は、Fe及びMoを主成分とし、軟質相としてグラファイトを分散させた溶射皮膜であって、Fe系部分とMo部分と軟質相部分とからなる多相混合組織を有するように構成されている。この場合、Fe系部分、Mo部分、軟質相部分の混合組織状態とし、表面組織状態(摺動面の組織状態)は体積比率でFe系部分30〜80%、Mo10〜60%、軟質相5〜30%の組成範囲とすることが好ましい。
【0008】
また、本発明の耐摩耗溶射皮膜は、Fe及びMoを主成分とし、硬質相として酸化クロム又は炭化クロムを分散させた溶射皮膜であって、Fe系部分とMo部分と硬質相部分とからなる多相混合組織を有することを特徴としている。この場合、Fe系部分、Mo部分、硬質相部分の混合組織状態とし、表面組織状態(摺動面の組織状態)は体積比率でFe系部分30〜80%、Mo10〜60%、硬質相10〜30%の組成範囲とすることが好ましい。
【0009】
軟質相を分散させた溶射皮膜において、表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの軟質相の大きさ(長さ)は30〜100μmとすることが好ましい。また、硬質相を分散させた溶射皮膜において、表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの硬質相の大きさ(長さ)は10〜50μmとすることが好ましい。混合組織皮膜の気孔率は体積率で1〜10%とすることが好ましい。また、軟質相を分散させた溶射皮膜において、混合組織皮膜の平均硬さは200〜500HV(ビッカース硬さ)とし、各組織相では、Fe系部分の硬さ400〜800HV、Mo部分の硬さ300〜500HVとすることが好ましい。また、硬質相を分散させた溶射皮膜において、混合組織皮膜の平均硬さは300〜600HVとし、各組織相では、Fe系部分の硬さ400〜800HV、Mo部分の硬さ300〜500HV、硬質相部分の硬さ500〜900HVとすることが好ましい。これらの本発明において、溶射したときの皮膜の膜厚は100〜300μmとすることが好ましい。さらに、溶射後、加工により仕上げたときの膜厚は50〜200μm、表面粗さは算術平均粗さRaで0.1〜0.6μmとすることが好ましい。算術平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、下記の数1に示す式によって求められる値をマイクロメートル(μm)で表したものをいう。下記の数1に示す式において、lは基準長さで
ある。
【0010】
【数1】

Figure 2004232035
【0011】
本発明において、溶射に用いる粉末は、Feに対してCが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成を有する粉末、又は、Feに対してCが0.40〜1.00wt%、Siが1.20〜1.60wt%、Mnが0.50〜0.80wt%、Pが0.025wt%以下、Sが0.025wt%以下、Crが0.50〜0.80wt%の組成を有する粉末、又は、Feに対してCが1.15〜1.25wt%、Siが0.45wt%以下、Mnが0.40wt%以下、Pが0.030wt%以下、Sが0.030wt%以下、Crが3.80〜4.50wt%、Moが4.70〜5.20wt%、Wが5.90〜6.70wt%、Vが2.70〜3.20wt%の組成を有する粉末を、水アトマイズ法又はガスアトマイズ法により処理して作製したFe系粉末とし、粒子径は30〜70μmとすることが好ましい。また、溶射に用いる粉末は、Mo及び不可避的不純物元素(C、O、Si、Fe等)からなる1〜10μmの粉末を造粒焼結して作製したMo粉末とし、粒子径は50〜100μmとすることが好ましい。また、溶射に用いる粉末は、グラファイトをMo又はNiにより膜厚1〜10μmで被覆したグラファイト粉末とし、粒子径は30〜90μmとすることが好ましい。また、溶射に用いる粉末は、1〜10μmの酸化クロム粉末又は炭化クロム粉末と1〜10μmのMo粉末を造粒焼結して作製した酸化クロム粉末又は炭化クロム粉末とし、粒子径は10〜70μmとすることが好ましい。
【0012】
また、本発明においては、皮膜を形成させる基材表面にブラスト処理を行い、粗面化後の表面粗さが算術平均粗さRaで3.0μm以上となる前処理を行うことが好ましい。
また、本発明の耐摩耗溶射皮膜は、大気プラズマ溶射により基材表面に作製することが好ましい。この場合、溶射に用いる粉末を溶射ガンにて供給するに際し、それぞれ別々の供給口から供給するか、全部混合して1つの供給口から供給するか、又は2種類を混合したものと他の1種類とを別々の供給口から供給するようにして作製することが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。
▲1▼ 本発明は、Fe系部分とMo部分と軟質相部分(グラファイト)といった多相混合組織を有する皮膜とし、耐摩耗性、耐焼付き性に優れた溶射皮膜としたものである。また、本発明は、Fe系部分とMo部分と硬質相部分(酸化クロムあるいは炭化クロム)といった多相混合組織を有する皮膜とし、耐摩耗性、耐焼付き性に優れた溶射皮膜としたものである。なお、酸化クロムには、Cr、Cr等があり、炭化クロムには、Cr、Cr、Cr23等がある。
【0014】
▲2▼ 溶射皮膜の作製方法
1) 使用する溶射粉末
Fe粉末としては、Feに対して、Cが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成のもの、あるいは、Fe−C系に、焼戻し軟化抵抗を付与するために、SiやMnを添加したもの、例えば、Feに対して、C:0.40〜1.00wt%、Si:1.20〜1.60wt%、Mn:0.50〜0.80wt%、P:0.025wt%以下、S:0.025wt%以下、Cr:0.50〜0.80wt%の組成のもの、あるいは、合金元素を添加し高温強度、耐摩耗性を向上させたもの、例えば、Feに対して、C:1.15〜1.25wt%、Si:0.45wt%以下、Mn:0.40wt%以下、P:0.030wt%以下、S:0.030wt%以下、Cr:3.80〜4.50wt%、Mo:4.70〜5.20wt%、W:5.90〜6.70wt%、V:2.70〜3.20wt%の組成のものとする。このような組成のFe粉末を水アトマイズ法又はガスアトマイズ法により処理して、溶射に用いる粉末を作製する。粒子径は30〜70μmとする。Mo粉末は、Mo及び不可避的不純物元素(不可避的不純物元素とは、C、O、Si、Fe等である)からなる1〜10μmの粉末を造粒焼結して作製する。粒子径は50〜100μmとする。軟質相を形成する粉末であるグラファイト粉末は、グラファイトをMoあるいはNiで膜厚1〜10μmで被覆した粉末である。粒子径は30〜90μmとする。硬質相を形成する粉末である酸化クロム粉末(あるいは炭化クロム粉末)は、1〜10μmの酸化クロム粉末(あるいは炭化クロム粉末)と1〜10μmのMo粉末の造粒焼結粉末として作製する。粒子径は10〜70μmとする。
【0015】
2) 前処理
溶射の前処理として、Al研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、粗面化後の表面粗さが算術平均粗さRaで3.0μm以上となる処理を行う。
【0016】
3) 溶射粉末供給方法
多相混合組織構造のFe−Mo系皮膜は大気プラズマ溶射法で作製する。Fe系粉末及びMo粉末と、軟質相組成粉末(グラファイト粉末)又は硬質相組成粉末(酸化クロム粉末あるいは炭化クロム粉末)を目標とする組成になるよう調製し、以下のような粉末供給方法により、粉末供給口からプラズマガンに粉末を供給することで溶射皮膜の組成を管理する。
a) 軟質相を分散させたFe−Mo系溶射皮膜
ア) Fe系粉末とMo粉末とグラファイト粉末をそれぞれ別々の供給口から供給する。
イ) Fe系粉末とMo粉末を混合したものと、グラファイト粉末を別々の供給口から供給する。
ウ) Fe系粉末とグラファイト粉末を混合したものと、Mo粉末を別々の供給口から供給する。
エ) Mo粉末とグラファイト粉末を混合したものと、Fe系粉末を別々の供給口から供給する。
オ) Fe系粉末とMo粉末とグラファイト粉末を混合したものを1つの供給口から供給する。
のいずれかの方法で粉末を供給し、皮膜を作製する。
【0017】
b) 硬質相を分散させたFe−Mo系溶射皮膜
ア) Fe系粉末とMo粉末と酸化クロム粉末(あるいは炭化クロム粉末)をそれぞれ別々の供給口から供給する。
イ) Fe系粉末とMo粉末を混合したものと、酸化クロム粉末(あるいは炭化クロム粉末)を別々の供給口から供給する。
ウ) Fe系粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものと、Mo粉末を別々の供給口から供給する。
エ) Mo粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものと、Fe系粉末を別々の供給口から供給する。
オ) Fe系粉末とMo粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものを1つの供給口から供給する。
のいずれかの方法で粉末を供給し、皮膜を作製する。
【0018】
▲3▼ 皮膜の組織構造
a) 軟質相を分散させたFe−Mo系溶射皮膜の組織構造
Fe系部分、Mo部分、軟質相部分の混合組織状態の皮膜とし、摺動面の組織状態(表面組織状態)は、Fe系部分:30〜80%、Mo:10〜60%、軟質相:5〜30%の体積比率の組成範囲とする。表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの軟質相の大きさ(長さ)は30〜100μmとする。残部がFe系部分である。また、混合組織皮膜の気孔率は、体積率で1〜10%とする。平均硬さは200〜500HVとし、各組織相の硬さは、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HVとする。溶射皮膜の膜厚は100〜300μmとする。
【0019】
b) 硬質相を分散させたFe−Mo系溶射皮膜の組織構造
Fe系部分、Mo部分、硬質相部分の混合組織状態の皮膜とし、摺動面の組織状態(表面組織状態)は、Fe系部分:30〜80%、Mo:10〜60%、硬質相:10〜30%の体積比率の組成範囲とする。表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの硬質相の大きさ(長さ)は10〜50μmとする。残部がFe系部分である。また、混合組織皮膜の気孔率は、体積率で1〜10%とする。平均硬さは300〜600HVとし、各組織相の硬さは、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HV、硬質相部分の硬さが500〜900HVとする。溶射皮膜の膜厚は100〜300μmとする。
【0020】
▲4▼ 皮膜の仕上げ方法
軟質相を分散させたFe−Mo系溶射皮膜、硬質相を分散させたFe−Mo系溶射皮膜どちらも、溶射後、加工(一例として、ホーニング加工)により、膜厚は50〜200μm、表面粗さは算術平均粗さRaで0.1〜0.6μmに仕上げる。
▲5▼ 本発明の溶射皮膜は、様々な摺動部で用いることが可能である。特に、エンジンのシリンダボア内面に適用すること等が有効である。
【0021】
【実施例】
▲1▼ 軟質相を分散させたFe−Mo系溶射皮膜の実施例(実施例1)
1) 溶射皮膜の作製方法と皮膜の組織構造
溶射粉末は下記の表1に示す組成、粒径、作製方法の溶射粉末を用いた。溶射の前処理として、Al研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、表面粗さがRaで3.0μm以上となるようにした。大気プラズマ溶射法を用いて、表2に示す条件で溶射を行い、膜厚が200μmの皮膜を作製した。その後、溶射皮膜を研磨し、膜厚が100μm、皮膜の表面粗さをRa0.07〜0.2μmとした。溶射皮膜の表面組織構造は、図1に示す組織構造(表面組織構造が良く分かるようにするために、本写真は、表面粗さがRa0.05μm以下となるように仕上げてある)であり、皮膜の体積比率は、Fe系部分:60%、Mo組織部分:30%、グラファイト部分:10%である。なお、溶射皮膜の表面組織は、図2に示す断面組織の模式図において、皮膜表面を図2に示すような位置から観察したものである。10は基材、12は溶射皮膜である。
【0022】
【表1】
Figure 2004232035
【0023】
【表2】
Figure 2004232035
【0024】
2) 皮膜の評価方法
往復動摩耗試験機を用いて、表3に示す試験条件で耐焼付き性と耐摩耗性を評価した。耐焼付き性試験を実施する方法の概念図を図4に、耐摩耗性試験を実施する方法の概念図を図5に示す。耐焼付き性は、油膜切れ状態を模擬した潤滑条件での、荷重増加試験により評価した。一方、耐摩耗性は、潤滑油を滴下した潤滑条件での、一定荷重試験により評価した。相手材のピン試験片には、表面がCrめっきとCrN皮膜のもの2種類を用いている。Crめっきの膜厚は100μmで、硬さは1000HVである。CrN皮膜は、アークイオンプレーティング法で作製しており、膜厚は40μmで、硬さは1500HVである。
本実施例の皮膜の比較材として、鋳鉄とCrめっき(相手材)の組合せを用いた。なお、鋳鉄とCrめっきの組合せは、現状材でのシリンダライナとピストンリングの摺動を模擬したものである。鋳鉄の組成は、Fe−3.25C−2.22Si−0.74Mn−0.15P−0.022S−0.14Cr−0.24Cuである。基地が微細なパーライト組織で、片状黒鉛、炭化物が均等に分散した組織構造である。
【0025】
【表3】
Figure 2004232035
【0026】
3) 皮膜の評価結果
表3に示す試験条件で焼付き試験を行った結果を図6に、摩耗試験を行った結果を図7に示す。本実施例の軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せは、比較材の鋳鉄とCrめっき(相手材)の組合せの8倍以上の焼付き荷重を示した。また、本実施例の軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せでの摩耗試験における摩耗量は、比較材の鋳鉄とCrめっき(相手材)の組合せでの試験における摩耗量の1/6以下であった。
【0027】
▲2▼ 硬質相を分散させたFe−Mo系溶射皮膜の実施例(実施例2)
1) 溶射皮膜の作製方法と皮膜の組織構造
溶射粉末は下記の表4に示す組成、粒径、作製方法の溶射粉末を用いた。溶射の前処理として、Al研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、表面粗さがRaで3.0μm以上となるようにした。大気プラズマ溶射法を用いて、表5に示す条件で溶射を行い、膜厚が200μmの皮膜を作製した。その後、溶射皮膜を研磨し、膜厚が100μm、皮膜の表面粗さをRa0.07〜0.2μmとした。溶射皮膜の表面組織構造は、図3に示す組織構造(表面組織構造が良く分かるようにするために、本写真は、表面粗さがRa0.05μm以下となるように仕上げてある)であり、皮膜の体積比率は、Fe系部分:60%、Mo組織部分:10%、酸化クロム部分:30%である。
【0028】
【表4】
Figure 2004232035
【0029】
【表5】
Figure 2004232035
【0030】
2) 皮膜の評価方法
上述した表3に示す試験条件で耐焼付き性、耐摩耗性を評価した。比較材も同じである。
3) 皮膜の評価結果
表3に示す試験条件で焼付き試験を行った結果を図6に、摩耗試験を行った結果を図7に示す。本実施例の硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せは、比較材の鋳鉄とCrめっき(相手材)の組合せの5倍以上の焼付き荷重を示した。また、本実施例の硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せでの摩耗試験における摩耗量は、摩耗量の測定が不可能なほど微量であった。
【0031】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) FeとMoを主成分とする溶射皮膜において軟質相(グラファイト)あるいは硬質相(酸化クロム、炭化クロム)を分散させた多相混合組織を有する溶射皮膜とすることで、摺動部での耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な性質を向上させることができる。
(2) 本発明の溶射皮膜は、様々な摺動部で用いることが可能である。特に、エンジンのシリンダボア内面に適用すること等が有効である。
【図面の簡単な説明】
【図1】本発明の実施例1における耐摩耗溶射皮膜(軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜)の表面組織を示す走査型電子顕微鏡で撮影した写真である(倍率100倍)。
【図2】耐摩耗溶射皮膜の断面組織の一例を示す模式図であり、溶射皮膜の表面組織の観察位置を示している。
【図3】本発明の実施例2における耐摩耗溶射皮膜(硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜)の表面組織を示す走査型電子顕微鏡で撮影した写真である(倍率100倍)。
【図4】本発明の実施例で用いる耐焼付き性を評価するための試験方法を説明する概念図である。
【図5】本発明の実施例で用いる耐摩耗性を評価するための試験方法を説明する概念図である。
【図6】本発明の実施例における耐焼付き性の試験結果を示すグラフである。
【図7】本発明の実施例における耐摩耗性の試験結果を示すグラフである。
【符号の説明】
10 基材
12 溶射皮膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal spray coating having a multiphase mixed structure in which a soft phase (graphite) or a hard phase (chromium oxide, chromium carbide) is dispersed in a thermal spray coating mainly containing Fe and Mo.
[0002]
[Prior art]
As a conventional technique, there is known a coating having a layered structure in which a wear layer (hard layer), an intermediate layer, and further, a rubbing layer (soft layer) are formed on a sliding surface of a substrate, if necessary. ing. Examples of the hard layer include chromium, nickel, and molybdenum in which hard particles such as chromium carbide and chromium oxide are embedded, and examples of the soft layer include those made of graphite coated with molybdenum, aluminum, silver, nickel, and the like. (For example, see Patent Document 1). Further, a technique of spraying a coating made of Fe and Mo is also known (for example, see Patent Document 2).
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. Hei 9-508688 [Patent Document 2]
Japanese Patent Publication No. 11-515057
[Problems to be solved by the invention]
As described above, a technique of spraying a metal-coated graphite powder (for example, see Patent Document 1) is known, but a technique of spraying a metal-coated graphite on a hard layer as a soft layer. It is a film having a structure structure in which a hard layer and a soft layer are completely layered, and it is considered that there is room for improvement in composite properties such as abrasion resistance, seizure resistance and initial conformability. Also, this technique is different from the mixed tissue structure of the present invention. Furthermore, the material system is different from the Fe-Mo system of the present invention.
[0005]
Further, as described above, a Fe-Mo-based thermal spray coating (for example, see Patent Document 2) is known, but has a two-phase mixed structure structure of an Fe-based portion and Mo, and has abrasion resistance, seizure resistance, and initial resistance. It is considered that there is a problem in compatibility. The thermal spray coating has a different microstructure from the three-phase mixed microstructure of the present invention such as the Fe-based portion, the Mo portion, and the soft phase portion, or the Fe-based portion, the Mo portion, and the hard phase portion.
[0006]
The sliding portion, particularly the cylinder bore of the engine, is required to have complex characteristics such as wear resistance, seizure resistance, initial conformability and the like. The present invention has been made in view of the above points, and an object of the present invention is to provide an Fe-Mo-based thermal spray coating in which a soft phase (graphite) is dispersed or an Fe-Mo spray coating in which a hard phase (chromium oxide, chromium carbide) is dispersed. An object of the present invention is to provide a thermal spray coating which improves composite properties such as abrasion resistance, seizure resistance, initial conformability and the like in a sliding portion by using a Mo-based thermal spray coating.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the wear-resistant thermal sprayed coating of the present invention is a thermal sprayed coating containing Fe and Mo as main components and graphite dispersed as a soft phase, wherein an Fe-based portion, a Mo portion, and a soft phase portion are provided. And a multiphase mixed structure consisting of In this case, the mixed structure state of the Fe-based portion, the Mo portion, and the soft phase portion is used, and the surface texture state (texture state of the sliding surface) is 30 to 80% by volume, Fe is 10 to 60%, and Mo is 5%. It is preferable to set the composition range to 30%.
[0008]
Further, the wear-resistant thermal spray coating of the present invention is a thermal spray coating containing Fe and Mo as main components and chromium oxide or chromium carbide dispersed as a hard phase, and includes a Fe-based portion, a Mo portion, and a hard phase portion. It is characterized by having a multiphase mixed structure. In this case, the Fe-based portion, the Mo portion, and the hard phase portion are in a mixed structure state, and the surface structure state (the structure state of the sliding surface) is 30 to 80% by volume of the Fe-based portion, 10 to 60% of Mo, and 10% by volume. It is preferable to set the composition range to 30%.
[0009]
In the thermal spray coating in which the soft phase is dispersed, the size (length) of one Mo as viewed in plan as the surface structure is 10 to 100 μm, and the size (length) of one soft phase is 30 to 100 μm. Is preferred. In the thermal spray coating in which the hard phase is dispersed, one Mo has a size (length) of 10 to 100 μm and a single hard phase has a size (length) of 10 to 50 μm as viewed in plan as the surface structure. It is preferable that It is preferable that the porosity of the mixed structure film is 1 to 10% by volume. In the thermal spray coating in which the soft phase is dispersed, the average hardness of the mixed texture coating is 200 to 500 HV (Vickers hardness), and in each texture phase, the hardness of the Fe-based portion is 400 to 800 HV, and the hardness of the Mo portion is hardness. Preferably, it is 300 to 500 HV. Further, in the thermal spray coating in which the hard phase is dispersed, the average hardness of the mixed structure film is 300 to 600 HV, and in each structure phase, the hardness of the Fe-based portion is 400 to 800 HV, the hardness of the Mo portion is 300 to 500 HV, Preferably, the hardness of the phase portion is 500 to 900 HV. In the present invention, the thickness of the coating when sprayed is preferably 100 to 300 μm. Furthermore, it is preferable that the film thickness after finishing by processing after thermal spraying is 50 to 200 μm, and the surface roughness is 0.1 to 0.6 μm in arithmetic average roughness Ra. Arithmetic average roughness Ra is defined by extracting a roughness curve from the roughness curve by a reference length in the direction of the average line, taking the X-axis in the direction of the average line of the extracted portion, and the Y-axis in the direction of the vertical magnification. When y is expressed as y = f (x), a value obtained by the following equation 1 is expressed in micrometers (μm). In the following equation 1, l is a reference length.
[0010]
(Equation 1)
Figure 2004232035
[0011]
In the present invention, the powder used for thermal spraying contains 0.40 to 1.00 wt% of C, 0.15 to 0.35 wt% of Si, 0.30 to 0.90 wt% of Mn, and 0 P with respect to Fe. A powder having a composition of 0.030 wt% or less and S of 0.035 wt% or less, or a C content of 0.40 to 1.00 wt%, a Si content of 1.20 to 1.60 wt% and a Mn content of 0.035 wt% or less. A powder having a composition of 50 to 0.80 wt%, P of 0.025 wt% or less, S of 0.025 wt% or less, and Cr of 0.50 to 0.80 wt%, or C of 1.15 to Fe 1.25 wt% or less, Si 0.45 wt% or less, Mn 0.40 wt% or less, P 0.030 wt% or less, S 0.030 wt% or less, Cr 3.80 to 4.50 wt%, Mo Is 4.70 to 5.20 wt%, and W is 5.90 to 6.70 w. %, The powder having a V composition of 2.70~3.20Wt%, was treated by the water atomization method or gas atomizing method and Fe-based powder produced, the particle diameter is preferably set to 30 to 70 .mu.m. The powder used for thermal spraying is Mo powder produced by granulating and sintering 1 to 10 μm powder of Mo and unavoidable impurity elements (C, O, Si, Fe, etc.), and has a particle diameter of 50 to 100 μm. It is preferable that Further, the powder used for thermal spraying is a graphite powder obtained by coating graphite with a film thickness of 1 to 10 μm with Mo or Ni, and preferably has a particle diameter of 30 to 90 μm. The powder used for thermal spraying is a chromium oxide powder or a chromium carbide powder produced by granulating and sintering a chromium oxide powder or a chromium carbide powder of 1 to 10 μm and a Mo powder of 1 to 10 μm, and a particle diameter of 10 to 70 μm It is preferable that
[0012]
Further, in the present invention, it is preferable to perform a blast treatment on the surface of the base material on which the film is to be formed, and to perform a pretreatment in which the surface roughness after the surface roughening is 3.0 μm or more in arithmetic average roughness Ra.
Further, it is preferable that the abrasion-resistant thermal spray coating of the present invention is formed on the substrate surface by atmospheric plasma spraying. In this case, when the powder used for thermal spraying is supplied by a thermal spray gun, each powder is supplied from a separate supply port, all are mixed and supplied from one supply port, or a mixture of two types is added to another powder. It is preferable to produce them by supplying them from different supply ports.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications.
{Circle around (1)} The present invention is a coating having a multiphase mixed structure such as an Fe-based portion, a Mo portion, and a soft phase portion (graphite), and is a sprayed coating having excellent wear resistance and seizure resistance. Further, the present invention provides a coating having a multiphase mixed structure such as an Fe-based portion, a Mo portion, and a hard phase portion (chromium oxide or chromium carbide), which is a sprayed coating having excellent wear resistance and seizure resistance. . Note that chromium oxide includes Cr 2 O 3 and Cr 3 O 4 , and chromium carbide includes Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 .
[0014]
{Circle over (2)} Method for preparing thermal spray coating 1) Thermal spray powder to be used As Fe powder, C is 0.40 to 1.00 wt%, Si is 0.15 to 0.35 wt%, and Mn is 0. Si or Mn is added to a composition having a composition of 30 to 0.90 wt%, P of 0.030 wt% or less, and S of 0.035 wt% or less, or Fe-C based material for imparting temper softening resistance. C: 0.40 to 1.00 wt%, Si: 1.20 to 1.60 wt%, Mn: 0.50 to 0.80 wt%, P: 0.025 wt% or less, S: 0.025% by weight or less, Cr: 0.50 to 0.80% by weight, or a composition in which alloy elements are added to improve high-temperature strength and wear resistance. : 1.15 to 1.25 wt%, Si: 0.45 wt% or less , Mn: 0.40 wt% or less, P: 0.030 wt% or less, S: 0.030 wt% or less, Cr: 3.80 to 4.50 wt%, Mo: 4.70 to 5.20 wt%, W: 5 It has a composition of 0.90 to 6.70 wt% and V: 2.70 to 3.20 wt%. The Fe powder having such a composition is treated by a water atomizing method or a gas atomizing method to produce a powder used for thermal spraying. The particle size is 30 to 70 μm. The Mo powder is produced by granulating and sintering a 1 to 10 μm powder composed of Mo and unavoidable impurity elements (the unavoidable impurity elements are C, O, Si, Fe and the like). The particle size is 50 to 100 μm. Graphite powder, which is a powder forming a soft phase, is a powder obtained by coating graphite with Mo or Ni to a thickness of 1 to 10 μm. The particle size is 30 to 90 μm. The chromium oxide powder (or chromium carbide powder) which is a powder forming the hard phase is prepared as a granulated sintered powder of chromium oxide powder (or chromium carbide powder) of 1 to 10 μm and Mo powder of 1 to 10 μm. The particle size is 10 to 70 μm.
[0015]
2) Pretreatment As a pretreatment for thermal spraying, a blast treatment is performed on the surface of the base material on which the film is to be formed using an Al 2 O 3 abrasive, and the surface roughness after the surface roughening is calculated as an arithmetic average roughness Ra. The processing to be 0 μm or more is performed.
[0016]
3) Thermal spray powder supply method The Fe-Mo based coating having a multi-phase mixed structure structure is produced by the atmospheric plasma spraying method. A Fe-based powder and a Mo powder, and a soft phase composition powder (graphite powder) or a hard phase composition powder (chromium oxide powder or chromium carbide powder) are prepared to have a target composition, and the following powder supply method is used. The composition of the thermal spray coating is controlled by supplying powder to the plasma gun from the powder supply port.
a) Fe-Mo-based thermal spray coating in which a soft phase is dispersed a) Fe-based powder, Mo powder, and graphite powder are supplied from separate supply ports.
B) A mixture of an Fe-based powder and a Mo powder and a graphite powder are supplied from separate supply ports.
C) A mixture of an Fe-based powder and a graphite powder and a Mo powder are supplied from separate supply ports.
D) A mixture of Mo powder and graphite powder and an Fe-based powder are supplied from separate supply ports.
E) A mixture of Fe powder, Mo powder and graphite powder is supplied from one supply port.
The powder is supplied by any one of the above methods to form a film.
[0017]
b) Fe-Mo-based thermal spray coating in which a hard phase is dispersed a) Fe-based powder, Mo powder, and chromium oxide powder (or chromium carbide powder) are supplied from separate supply ports.
B) A mixture of Fe-based powder and Mo powder and a chromium oxide powder (or chromium carbide powder) are supplied from separate supply ports.
C) A mixture of Fe-based powder and chromium oxide powder (or chromium carbide powder) and Mo powder are supplied from separate supply ports.
D) A mixture of Mo powder and chromium oxide powder (or chromium carbide powder) and an Fe-based powder are supplied from separate supply ports.
E) A mixture of Fe-based powder, Mo powder and chromium oxide powder (or chromium carbide powder) is supplied from one supply port.
The powder is supplied by any one of the above methods to form a film.
[0018]
{Circle around (3)} Microstructure of coating a) Microstructure of Fe-Mo sprayed coating with soft phase dispersed Fe-Mo, Mo, and soft-phase coatings were mixed, and the microstructure of the sliding surface (surface The composition state) is a composition range of a volume ratio of Fe-based part: 30 to 80%, Mo: 10 to 60%, and soft phase: 5 to 30%. The size (length) of one Mo in a planar view as the surface texture is 10 to 100 μm, and the size (length) of one soft phase is 30 to 100 μm. The balance is Fe-based. Further, the porosity of the mixed structure film is set to 1 to 10% by volume. The average hardness is 200 to 500 HV, and the hardness of each structural phase is such that the hardness of the Fe-based portion is 400 to 800 HV and the hardness of the Mo portion is 300 to 500 HV. The thickness of the thermal spray coating is 100 to 300 μm.
[0019]
b) Microstructure of Fe-Mo sprayed coating in which hard phase is dispersed Fe-Mo, Mo, and hard phase are mixed films, and the microstructure (surface structure) of the sliding surface is Fe-based. Part: 30 to 80%, Mo: 10 to 60%, Hard phase: 10 to 30% by volume. One Mo has a size (length) of 10 to 100 μm and a single hard phase has a size (length) of 10 to 50 μm as viewed in plan as the surface texture. The balance is Fe-based. Further, the porosity of the mixed structure film is set to 1 to 10% by volume. The average hardness is 300 to 600 HV, and the hardness of each structural phase is 400 to 800 HV for the Fe-based portion, 300 to 500 HV for the Mo portion, and 500 to 900 HV for the hard phase portion. . The thickness of the thermal spray coating is 100 to 300 μm.
[0020]
{Circle over (4)} Finishing method of the film Both the Fe-Mo-based thermal sprayed coating in which the soft phase is dispersed and the Fe-Mo-based thermal sprayed coating in which the hard phase is dispersed are subjected to processing (for example, honing processing) after spraying. Is 50 to 200 μm, and the surface roughness is 0.1 to 0.6 μm in terms of arithmetic average roughness Ra.
{Circle around (5)} The thermal spray coating of the present invention can be used in various sliding parts. In particular, it is effective to apply it to the inner surface of the cylinder bore of the engine.
[0021]
【Example】
{Circle around (1)} Example of Fe-Mo-based thermal spray coating in which soft phase is dispersed (Example 1)
1) Thermal sprayed coating production method and structure of the coating The sprayed powder having the composition, particle size and production method shown in Table 1 below was used. As a pretreatment for thermal spraying, a blast treatment was performed on the surface of the base material on which the film was to be formed using an Al 2 O 3 abrasive so that the surface roughness became 3.0 μm or more in Ra. Thermal spraying was performed using the atmospheric plasma spraying method under the conditions shown in Table 2 to produce a film having a thickness of 200 μm. Thereafter, the sprayed coating was polished to a thickness of 100 μm and a surface roughness Ra of 0.07 to 0.2 μm. The surface structure of the thermal spray coating is the structure shown in FIG. 1 (this photograph is finished so that the surface roughness is Ra 0.05 μm or less in order to make the surface structure better understood). The volume ratio of the film is: Fe-based part: 60%, Mo structure part: 30%, graphite part: 10%. The surface structure of the thermal sprayed coating is obtained by observing the surface of the coating from the position shown in FIG. 2 in the schematic diagram of the sectional structure shown in FIG. 10 is a base material, 12 is a thermal spray coating.
[0022]
[Table 1]
Figure 2004232035
[0023]
[Table 2]
Figure 2004232035
[0024]
2) Evaluation method of coating The seizure resistance and wear resistance were evaluated under the test conditions shown in Table 3 using a reciprocating abrasion tester. FIG. 4 is a conceptual diagram of a method for performing a seizure resistance test, and FIG. 5 is a conceptual diagram of a method for performing a wear resistance test. The seizure resistance was evaluated by a load increase test under lubricating conditions simulating an oil film break state. On the other hand, wear resistance was evaluated by a constant load test under lubricating conditions in which lubricating oil was dropped. As the pin test piece of the mating material, two types having a surface of Cr plating and a CrN film are used. The thickness of the Cr plating is 100 μm, and the hardness is 1000 HV. The CrN film is produced by an arc ion plating method, has a thickness of 40 μm, and has a hardness of 1500 HV.
As a comparative material of the film of the present example, a combination of cast iron and Cr plating (partner material) was used. The combination of cast iron and Cr plating simulates the sliding of the cylinder liner and the piston ring in the current material. The composition of the cast iron is Fe-3.25C-2.22Si-0.74Mn-0.15P-0.022S-0.14Cr-0.24Cu. The matrix has a fine pearlite structure and a structure structure in which flaky graphite and carbide are uniformly dispersed.
[0025]
[Table 3]
Figure 2004232035
[0026]
3) Evaluation result of coating film FIG. 6 shows the result of the seizure test under the test conditions shown in Table 3, and FIG. 7 shows the result of the abrasion test. The combination of the Fe-Mo-based thermal spray coating in which the soft phase (graphite) is dispersed and the CrN coating (the counterpart material) of this embodiment is at least eight times as large as the combination of the comparison material of the cast iron and the Cr plating (the counterpart material). The attached load is shown. Further, the wear amount in the wear test of the combination of the Fe—Mo-based thermal sprayed coating in which the soft phase (graphite) was dispersed and the CrN coating (counterpart material) of the present example was based on the comparison between cast iron and Cr plating (counterpart material). ) Was 1/6 or less of the wear amount in the test in the combination.
[0027]
{Circle around (2)} Examples of Fe-Mo-based thermal spray coatings in which a hard phase is dispersed (Example 2)
1) Method of preparing thermal spray coating and structure structure of the coating The thermal spray powder having the composition, particle diameter and preparation method shown in Table 4 below was used. As a pretreatment for thermal spraying, a blast treatment was performed on the surface of the base material on which the film was to be formed using an Al 2 O 3 abrasive so that the surface roughness became 3.0 μm or more in Ra. Using the atmospheric plasma spraying method, spraying was performed under the conditions shown in Table 5 to form a film having a thickness of 200 μm. Thereafter, the sprayed coating was polished to a thickness of 100 μm and a surface roughness Ra of 0.07 to 0.2 μm. The surface structure of the thermal spray coating is the structure shown in FIG. 3 (this photograph is finished so that the surface roughness is Ra 0.05 μm or less in order to make the surface structure better understood) The volume ratio of the film is: Fe-based part: 60%, Mo structure part: 10%, chromium oxide part: 30%.
[0028]
[Table 4]
Figure 2004232035
[0029]
[Table 5]
Figure 2004232035
[0030]
2) Evaluation method of film The seizure resistance and the wear resistance were evaluated under the test conditions shown in Table 3 described above. The same is true for the comparative material.
3) Evaluation result of coating film FIG. 6 shows the result of the seizure test under the test conditions shown in Table 3, and FIG. 7 shows the result of the abrasion test. The combination of the Fe-Mo-based thermal spray coating in which the hard phase (chromium oxide) is dispersed and the CrN coating (the counterpart material) of the present embodiment is at least 5 times the combination of the comparison material of the cast iron and the Cr plating (the counterpart material). Seizure load was shown. Further, the wear amount in the wear test using the combination of the Fe—Mo-based thermal spray coating in which the hard phase (chromium oxide) was dispersed and the CrN coating (the counterpart material) of the present example was so large that the wear amount could not be measured. It was trace.
[0031]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
(1) By forming a sprayed coating having a multiphase mixed structure in which a soft phase (graphite) or a hard phase (chromium oxide, chromium carbide) is dispersed in a sprayed coating containing Fe and Mo as main components, Can be improved in composite properties such as abrasion resistance, seizure resistance and initial conformability.
(2) The thermal spray coating of the present invention can be used in various sliding parts. In particular, it is effective to apply it to the inner surface of the cylinder bore of the engine.
[Brief description of the drawings]
FIG. 1 is a photograph taken with a scanning electron microscope (100 magnification) showing the surface structure of an abrasion-resistant sprayed coating (Fe-Mo-based sprayed coating in which a soft phase (graphite) is dispersed) in Example 1 of the present invention. Times).
FIG. 2 is a schematic diagram illustrating an example of a cross-sectional structure of a thermal sprayed abrasion-resistant film, showing an observation position of a surface structure of the thermal-sprayed film.
FIG. 3 is a photograph taken by a scanning electron microscope showing the surface structure of a wear-resistant sprayed coating (Fe-Mo-based sprayed coating in which a hard phase (chromium oxide) is dispersed) in Example 2 of the present invention (magnification: 100 times).
FIG. 4 is a conceptual diagram illustrating a test method for evaluating seizure resistance used in an example of the present invention.
FIG. 5 is a conceptual diagram illustrating a test method for evaluating abrasion resistance used in an example of the present invention.
FIG. 6 is a graph showing a test result of seizure resistance in an example of the present invention.
FIG. 7 is a graph showing a test result of abrasion resistance in an example of the present invention.
[Explanation of symbols]
10 Base material 12 Thermal spray coating

Claims (14)

Fe及びMoを主成分とし、軟質相としてグラファイトを分散させた溶射皮膜であって、Fe系部分とMo部分と軟質相部分とからなる多相混合組織を有することを特徴とする耐摩耗溶射皮膜。What is claimed is: 1. A thermal sprayed coating containing Fe and Mo as main components and graphite dispersed therein as a soft phase, characterized by having a multiphase mixed structure comprising an Fe-based portion, a Mo portion and a soft phase portion. . Fe系部分、Mo部分及び軟質相部分の混合組織状態とし、表面組織状態が体積比率でFe系部分30〜80%、Mo10〜60%、軟質相5〜30%の組成範囲である請求項1記載の耐摩耗溶射皮膜。The mixed structure state of the Fe-based part, the Mo part and the soft phase part, and the surface structure state is a composition range of 30 to 80% of the Fe-based part, 10 to 60% of Mo, and 5 to 30% of the soft phase by volume ratio. The wear-resistant sprayed coating described. Fe及びMoを主成分とし、硬質相として酸化クロム又は炭化クロムを分散させた溶射皮膜であって、Fe系部分とMo部分と硬質相部分とからなる多相混合組織を有することを特徴とする耐摩耗溶射皮膜。A thermal sprayed coating containing Fe and Mo as main components and chromium oxide or chromium carbide dispersed as a hard phase, characterized by having a multiphase mixed structure composed of an Fe-based part, a Mo part, and a hard phase part. Wear-resistant sprayed coating. Fe系部分、Mo部分及び硬質相部分の混合組織状態とし、表面組織状態が体積比率でFe系部分30〜80%、Mo10〜60%、硬質相10〜30%の組成範囲である請求項3記載の耐摩耗溶射皮膜。4. A mixed structure state of an Fe-based part, a Mo part and a hard phase part, and the surface structure state is a composition range of 30 to 80% of an Fe-based part, 10 to 60% of Mo, and 10 to 30% of a hard phase by volume ratio. The wear-resistant sprayed coating described. 表面組織として平面的に見た1つのMoの大きさが10〜100μmであり、1つの軟質相の大きさが30〜100μmである請求項1又は2記載の耐摩耗溶射皮膜。The wear-resistant sprayed coating according to claim 1 or 2, wherein one Mo has a size of 10 to 100 µm and a size of one soft phase has a size of 30 to 100 µm in a plan view as a surface texture. 表面組織として平面的に見た1つのMoの大きさが10〜100μmであり、1つの硬質相の大きさが10〜50μmである請求項3又は4記載の耐摩耗溶射皮膜。The wear-resistant thermal-sprayed coating according to claim 3 or 4, wherein one Mo has a size of 10 to 100 µm and a size of one hard phase has a size of 10 to 50 µm as viewed in plan as the surface texture. 混合組織皮膜の気孔率が体積率で1〜10%である請求項1〜6のいずれかに記載の耐摩耗溶射皮膜。The wear-resistant sprayed coating according to any one of claims 1 to 6, wherein a porosity of the mixed structure coating is 1 to 10% by volume. 混合組織皮膜の平均硬さが200〜500HVであり、各組織相では、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HVである請求項1又は2記載の耐摩耗溶射皮膜。The wear resistance according to claim 1 or 2, wherein the average hardness of the mixed structure film is 200 to 500 HV, and in each structure phase, the hardness of the Fe-based portion is 400 to 800 HV, and the hardness of the Mo portion is 300 to 500 HV. Thermal spray coating. 混合組織皮膜の平均硬さが300〜600HVであり、各組織相では、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HV、硬質相部分の硬さが500〜900HVである請求項3又は4記載の耐摩耗溶射皮膜。The average hardness of the mixed texture film is 300 to 600 HV, and in each texture phase, the hardness of the Fe-based portion is 400 to 800 HV, the hardness of the Mo portion is 300 to 500 HV, and the hardness of the hard phase portion is 500 to 900 HV. The wear-resistant sprayed coating according to claim 3 or 4, wherein 溶射後、加工により仕上げたときの膜厚が50〜200μm、表面粗さが算術平均粗さRaで0.1〜0.6μmである請求項1〜9のいずれかに記載の耐摩耗溶射皮膜。The wear-resistant sprayed coating according to any one of claims 1 to 9, wherein a thickness of the film after finishing by spraying after the spraying is 50 to 200 µm, and a surface roughness is 0.1 to 0.6 µm in arithmetic average roughness Ra. . 溶射に用いる粉末は、Feに対してCが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成を有する粉末、又は、Feに対してCが0.40〜1.00wt%、Siが1.20〜1.60wt%、Mnが0.50〜0.80wt%、Pが0.025wt%以下、Sが0.025wt%以下、Crが0.50〜0.80wt%の組成を有する粉末、又は、Feに対してCが1.15〜1.25wt%、Siが0.45wt%以下、Mnが0.40wt%以下、Pが0.030wt%以下、Sが0.030wt%以下、Crが3.80〜4.50wt%、Moが4.70〜5.20wt%、Wが5.90〜6.70wt%、Vが2.70〜3.20wt%の組成を有する粉末を、水アトマイズ法又はガスアトマイズ法により処理して作製したFe系粉末である請求項1〜4のいずれかに記載の耐摩耗溶射皮膜。The powder used for thermal spraying contains 0.40 to 1.00 wt% of C, 0.15 to 0.35 wt% of Si, 0.30 to 0.90 wt% of Mn, and 0.030 wt% or less of P based on Fe. , S having a composition of 0.035 wt% or less, or Fe with respect to Fe of 0.40-1.00 wt%, Si of 1.20-1.60 wt%, and Mn of 0.50-0. Powder having a composition of 80 wt%, P is 0.025 wt% or less, S is 0.025 wt% or less, and Cr is 0.50 to 0.80 wt%, or C is 1.15 to 1.25 wt% with respect to Fe. %, Si is 0.45 wt% or less, Mn is 0.40 wt% or less, P is 0.030 wt% or less, S is 0.030 wt% or less, Cr is 3.80 to 4.50 wt%, and Mo is 4.70. -5.20 wt%, W is 5.90-6.70 wt%, and V is 2.7. A powder having a composition of ~3.20wt%, the wear thermal spray coating according to claim 1 is treated with the water atomization method or the gas atomizing method is a Fe-based powder produced. 溶射に用いる粉末は、Mo及び不可避的不純物元素からなる1〜10μmの粉末を造粒焼結して作製したMo粉末である請求項1〜4のいずれかに記載の耐摩耗溶射皮膜。The wear-resistant thermal-sprayed coating according to any one of claims 1 to 4, wherein the powder used for thermal spraying is Mo powder produced by granulating and sintering a 1 to 10 µm powder composed of Mo and an unavoidable impurity element. 溶射に用いる粉末は、グラファイトをMo又はNiにより膜厚1〜10μmで被覆したグラファイト粉末である請求項1又は2記載の耐摩耗溶射皮膜。The wear-resistant thermal spray coating according to claim 1 or 2, wherein the powder used for thermal spraying is a graphite powder obtained by coating graphite with a film thickness of 1 to 10 µm with Mo or Ni. 溶射に用いる粉末は、1〜10μmの酸化クロム粉末又は炭化クロム粉末と1〜10μmのMo粉末を造粒焼結して作製した酸化クロム粉末又は炭化クロム粉末である請求項3又は4記載の耐摩耗溶射皮膜。The chromium oxide powder or the chromium carbide powder produced by granulating and sintering a chromium oxide powder or a chromium carbide powder of 1 to 10 μm and a Mo powder of 1 to 10 μm. Wear sprayed coating.
JP2003022860A 2003-01-30 2003-01-30 Abrasion resistant spray coating Expired - Lifetime JP4281368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022860A JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022860A JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Publications (2)

Publication Number Publication Date
JP2004232035A true JP2004232035A (en) 2004-08-19
JP4281368B2 JP4281368B2 (en) 2009-06-17

Family

ID=32951821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022860A Expired - Lifetime JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Country Status (1)

Country Link
JP (1) JP4281368B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177760A (en) * 2005-12-28 2007-07-12 Nissan Motor Co Ltd Piston, piston ring and cylinder block for internal combustion engine
JP2009052114A (en) * 2007-08-29 2009-03-12 National Institute Of Advanced Industrial & Technology Fe7Mo6-BASED ALLOY CONSISTING OF THREE PHASES AND ITS MANUFACTURING METHOD
DE102010017009A1 (en) 2009-05-19 2010-12-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A method of forming a carbon particle-containing layer, heat transfer element, power module, and vehicle inverter
JP5826958B1 (en) * 2014-07-29 2015-12-02 株式会社リケン Piston ring for internal combustion engine
US9933070B2 (en) 2014-10-31 2018-04-03 Hyundai Motor Company Coating method for vehicle shift fork and shift fork with amorphous coating layer formed by same
JP7435803B2 (en) 2020-09-02 2024-02-21 日産自動車株式会社 Thermal spray coating and method for producing the spray coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177760A (en) * 2005-12-28 2007-07-12 Nissan Motor Co Ltd Piston, piston ring and cylinder block for internal combustion engine
JP2009052114A (en) * 2007-08-29 2009-03-12 National Institute Of Advanced Industrial & Technology Fe7Mo6-BASED ALLOY CONSISTING OF THREE PHASES AND ITS MANUFACTURING METHOD
DE102010017009A1 (en) 2009-05-19 2010-12-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A method of forming a carbon particle-containing layer, heat transfer element, power module, and vehicle inverter
US8642132B2 (en) 2009-05-19 2014-02-04 Toyota Jidosha Kabushiki Kaisha Method of forming carbon particle-containing film, heat transfer member, power module, and vehicle inverter
JP5826958B1 (en) * 2014-07-29 2015-12-02 株式会社リケン Piston ring for internal combustion engine
US9933070B2 (en) 2014-10-31 2018-04-03 Hyundai Motor Company Coating method for vehicle shift fork and shift fork with amorphous coating layer formed by same
US10969010B2 (en) 2014-10-31 2021-04-06 Hyundai Motor Company Coating method for vehicle shift fork and shift fork with amorphous coating layer formed by the same
JP7435803B2 (en) 2020-09-02 2024-02-21 日産自動車株式会社 Thermal spray coating and method for producing the spray coating
US11965252B2 (en) 2020-09-02 2024-04-23 Nissan Motor Co., Ltd. Sprayed coating and sprayed-coating manufacturing method

Also Published As

Publication number Publication date
JP4281368B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
US5766693A (en) Method of depositing composite metal coatings containing low friction oxides
Yan et al. Microstructure and wear resistance of plasma-sprayed molybdenum coating reinforced by MoSi 2 particles
TW200411083A (en) Piston ring, sprayed coating used therefor and its production method
JP5903085B2 (en) Combination of cylinder bore and piston ring
US9194492B2 (en) Piston ring having a thermally sprayed coating and method for producing same
CA2567089C (en) Wear resistant alloy powders and coatings
JP2003064463A (en) Wear-resistant sprayed coating film on sliding member
JP5514187B2 (en) piston ring
JP4281368B2 (en) Abrasion resistant spray coating
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
JP2003013163A (en) Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
JP4247882B2 (en) Abrasion resistant spray coating
Hwang et al. Effect of oxides on wear resistance and surface roughness of ferrous coated layers fabricated by atmospheric plasma spraying
JP2005155711A (en) Spray piston ring and its manufacturing method
CN105648382B (en) Piston ring and its manufacture method
JP2004183075A (en) Wear resistant member, and rolling member using it
JPS5932654B2 (en) piston ring
JPH08246944A (en) Cylinder for internal combustion engine and manufacture thereof
JP2004307975A (en) Sliding member
CN108660408A (en) Piston ring and its manufacturing method
Obadele et al. Fabrication of AISI 304 Austenitic Stainless Steels with TiN Addition Using Spark Plasma Sintering Method
JPS5993865A (en) Sliding member
JPS6342338A (en) Sliding member
JPH09152035A (en) Piston ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4281368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

EXPY Cancellation because of completion of term