【0001】
【発明の属する技術分野】
本発明はヨードアリール基を有するペントース誘導体に関する。また、本発明は、この化合物を膜構成成分として含むリポソーム、並びに該リポソームを含むX線造影剤及びシンチグラフィー造影剤に関する。
【0002】
【従来の技術】
ヨード化合物を用いたX線血管造影の分野では、水溶性のヨード造影剤を投与することにより血液の流れを造影し、その流れが滞っている箇所を発見する診断技術がある。この方法は、ヨード造影剤が血流中にあり、血管内部の血流の変化を検出する方法であるところから、ヨード造影剤が病巣細胞に局在する場合に比べて正常組織との区別がつけにくい。このため、通常この方法では狭窄が50%以上進んだ病巣しか検出することができず、虚血性疾患の発作が発症する前に病巣を検出することは困難である。
【0003】
これとは別に、疎水性ヨード造影剤もしくは親水性造影剤を製剤化し、目的とする疾患部位に選択的に集積させる試みが報告されている(国際公WO95/19186、同WO95/21631、同WO89/00812、英国特許第867650号、国際公開WO94/19025、同WO96/40615、同WO95/2295、同 WO98/41239、同WO98/23297、同WO99/02193、同 WO97/06132、米国特許第4192859号明細書、同4925649号明細書、Invest. Radiol., 18(3), 275 (1983))。例えば、疎水性化合物であるCholesteryl Iopanoateの油滴分散液を注射することにより、該ヨード化合物が実験動物の動脈硬化部位に集積させる技術(Pharm. Res., 6(12), 1011 (1989))、Cholesteryl IopanoateをアセチルLDLに取り込ませて投与することによって該ヨード化合物が実験動物の動脈硬化部位に集積させる技術(Pharm. Res., 16(3), 420 (1999))が開示されている。
【0004】
また、Cholesteryl Iopanoateの油滴分散液を注射して肝臓や脾臓をX線造影する技術(J. Pharm. Sci. 72(8), 898 (1983))、diatrizoic acid のエステル体をリポソームに封入し、肝臓や脾臓の選択的造影を行う技術(米国特許第4567034号)、血管プールやリンパ系をイメージ化するための造影剤(国際公開WO96/28414、同WO96/00089)が開示されている。しかしながら、これらの製剤方法は、血管疾患を選択的に造影する目的のためには、効率および選択性ともに十分でなく、X線照射により血管疾患を画像化した例も報告されていない。
【0005】
一方、2個の3−アミノ−2,4,6−トリヨードフェニル基を含むアルキルカルボン酸と飽和/不飽和脂肪酸からなるトリグリセリド化合物を、油滴分散(Lipid Emulsion)やTween20分散物として製剤化し、肝臓やBlood−poolの造影を目的として用いる方法が報告されている(特許文献1〜4、非特許文献1〜8)。
【0006】
また、疎水性、かつ加水分解抵抗性の放射性ヨード造影剤をマイクロエマルジョン製剤化、もしくはアセチルLDLに取り込ませて実験動物に投与して、動脈硬化巣部位を放射性造影する例が開示されている(特許文献5)。さらに、上述のCholesteryl Iopanoateも生体内で分解されず、生体臓器、特に肝臓に蓄積することが報告されている(非特許文献9)。このような化合物の性質は生体内に長期留まることを示しており、例えば、X線造影剤のような診断への用途を考えた場合には好ましい性質とはいえない。化合物の観点からはリボースの2,3位水酸基を疎水性エステルとし、5位水酸基にコリン基を導入した化合物が単独でリポソーム様の凝集体を形成するとの記載があるが、本願の用途ならびに製剤化に関する知見は全く無い(非特許文献10)。
【特許文献1】国際公開WO98/46275
【特許文献2】国際公開WO95/31181
【特許文献3】国際公開WO94/19025
【特許文献4】米国特許第4873075号明細書
【特許文献5】国際公開WO01/93918
【非特許文献1】Radiology 216(3), 865 (2000)
【非特許文献2】Invest. Radiol., 35(3), 158 (2000)
【非特許文献3】J. Pharm. Sci., 85(9), 908 (1996)
【非特許文献4】Pharm. Res., 13(6), 875 (1996)
【非特許文献5】J. Med. Chem., 38(4), 636 (1995)
【非特許文献6】Invest. Radiol., 29(SUPPL. 2), S284 (1994)
【非特許文献7】Appl. Radiol. Isot., 37(8), 907(1986)
【非特許文献8】J. Med. Chem., 29(12), 2457 (1986)
【非特許文献9】J. Med. Chem., 25, 1500 (1982)
【非特許文献10】ジャーナル・オブ・アメリカン・ケミカル・ソサイティー、第122巻、8097−8098頁(2000年)
【0007】
【発明が解決しようとする課題及び課題を解決するための手段】
本発明の課題は、病巣を選択的に造影するためのリポソーム含有ヨード造影剤に適したヨード化合物を提供することである。本発明者等は上記の課題を解決すべく研究を行った結果、少なくとも1個のヨードアリール基を有する5炭糖誘導体がX線造影剤としてのリポソームの構成成分として優れた性質を有しており、この化合物を含むリポソームを用いてX線造影することにより血管疾患の病巣を選択的に造影できることを見出した。また同時に、この化合物は造影後に肝臓で代謝され、体内に蓄積しない性質を有することも見出した。本発明は上記の知見を基にして完成された。
【0008】
すなわち、本発明は、下記の一般式(I):
【化2】
(式中、Ar1及びAr2はそれぞれ独立に水素原子又はアリール基を示すが、Ar1及びAr2のうちのいずれか又は両方は少なくとも1個のヨウ素原子を置換基として有するアリール基を示し;L1及びL2はそれぞれ独立に2価の連結基を示し;R1及びR2はそれぞれ独立に水素原子又は一価の置換基を示す)で表される化合物又はその塩を提供するものである。この発明の好ましい態様によれば、Ar1及びAr2がそれぞれ独立に少なくとも3個のヨウ素原子を置換基として有するフェニル基である上記の化合物又はその塩が提供される。
【0009】
別の観点からは、上記一般式(I)で表される化合物又はその塩を膜構成成分として含むリポソームが本発明により提供される。この発明の好ましい態様によれば、ホスファチジルコリン及びホスファチジルセリンの組み合わせを膜構成成分として含む上記のリポソームが提供される。また、上記のリポソームの製造のための上記一般式(I)で表される化合物の使用も本発明により提供される。
【0010】
また、本発明により、上記のリポソームを含むX線造影剤が提供される。この発明の好ましい態様によれば、血管疾患の造影に用いる上記のX線造影剤;泡沫化マクロファージの影響で異常増殖した血管平滑筋細胞の造影に用いる上記のX線造影剤;マクロファージが局在化する組織又は疾患部位の造影に用いる上記のX線造影剤;マクロファージが局在化する組織が肝臓、脾臓、肺胞、リンパ節、リンパ管、及び腎臓上皮からなる群から選ばれる上記のX線造影剤;及びマクロファージが局在化する疾患部位が腫瘍、炎症部位、及び感染部位からなる群から選ばれる上記のX線造影剤が提供される。
【0011】
また、上記X線造影剤の製造のための上記の化合物又はその塩の使用;X線造影法であって、上記の化合物を膜構成成分として含むリポソームをヒトを含む哺乳類動物に投与した後にX線を照射する工程を含む方法;血管疾患の病巣の造影方法であって、上記の化合物を膜構成成分として含むリポソームをヒトを含む哺乳類動物に投与した後にX線を照射する工程を含む方法が本発明により提供される。
【0012】
さらに、少なくとも1つのヨード原子が放射性同位体である上記の化合物又はその塩を膜構成成分として含むリポソーム、及び該リポソームを含むシンチグラフィー造影剤が本発明により提供される。この発明の好ましい態様によれば、泡沫化マクロファージの影響で異常増殖した血管平滑筋細胞の造影に用いる上記のシンチグラフィー造影剤;マクロファージが局在化する組織又は疾患部位の造影に用いる上記のシンチグラフィー造影剤;造影対象の組織が血管、肝臓、脾臓、肺胞、リンパ節、リンパ管、及び腎臓上皮からなる群から選ばれる上記のシンチグラフィー造影剤;腫瘍、動脈硬化巣、炎症部位、及び感染部位からなる群から選ばれる疾患部位の造影に用いる上記のシンチグラフィー造影剤が提供される。
【0013】
また、上記シンチグラフィー造影剤の製造のための上記の化合物又はその塩の使用;シンチグラフィー造影法であって、上記の化合物を膜構成成分として含むリポソームをヒトを含む哺乳類動物に投与した後に該リポソームが発生する放射線を検出する工程を含む方法;血管疾患の病巣の造影方法であって、上記の化合物を膜構成成分として含むリポソームをヒトを含む哺乳類動物に投与した後に該リポソームが発生する放射線を検出する工程を含む方法が本発明により提供される。
【0014】
【発明の実施の形態】
式(1)の基本骨格であるペントースはリボース、アラビノース、キシロース、リキソースから選択され、右旋糖(D−)、左旋糖(L−)のいずれでもよい。好ましくはリボースまたはリキソースであり、さらに好ましくはD−リボースである。
【0015】
Ar1及びAr2が少なくとも1つのヨウ素原子で置換されたアリール基を示す場合、アリール環上のヨウ素原子の個数は2個以上であることが好ましく、3個以上である場合が特に好ましい。ヨウ素原子の個数の上限は特に限定されないが、通常は5個以下である。Ar1及びAr2が示すアリール基の種類は特に限定されないが、アントラセン基、ナフタレン基、又はフェニル基などが好ましく、フェニル基が最も好ましい。Ar1及びAr2がモノ又はジヨードフェニル基を表す場合、ベンゼン環上におけるヨウ素原子の置換位置は特に規定されない。Ar1及びAr2がトリヨードフェニル基を表す場合、ベンゼン環上における3個のヨウ素原子の置換位置は特に規定されないが、例えば「2,4,6位」、「2,3,5位」、「3,4,5位」置換が好ましく、より好ましくは「2,4,6位」、「2,3,5位」置換であり、なかでも「2,4,6位」置換が最も好ましい。
【0016】
Ar1及びAr2が示すアリール基は環上に置換基を有していてもよい。本明細書において、ある官能基について「置換又は無置換」又は「置換基を有していてもよい」という場合には、その官能基が1又は2以上の置換基を有する場合があることを示しているが、特に言及しない場合には、結合する置換基の個数、置換位置、及び種類は特に限定されない。ある官能基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。本明細書において、ある官能基が置換基を有する場合、置換基の例としては、ハロゲン原子(本明細書において「ハロゲン原子」という場合にはフッ素、塩素、臭素、又はヨウ素のいずれでもよい)、アルキル基(本明細書において「アルキル基」という場合には、直鎖状、分岐鎖状、環状、又はそれらの組み合わせのいずれでもよく、環状アルキル基にはビシクロアルキル基などの多環性アルキル基を含む。アルキル部分を含む他の置換基のアルキル部分についても同様である。また、シクロペンタノヒドロフェナントレイン骨格を有するいわゆるステロイド構造も含む。)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基が挙げられる。
【0017】
Ar1及びAr2が示すアリール基の環上に存在する置換基の種類、個数、置換位置は特に限定されない。該アリール環が置換基を有する場合、好ましい置換基の例としては、ハロゲン原子、アルキル基、シアノ基、ヒドロキシル基、アルコキシ基、アミノ基、アシルアミノ基、アシル基、カルボキシル基、アルコキシカルボニル基、カルバモイル基が挙げられる。また、Ar1及びAr2が示すアリール環がヨウ素原子以外の置換基を有しない場合も好ましい。
【0018】
L1及びL2は2価の連結基を表すが、主鎖中に少なくとも1個のヘテロ原子(本明細書において「ヘテロ原子」という場合には、窒素原子、酸素原子、硫黄原子などの炭素原子以外の任意の原子を意味する)を有し、主鎖が6個以上の原子で構成される二価の連結基が好ましい。本明細書において「主鎖」とは−O−CO−とArで表される基の間を最小個数で結ぶ原子群を意味する。該連結基は飽和の基であってもよいが、不飽和結合を含んでいてもよい。主鎖中のヘテロ原子の個数については特に規定されないが5個以下であることが好ましく、より好ましくは3個以下であり、1個であるときが最も好ましい。主鎖中のヘテロ原子の位置についても特に規定されないが、ヘテロ原子の個数が1個であるときは、Ar基から5原子以内であることが好ましい。該連結基は、ヘテロ原子と隣接する炭素原子を含む官能基を部分構造として含んでいてもよい。連結基中に含まれる不飽和部分及び/又はヘテロ原子を含む官能基としては、例えば、アルケニル基、アルキニル基、エステル基(カルボン酸エステル、炭酸エステル、スルホン酸エステル、スルフィン酸エステルを含む)、アミド基(カルボン酸アミド、ウレタン、スルホン酸アミド、スルフィン酸アミドを含む)、エーテル基、チオエーテル基、ジスルフィド基、アミノ基、イミド基などが挙げられる。上記の官能基はさらに置換基を有していてもよく、これらの置換基はL1及びL2にそれぞれ複数個存在してもよい。複数個存在する場合には、それらは同一でも異なっていてもよい。
【0019】
L1及びL2で表される二価の連結基の部分構造として、好ましくはアルケニル基、エステル基、アミド基、エーテル基、チオエーテル基、ジスルフィド基又はアミノ基であり、さらに好ましくはアルケニル基、エステル基、エーテル基である。主鎖中に含まれるへテロ原子は酸素原子又は硫黄原子が好ましく、酸素原子がもっとも好ましい。L1及びL2の炭素数は7〜30が好ましく、10〜25がより好ましく、最も好ましくは10〜20である。L1及びL2は置換基を有していてもよい。置換基を有する場合、ハロゲン原子又はアルキル基が好ましい。また、無置換の場合も好ましい。
【0020】
L1及びL2の好ましい態様を以下に具体的に例示するが、本発明の化合物における連結基はこれらに限定されることはない。なお、以下の例ではいずれも右側に示した結合でAr基と結合する。−(CH2)n−O−、−(CH2)m−S−CH2−、−(CH2)m−(C=O)O−、−(CH2)m−(C=O)NH−、−(CH2)m−O(C=O)−、−(CH2)m−NH(C=O)−、−(CH2)S−NH(C=O)−(CH2)2−O−、−CH2−CH=CH−(CH2)t−O−、−(CH2)m−CH(CH3)−O−[nは10から20の任意の整数を表し;mは9から19の任意の整数を表し;sは8から18の任意の整数を表し;tは7から17の任意の整数を表す]
【0021】
式(I)中のR1は水素原子又は一価の置換基を表す。R1で表される一価の置換基としては炭素数1から5のアルキル基、炭素数2から5のアシル基が挙げられる。R1として好ましくは水素原子、炭素数1から3のアルキル基またはアセチル基、さらに好ましくは水素原子またはメチル基である。R2で表される一価の置換基としては、隣接する酸素原子と結合して炭素数2から40のエステル基(カルボン酸エステル、炭酸エステル、スルホン酸エステル、スルフィン酸エステル、リン酸エステルを含む)を形成可能な原子群、炭素数1から40のエーテル基を形成可能な原子群、およびスルホン酸基などが好ましく、最も好ましくは水素原子、炭素数2から40のエステル基形成原子群、およびスルホン酸基である。
【0022】
本発明の化合物は4個の不斉炭素を有しており、置換基の種類によってはさらに1個以上の不斉炭素を有する場合があることから、不斉炭素に基づく光学活性体又はジアステレオ異性体などの立体異性体が存在する。これらの不斉炭素に基づく光学活性体及びラセミ体純粋な形態の任意の立体異性体、任意の立体異性体の混合物、ラセミ体などは、いずれも本発明の範囲に包含される。また、本発明の化合物はオレフィン性の二重結合を有する場合があるが、その配置はE又はZのいずれであってもよく、両者の混合物として存在していてもよい。本発明の化合物は互変異性体として存在する場合もあるが、任意の互変異性体、又はそれらの混合物は本発明の範囲に包含される。さらに本発明の化合物は置換基の種類によっては塩を形成する場合があり、遊離形態の化合物又は塩の形態の化合物が水和物又は溶媒和物を形成する場合もあるが、このような場合も本発明の範囲に包含される。
【0023】
以下に本発明の化合物の好ましい例を示すが、本発明の化合物はこれらの例に限定されることはない。
【0024】
【化3】
【0025】
【化4】
【0026】
【化5】
【0027】
【化6】
【0028】
本発明の一般式(I)で表される化合物の一般的な合成法について説明するが、本発明の化合物の合成法はこれらに限定されるものではない。本発明の化合物の部分構造であるヨードアリール基、好ましくはヨードフェニル基、とりわけトリヨードフェニル基に関する合成原料としては、通常市販されているものを使用してもよく、あるいは用途に応じて適宜合成してもよい。市販品としては、例えば2,4,6−トリヨードフェノールや安息香酸誘導体(例えば、3−amino−2,4,6−triiodobenzoic acid, acetrizoic acid, iopipamide, diatrizoic acid, histodenz,5−amino−2,4,6−triiodoisophthalic acid, 2,3,5−triiodobenzoic acid, tetraiodo−2−sulfobenzoic acid)、ヨードパン酸(iopanoic acid)、iophenoxic acidなどを用いることができる。合成により入手する場合には、例えばRichard C. Larock著、Comprehensive organic transformations(VCH)に記載の方法により、芳香環上にヨード原子を導入し、原料として用いることができる。
【0029】
上記の化合物は、通常、部分構造として水酸基やアミノ基、チオール基、カルボキシル基等を含有する場合があるが、これらの官能基と二価カルボン酸、ハロゲン化脂肪酸、ヒドロキシ脂肪酸等をエーテル連結/エステル連結/アミノ連結/アミド連結等を介して縮合し、ヨードアリール基を有するカルボン酸として合成中間体として用いることもできる。これらの工程では、必要な場合には保護基を用いることもできるが、この場合の保護基とは、例えば、T. W. Green & P. G. M. Wuts著、Protecting groups in organic synthesis(John Wiley & sonc, inc.)に記載のものを適宜選択して用いることができる。二価カルボン酸としては、例えば、ドデカン二酸、テトラデカン二酸、ドコサンサン二酸、4,4’−ジチオジブタン酸が挙げられ、ハロゲン化脂肪酸としては、例えば、12−ブロモドデカン酸、16−ブロモヘキサデカン酸が挙げられ、ヒドロキシ脂肪酸としては、例えば、10−ヒドロキシデカン酸、12−ヒドロキシドデカン酸、12−ヒドロキシステアリン酸等が挙げられるが、二価カルボン酸はこれらに限定されるものではない。
【0030】
本発明の化合物はL1及びL2が示す二価の連結基として任意の長さのアルキレン鎖を有することができるが、適当な合成原料が存在しない場合には、適宜の原料化合物を用いて合成的に調製することができる。その合成法は、例えば、Wittig反応やBarbier−Wieland分解、Arndt−Eistert合成、アセチリドを用いる方法(例えば、Tetrahedron Lett. 35, 9501 (1994)に記載の方法を参照することができる)、クロロ蟻酸エステルを用いる方法(例えば、Synthesis 427 (1986)に記載された方法など)、マロン酸ジエチルを用いる方法(例えば、Arch. Pharm. (Weinheim) 328, 271 (1995)に記載された方法など)等が挙げられるが、これらの方法は1例であり、これらに限定されるものではない。ヨードアリール基、好ましくはヨードフェニル基、より好ましくはトリヨードフェニル基を有するカルボン酸は、例えばジャーナル・オブ・アメリカン・ケミカル・ソサイティー、第122巻、8097−8098頁(2000年)に記載の方法に準じて本発明の化合物に誘導することができる。
【0031】
本発明の化合物はリポソームの膜構成成分として用いることができ、該リポソームはX線造影剤の有効成分として利用できる。本発明の化合物を含むリポソームにおいて、本発明の化合物の含有量は、膜構成成分の全質量に対して10から90質量%程度、好ましくは10から80質量%、さらに好ましくは20から80質量%である。本発明の化合物は膜構成成分として1種類を用いてもよいが、2種類以上を組み合わせて用いてもよい。
【0032】
リポソーム膜を構成する他の成分としては、リポソームの製造に通常用いられている脂質化合物をいずれも用いることが可能である。例えば、Biochim. Biophys. Acta, 150(4), 44 (1982)、Adv. in Lipid. Res., 16(1) 1 (1978)、”RESEARCH IN LIPOSOMES”(P. Machy, L. Leserman著、John Libbey EUROTEXT社)、「リポソーム」(野島、砂本、井上編、南江堂)等に記載されている。脂質化合物としてはリン脂質が好ましく、特に好ましいのはホスファチルジルコリン(PC)類である。ホスファチジルコリン類の好ましい例としては、eggPC、ジミリストリルPC(DMPC)、ジパルミトイルPC(DPPC)、ジステアロイルPC(DSPC)、ジオレイルPC(DOPC)等が挙げられるが、これらに限定されるものではない。
【0033】
本発明の好ましい態様では、リポソームの膜構成成分として、ホスファチジルコリン及びホスファチジルセリン(PS)からなる群から選ばれるリン脂質を用いることができ、より好ましい態様では両者を組み合わせて用いることができる。ホスファチジルセリンとしては、ホスファチジルコリンの好ましい例として挙げたリン脂質と同様の脂質部位を有する化合物が挙げられる。ホスファチジルコリンとホスファチジルセリンとを組み合わせて用いる場合、PCとPSの好ましい使用モル比はPC:PS=90:10から10:90の間であり、さらに好ましくは、30:70から70:30の間である。
【0034】
本発明のリポソームの別の好ましい態様によると、膜構成成分として、ホスファチジルコリンとホスファチジルセリンとを含み、さらにリン酸ジアルキルエステルを含むリポソームが挙げられる。リン酸ジアルキルエステルのジアルキルエステルを構成する2個のアルキル基は同一であることが好ましく、それぞれのアルキル基の炭素数は6以上であり、10以上が好ましく、12以上がさらに好ましい。アルキル基の炭素数の上限は特に限定されないが、一般的には24個以下である。好ましいリン酸ジアルキルエステルの例としては、ジラウリルフォスフェート、ジミリスチルフォスフェート、ジセチルフォスフェート等が挙げられるが、これに限定されることはない。この態様において、ホスファチジルコリン及びホスファチジルセリンの合計質量に対するリン酸ジアルキルエステルの好ましい使用量は1から50質量%までであり、好ましくは1から30質量%であり、さらに好ましくは1から20質量%である。
【0035】
ホスファチジルコリン、ホスファチジルセリン、リン酸ジアルキルエステル、及び本発明の化合物を膜構成成分として含むリポソームにおいて、上記成分の好ましい質量比はPC:PS:リン酸ジアルキルエステル:本発明の化合物が5〜40質量%:5〜40質量%:1〜10質量%:15〜80質量%の間で選択することができる。
【0036】
本発明のリポソームの構成成分は上記4者に限定されず、他の成分を加えることができる。その例としては、コレステロール、コレステロールエステル、スフィンゴミエリン、FEBS Lett. 223, 42 (1987); Proc. Natl. Acad. Sci., USA, 85, 6949 (1988)等に記載のモノシアルガングリオシドGM1誘導体、Chem. Lett., 2145 (1989); Biochim. Biophys. Acta, 1148, 77 (1992)等に記載のグルクロン酸誘導体、Biochim. Biophys. Acta, 1029, 91 (1990); FEBS Lett., 268, 235 (1990)等に記載のポリエチレングリコール誘導体が挙げられるが、これに限られるものではない。
【0037】
本発明のリポソームは、当該分野で公知のいかなる方法でもっても作成できる。作成法の例としては、先に挙げたリポソームの総説成書類の他、Ann. Rev. Biophys. Bioeng., 9, 467 (1980) 、”Liopsomes”(M.J. Ostro編, MARCELL DEKKER,INC.)等に記載されている。具体例としては、超音波処理法、エタノール注入法、フレンチプレス法、エーテル注入法、コール酸法、カルシウム融合法、凍結融解法、逆相蒸発法等が挙げられるが、これに限られるものではない。本発明のリポソームのサイズは、上記の方法で作成できるサイズのいずれであっても構わないが、通常は平均が400 nm以下であり、200 nm以下が好ましい。リポソームの構造は特に限定されず、ユニラメラ又はマルチラメラなど任意の構造であってもよい。また、リポソームの内部に適宜の薬物や他の造影剤の1種又は2種以上を配合することも可能である。
【0038】
本発明のリポソームは造影剤、好ましくはX線造影剤として用いることができる。本発明の造影剤は、好ましくは非経口的に投与することができ、より好ましくは静脈内投与することができる。例えば、注射剤や点滴剤などの形態の製剤を凍結乾燥形態の粉末状組成物として提供し、用時に水又は他の適当な媒体(例えば生理食塩水、ブドウ糖輸液、緩衝液など)に溶解ないし再懸濁して用いることができる。本発明のリポソームをX線造影剤として用いる場合、投与量は該リポソームのヨード含有量が従来のX線造影剤のヨード含有量と同程度になるように適宜決定することが可能である。
【0039】
いかなる特定の理論に拘泥するわけではないが、動脈硬化、もしくはPTCA後の再狭窄等の血管疾患においては、血管の中膜を形成する血管平滑筋細胞が異常増殖をおこすと同時に内膜に遊走し、血流路を狭くすることが知られている。正常の血管平滑筋細胞が異常増殖を始めるトリガーはまだ完全に明らかにされていないが、マクロファージの内膜への遊走と泡沫化が重要な要因であることが知られており、その後に血管平滑細胞がフェノタイプ変換(収縮型から合成型)をおこすことが報告されている。
【0040】
本発明のリポソームを用いると、泡沫化マクロファージの影響で異常増殖した血管平滑筋細胞に対して本発明のヨード化合物を選択的に取りこませることができる。本発明のリポソームを用いると、公知技術であるサスペンジョン又はオイルエマルジョンを用いる場合と比べて、より多くのヨード化合物を血管平滑筋細胞に集積させることが可能である。この結果、本発明のリポソ−ムを用いると、病巣と非疾患部位の血管平滑筋細胞との間でコントラストの高いX線造影が可能である。従って、本発明の造影剤は、特に血管疾患の造影に好適に使用でき、例えば、動脈硬化巣やPTCA後の再狭窄等の造影を行うことができる。
【0041】
また、例えばJ. Biol. Chem., 265, 5226 (1990)に記載されているように、リン脂質よりなるリポソーム、特にPCとPSから形成されるリポソームが、スカベンジャーレセプターを介してマクロファージに集積しやすいことが知られている。従って本発明のリポソームを使用することにより、本発明のヨード化合物をマクロファージが局在化している組織又は疾患部位に集積させることができる。本発明のリポソームを用いると、公知技術であるサスペンジョン又はオイルエマルジョンを用いる場合に比べて、より多くのヨード化合物をマクロファージに集積させることが可能である。
【0042】
マクロファージの局在化が認められ、本発明の方法で好適に造影可能な組織としては、例えば、血管、肝臓、肺胞、リンパ節、リンパ管、腎臓上皮を挙げることができる。また、ある種の疾患においては、疾患部位にはマクロファージが集積していることが知られている。こうした疾患としては、腫瘍、動脈硬化、炎症、感染等を挙げることができる。従って、本発明のリポソームを用いることにより、これらの疾患部位を特定することができる。特に、アテローム性動脈硬化病変の初期過程において、スカベンジャーレセプターを介して変性LDLを大量に取り込んだ泡沫化マクロファージが集積していることが知られており(Am. J. Pathol., 103, 181(1981)、Annu. Rev. Biochem., 52, 223(1983))、このマクロファージに本発明のリポソームを集積化させてX線造影をすることにより、他の手段では困難な動脈硬化初期病変の位置を特定することが可能である。
【0043】
本発明のリポソームを用いた造影方法は特に限定されない。例えば、通常のX線造影剤を用いた造影方法と同様にしてX線を照射することにより造影を行うことができる。また、ヨードの放射線同位体を含む本発明の化合物を用いてリポソームを形成し、該リポソームをシンチグラフィー用造影剤として用いることにより、核医学的方法による造影を行うことも可能である。ヨードの放射性同位体は特に限定されないが、好ましい例としては122I、123I、125Iおよび131Iが挙げられ、特に好ましい例としては123Iおよび125Iを挙げることができる。
【0044】
放射性ラベル化合物の合成は、対応する非ラベル化合物を合成した後に、Appl. Radiat. Isot., 37(8), 907 (1986)等に記載されている既知の方法で実施することができる。本発明の化合物がトリヨードベンゼン誘導体である場合、同一ベンゼン環上の3個のヨード原子のうち少なくとも1個が放射線同位体化されていることが好ましい。好ましくは2個以上が放射線同位体化されていることであり、最も好ましいのは3個が同一の放射線同位体でラベル化されていることである。
【0045】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。実施例中の化合物番号は、上記の好ましい化合物として示した化合物の番号に対応させてある。
例1
ヘキサデカン二酸10.0gと2,4,6−トリヨードフェノール8.3g、N,N−ジメチルアミノピリジン0.2gをジクロロメタン200mLに加え、さらにエチルジメチルアミノプロピルカルボジイミド4.0gを加えて、室温で1日攪拌した。不溶物を濾別した後、得られた濾液を濃縮し、シリカゲルカラムクロマトグラフィーにて精製した。ヘキサデカン二酸モノ2,4,6−トリヨードフェニルを3.9g(収率30%)で得た。ヘプタデカン二酸より、ヘキサデカン二酸モノ2,4,6−トリヨードフェニルと同様の手法でヘプタデカン二酸モノ2,4,6−トリヨードフェニルを得た。
【0046】
12−ブロモドデカン酸4.8gと2,4,6−トリヨードフェノール9.1gをエタノール70mLに加え、還流して溶解させた。水酸化カリウム2.2gを加えてさらに12時間攪拌を続けた。得られた沈殿を濾別、エタノールで洗浄した後、クロロホルムと1規定塩酸を加えて、クロロホルムで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、除媒し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製して12−(2,4,6−トリヨードフェノキシ)ドデカン酸を7.0g(収率60%)得た。16−ブロモヘキサデカン酸より、12−(2,4,6−トリヨードフェノキシ)ドデカン酸の合成法と同様に16−(2,4,6−トリヨードフェノキシ)ヘキサデカン酸を合成した。
【0047】
7−ブロモヘプタン酸エチル4.7gと2,4,6−トリヨードフェノール2.4gをジメチルホルムアミド(DMF)20mLに加え、炭酸カリウム2.1gを加えて室温で1日攪拌した。水を加えて酢酸エチルで2回抽出し、有機層を3回水洗し、無水硫酸マグネシウムで乾燥した後、除媒した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製して7−(2,4,6−トリヨードフェノキシ)ヘプタン酸エチルを6.0g(収率96%)得た。
【0048】
7−(2,4,6−トリヨードフェノキシ)ヘプタン酸エチル4.0gを95%エタノール30mLに加え、還流して溶解した後、水酸化ナトリウム0.5gを加えてさらに1.5時間還流を続けた。得られた結晶を濾別、エタノールで洗浄した後、ジクロロメタンと1規定塩酸を加えて、ジクロロメタンで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、除媒し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製して7−(2,4,6−トリヨードフェノキシ)ヘプタン酸を3.4g(収率90%)得た。11−ブロモウンデカン酸メチルより、7−(2,4,6−トリヨードフェノキシ)ヘプタン酸と同様の手法で11−(2,4,6−トリヨードフェノキシ)ウンデカン酸を得た。
【0049】
9−ヒドロキシノナン酸メチル2.1gとピリジン1.8gをジクロロメタン20mLに加え、0℃で攪拌し、メタンスルホニルクロリド1.3mLを加えて、徐々に室温まで昇温し、1日攪拌した。水を加えた後、ジクロロメタンで2回抽出し、得られた有機層を1規定塩酸、飽和炭酸水素ナトリウム溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、除媒し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製して9−(メタンスルホニルオキシ)ノナン酸メチルを2.1g(収率68%)得た。9−(メタンスルホニルオキシ)ノナン酸メチルを用いて、7−(2,4,6−トリヨードフェノキシ)ヘプタン酸と同様の手法で9−(2,4,6−トリヨードフェノキシ)ノナン酸を得た。
【0050】
15−ペンタデカラクトン25.6gをメタノール150mLに加え、さらに28%ナトリウムメトキシド溶液を50mL加えて3時間還流した。1規定塩酸を加えて酢酸エチルで3回抽出し、有機相を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、除媒した。15−ヒドロキシペンタデカン酸メチルを28.5g(収率98%)得た。15−ヒドロキシペンタデカン酸メチルを用いて、9−(2,4,6−トリヨードフェノキシ)ノナン酸と同様の手法で15−(2,4,6−トリヨードフェノキシ)ペンタデカン酸を得た。
【0051】
トリデカン二酸を用いて、Synth. Commun., 17, 1339 (1987)に記載の方法に準拠して、トリデカン二酸モノメチルを得た。さらに、トリデカン二酸モノメチルを用いて、Aust. J. Chem., 48, 1893 (1995)に記載の方法に準拠して、13−ヒドロキシトリデカン酸メチルを得た。13−ヒドロキシトリデカン酸メチルを用いて、9−(2,4,6−トリヨードフェノキシ)ノナン酸と同様の手法で13−(2,4,6−トリヨードフェノキシ)トリデカン酸を得た。テトラデカン二酸を用いて、13−(2,4,6−トリヨードフェノキシ)トリデカン酸と同様の手法で14−(2,4,6−トリヨードフェノキシ)テトラデカン酸を得た。
【0052】
エイコサン二酸を用いて、13−(2,4,6−トリヨードフェノキシ)トリデカン酸と同様の手法で20−(2,4,6−トリヨードフェノキシ)エイコサン酸を得た。15−(2,4,6−トリヨードフェノキシ)ペンタデカン酸とマロン酸ジエチルを用いて、Arch. Pharm. (Weinheim) 328, 271 (1995)の手法に準拠して2炭素増炭し、17−(2,4,6−トリヨードフェノキシ)ヘプタデカン酸を得た。17−(2,4,6−トリヨードフェノキシ)ヘプタデカン酸を用いて、17−(2,4,6−トリヨードフェノキシ)ヘプタデカン酸と同様の手法で、19−(2,4,6−トリヨードフェノキシ)ナノデカン酸を得た。19−(2,4,6−トリヨードフェノキシ)ナノデカン酸を用いて、17−(2,4,6−トリヨードフェノキシ)ヘプタデカン酸と同様の手法で、21−(2,4,6−トリヨードフェノキシ)ヘンエイコサン酸を得た。
【0053】
化合物1−1−1〜化合物1−1−12は、ジャーナル・オブ・アメリカン・ケミカル・ソサイティー、第122巻、8097−8098頁(2000年)(非特許文献10)に記載の方法に準じて製造した。
化合物1−1−1:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.39 (4H, m) 1.90 (4H, m) 1.70 (4H, m) 1.64−1.52 (4H, m) 1.52−1.38 (4H, m)
化合物1−1−2:
1H−NMR (300MHz, CDCl3) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90(1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.40 (4H, m) 1.90 (4H, m) 1.70 (4H, m) 1.64−1.52 (4H, m) 1.52−1.38 (8H, m)
【0054】
化合物1−1−3:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.39 (4H, m) 1.90 (4H, quin, J = 6.4Hz) 1.70−1.58 (4H, quin, J = 6.4Hz) 1.58−1.46 (4H, m) 1.46−1.30 (20H, m)
化合物1−1−4:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (24H, m)
【0055】
化合物1−1−5:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, quin, J = 6.4Hz) 1.58−1.46 (4H, m) 1.46−1.30 (28H, m)
化合物1−1−6:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (32H, m)
【0056】
化合物1−1−7:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.38 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, m) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (36H, m)
化合物1−1−8:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, m) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (40H, m)
【0057】
化合物1−1−9:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (44H, m)
化合物1−1−11:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (52H, m)
化合物1−1−12:
1H−NMR (300MHz, CDCl3) δ : 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.35 (4H, t, J = 6.4Hz) 1.90 (4H, quin, J =6.4Hz) 1.70−1.58 (4H, m) 1.58−1.46 (4H, m) 1.46−1.30 (60H, m)
【0058】
(化合物1−9〜化合物1−15の合成)
化合物物1−9〜化合物1−15は化合物1−1−3を出発原料として定法のエステル化、アルキル化、スルホ化、コリン化により合成した。
1−9:
1H−NMR (300MHz, CDCl3) δ :8.04 (4H, s) 5.32 (1H, t) 5.24 (1H, d) 4.89(1H, bs) 4.41 (1H, dd) 4.30 (1H, m) 4.18(1H, m) 3.93 (4H, t, J = 6.4Hz) 3.86−3.76(1H, m) 3.72−3.61(1H, m) 3.45(3H, s) 2.39 (4H, m) 1.90 (4H, quin, J = 6.4Hz) 1.70−1.58 (4H, quin, J = 6.4Hz) 1.58−1.46 (4H,m) 1.46−1.30 (20H, m)
【0059】
1−10:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.32 (1H, dd) 5.24 (1H, d) 4.89 (1H, bs) 4.41 (1H, dd) 4.30 (1H, m) 4.18(1H, m) 3.93 (4H, t, J = 6.4Hz) 3.74 (4H, t) 3.38(3H, s) 3.26 (2H, s) 2.60 (4H, t) 2.32 (4H,m) 1.90 (4H, quin, J = 6.4Hz) 1.70−1.40 (8H, m) 1.46−1.30 (20H, m)
1−12:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.32 (1H, dd) 5.24 (1H, d) 4.89 (1H, bs) 4.48−4.00 (3H, m) 3.93 (4H, t, J = 6.4Hz) 3.74 (4H, t) 3.38(3H, s) 3.26 (2H, s) 2.48−2.25 (10H, m) 1.95−1.80 (4H, m) 1.70−1.50 (16H, m) 1.40−1.25 ( H, m) 0.95−0.80 (6H, m)
【0060】
1−14:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.35 (1H, t) 5.18 (1H, dd) 4.89 (1H, d) 4.35 (2H, bs) 4.23 (1H, dd) 4.07−3.95 (1H, m) 3.93 (4H, t, J = 6.4Hz) 3.82 (2H, bs) 3.38(12H, s) 2.60 (4H, t) 2.32 (4H, m) 1.90 (4H, quin, J = 6.4Hz) 1.70−1.40 (8H, m) 1.46−1.30 (20H, m)
1−15:
1H−NMR (300MHz, CDCl3) δ : 8.04 (4H, s) 5.42 (1H, m) 5.23 (1H, m) 4.92 (1H, bs) 4.35−4.12 (3H, m) 3.93 (4H, t, J = 6.4Hz) 3.42 (3H, s) 2.35 (4H, t) 2.32 (4H, m) 1.90−1.75 (8H, m) 1.70−1.40 (8H, m) 1.46−1.30 (20H, m)
【0061】
試験例1:血管平滑筋細胞におけるヨード原子の取り込み量
下記に示した割合でジ・パルミトイル PC(フナコシ社製、No.1201−41−0225)、ジ・パルミトイル PS(フナコシ社製、No.1201−42−0237)をJ. Med. Chem.,25(12), 1500 (1982)記載の方法で、本発明のヨード化合物とナス型フラスコ内でクロロホルムに溶解して均一溶液とした後、溶媒を減圧で留去してフラスコ底面に薄膜を形成した。この薄膜を真空で乾燥後、0.9%生理食塩水(光製薬社製、No512)を適当量加え、超音波照射(Branson社製、No.3542プローブ型発振器、0.1mW)を氷冷下5分実施することにより、均一なリポソーム分散液を得た。得られた分散液の粒径をWBCアナライザー(日本光電社製、A−1042)で測定した結果、粒子径は40から65nmであった。この方法により調製した下記リポソーム製剤をWO 01/82977に記載の血管平滑筋細胞とマクロファージとの混合培養系に添加し、37℃、5%CO2で24時間培養した後、血管平滑筋細胞に取り込まれたヨード化合物を定量した。下記表に示されるとおり、本発明の化合物は効率よく血管平滑筋細胞に取り込まれ、X線造影剤のためのリポソームの構成脂質として優れた性質を有することが明らかである。
【0062】
【表1】
【0063】
試験例2:マウス3日間連続投与毒性試験 試験方法
ICRマウス雄6週齢(日本チャールスリバー)を購入し、1週間の検疫期間の後、クリーン動物舎内(空調:へパフィルター クラス1000、室温:20℃〜24℃ 湿度:35%〜60%)で1週間馴化した。その後、MTD値を求めるため、尾静脈よりリポソーム製剤を投与した。リポソーム製剤は、生理食塩水(光製薬社製)又はグルコース溶液(大塚製薬社製)のいずれかを溶媒として投与した。次に求められたMTD値をもとに、その1/2量を3日間、尾静脈より3日間連続で投与した(n=3匹とする)。症状観察は各投与後6時間までとし、投与終了後剖検を行ない、主要臓器について所見を取ったところ、異常は認められなかった。
【表2】
【0064】
試験例3:S9の作製及び分解試験
SDラット雄6週齢(日本チャールスリバー社製)を購入し1週間馴化した。1週間馴化後、体重を測定し、断頭放血した。肝臓を摘出し、冷却した0.15M KClで3回洗浄した。洗浄後、肝臓の湿重量を測定し、その重量の3倍の冷却した0.15M KClを加え、ホモジナイザーに移した。氷冷中でホモジネイトし、その後、ホモジネイトを9000gで10分間冷却遠心した。この上清をS9と呼び、−80℃以下で保存した。
【0065】
保存してあるS9を流水中で溶解した。溶解したS9 0.1mlに0.4M MgCl2 0.02ml、1.65M KCl 0.02ml、0.2M Naりん酸緩衝液(pH 7.4)0.5mlを加え、グルコース6りん酸(オリエンタル酵母社製)、NADPH(オリエンタル酵母社製)、NADH(オリエンタル酵母社製)を4μMになるように添加して蒸留水を加え、全量を1mlとした(これをS9Mixと呼ぶ)。S9Mix 1mlに被験物質を5μg/mlになるように添加し、37℃で往復振盪した。S9Mix中の被験物質量(未変化体)を経時でHPLCを用い測定した。なお、被験物質はDMSO(和光純薬社製)にて予め溶解した。結果には、S9Mixに添加直後の未変化体量を100とし、30分後の未変化体量をその百分率に直して表記した。本発明の化合物はS9分解試験において効率的に分解されることが明らかであり、X線造影剤のためのリポソームの構成脂質として優れた性質を有することが明らかである。
【表3】
【0066】
【発明の効果】
本発明の化合物は、X線造影剤及びシンチグラフィー造影剤のためのリポソームの膜構成分として優れた性質を有しており、この化合物を含むリポソームを用いてX線造影することにより血管疾患の病巣などを選択的に造影できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pentose derivative having an iodoaryl group. The present invention also relates to a liposome containing this compound as a membrane constituent, and an X-ray contrast agent and a scintigraphic contrast agent containing the liposome.
[0002]
[Prior art]
In the field of X-ray angiography using an iodine compound, there is a diagnostic technique in which a blood flow is imaged by administering a water-soluble iodine contrast agent, and a portion where the flow is stagnant is found. This method is a method in which the iodinated contrast medium is in the blood stream and detects changes in the blood flow inside the blood vessel, so that it can be distinguished from normal tissue compared to the case where the iodinated contrast medium is localized in the focal cells. Hard to put on. For this reason, this method can usually detect only a lesion in which stenosis has progressed by 50% or more, and it is difficult to detect the lesion before the onset of an ischemic disease.
[0003]
Separately, attempts have been reported to formulate a hydrophobic iodine contrast agent or a hydrophilic contrast agent and selectively accumulate it at a target disease site (International Publications WO95 / 19186, WO95 / 21631, WO89). / 00812, British Patent No. 867650, International Publication No. WO94 / 19025, WO96 / 40615, WO95 / 2295, WO98 / 41239, WO98 / 23297, WO99 / 02193, WO97 / 06132, US Pat. No. 4,192,859 Specification, No. 4925649, Invest. Radiol., 18 (3), 275 (1983)). For example, a technique in which an iodine droplet is accumulated in an arteriosclerosis site of an experimental animal by injecting an oil droplet dispersion of a hydrophobic compound, Cholesteryl Iopanoate (Pharm. Res., 6 (12), 1011 (1989)) A technique (Pharm. Res., 16 (3), 420 (1999)) is disclosed in which Cholesteryl Iopanoate is incorporated into acetyl LDL to administer the iodine compound at the arteriosclerosis site of an experimental animal.
[0004]
Also, a technique for X-ray imaging of the liver and spleen by injecting an oil droplet dispersion of Cholesteryl Iopanoate (J. Pharm. Sci. 72 (8), 898 (1983)), an ester of diatrotic acid is encapsulated in liposomes. In addition, a technique for selectively imaging the liver and spleen (US Pat. No. 4,567,034) and a contrast agent for imaging a blood vessel pool and lymph system (International Publication WO96 / 28414, WO96 / 00089) are disclosed. However, these preparation methods are not sufficient in efficiency and selectivity for the purpose of selectively imaging vascular diseases, and no examples of imaging vascular diseases by X-ray irradiation have been reported.
[0005]
On the other hand, a triglyceride compound composed of an alkyl carboxylic acid containing two 3-amino-2,4,6-triiodophenyl groups and a saturated / unsaturated fatty acid is formulated as an oil droplet dispersion or a Tween 20 dispersion. In addition, methods used for the purpose of contrasting liver and Blood-pool have been reported (Patent Documents 1 to 4, Non-Patent Documents 1 to 8).
[0006]
In addition, there is disclosed an example in which a radioiodine contrast agent is prepared by making a hydrophobic and hydrolysis-resistant radioiodide contrast agent into a microemulsion formulation or incorporating it into acetyl LDL and administering it to an experimental animal ( Patent Document 5). Furthermore, it has been reported that the above-mentioned Cholesteryl Iopanoate is not decomposed in the living body and accumulates in living organs, particularly in the liver (Non-patent Document 9). The property of such a compound indicates that it stays in the living body for a long time. For example, it is not a preferable property when considering the use for diagnosis such as an X-ray contrast agent. From the viewpoint of the compound, there is a description that a compound in which the 2,3-position hydroxyl group of ribose is a hydrophobic ester and a choline group is introduced into the 5-position hydroxyl group alone forms a liposome-like aggregate. There is no knowledge about conversion (Non-Patent Document 10).
[Patent Document 1] International Publication WO 98/46275
[Patent Document 2] International Publication WO95 / 31181
[Patent Document 3] International Publication WO94 / 19025
[Patent Document 4] US Pat. No. 4,873,075 [Patent Document 5] International Publication WO01 / 93918
[Non-Patent Document 1] Radiology 216 (3), 865 (2000)
[Non-Patent Document 2] Invest. Radiol. , 35 (3), 158 (2000)
[Non-patent Document 3] Pharm. Sci. , 85 (9), 908 (1996)
[Non-Patent Document 4] Pharm. Res. , 13 (6), 875 (1996)
[Non-Patent Document 5] Med. Chem. , 38 (4), 636 (1995)
[Non-Patent Document 6] Invest. Radiol. , 29 (SUPPL. 2), S284 (1994)
[Non-patent Document 7] Appl. Radiol. Isot. , 37 (8), 907 (1986)
[Non-Patent Document 8] J. Org. Med. Chem. , 29 (12), 2457 (1986)
[Non-Patent Document 9] Med. Chem. , 25, 1500 (1982)
[Non-Patent Document 10] Journal of American Chemical Society, Vol. 122, 8097-8098 (2000)
[0007]
SUMMARY OF THE INVENTION Problems to be Solved by the Invention and Means for Solving the Problems
An object of the present invention is to provide an iodine compound suitable for a liposome-containing iodine contrast agent for selectively imaging a lesion. As a result of studies conducted by the present inventors to solve the above-mentioned problems, a pentose derivative having at least one iodoaryl group has excellent properties as a constituent of a liposome as an X-ray contrast agent. The present inventors have found that the lesion of a vascular disease can be selectively imaged by X-ray imaging using a liposome containing this compound. At the same time, it was found that this compound is metabolized in the liver after imaging and does not accumulate in the body. The present invention has been completed based on the above findings.
[0008]
That is, the present invention provides the following general formula (I):
[Chemical 2]
(In the formula, Ar 1 and Ar 2 each independently represent a hydrogen atom or an aryl group, but either or both of Ar 1 and Ar 2 represent an aryl group having at least one iodine atom as a substituent) L 1 and L 2 each independently represent a divalent linking group; R 1 and R 2 each independently represent a hydrogen atom or a monovalent substituent) or a salt thereof It is. According to a preferred embodiment of the present invention, there is provided the above compound or a salt thereof, wherein Ar 1 and Ar 2 are each independently a phenyl group having at least three iodine atoms as substituents.
[0009]
From another point of view, the present invention provides a liposome comprising the compound represented by the above general formula (I) or a salt thereof as a membrane constituent. According to the preferable aspect of this invention, said liposome containing the combination of a phosphatidylcholine and a phosphatidylserine as a membrane component is provided. The present invention also provides use of the compound represented by the general formula (I) for the production of the liposome.
[0010]
The present invention also provides an X-ray contrast medium comprising the above-described liposome. According to a preferred embodiment of the present invention, the above X-ray contrast medium used for imaging of vascular diseases; the above-mentioned X-ray contrast medium used for imaging of vascular smooth muscle cells abnormally proliferated under the influence of foamed macrophages; The above X-ray contrast agent used for imaging a tissue or a diseased site; the tissue where macrophages are localized is selected from the group consisting of liver, spleen, alveoli, lymph nodes, lymphatic vessels, and kidney epithelium An X-ray contrast agent is provided, wherein the disease site where the macrophages are localized is selected from the group consisting of a tumor, an inflammatory site, and an infected site.
[0011]
Further, use of the above-mentioned compound or a salt thereof for the production of the above-mentioned X-ray contrast agent; an X-ray contrast method, wherein a liposome containing the above-mentioned compound as a membrane constituent is administered to a mammal including human being X A method comprising a step of irradiating a ray; a method for imaging a lesion of a vascular disease, the method comprising a step of irradiating a mammal including a human with a liposome comprising the above-mentioned compound as a membrane constituent and then irradiating with X-rays Provided by the present invention.
[0012]
Furthermore, the present invention provides a liposome containing as a membrane component the above compound or salt thereof in which at least one iodo atom is a radioisotope, and a scintigraphic contrast agent containing the liposome. According to a preferred embodiment of the present invention, the scintigraphic contrast agent used for imaging of vascular smooth muscle cells abnormally proliferated under the influence of foamed macrophages; the scintillation used for imaging tissue or a diseased site where macrophages are localized The above-mentioned scintigraphic contrast agent selected from the group consisting of blood vessels, liver, spleen, alveoli, lymph nodes, lymph vessels, and kidney epithelium; tumor, arteriosclerotic lesion, inflammatory site, and The above scintigraphic contrast agent for use in imaging a diseased site selected from the group consisting of infected sites is provided.
[0013]
Further, the use of the above compound or a salt thereof for the production of the above scintigraphic contrast agent; a scintigraphic imaging method, wherein a liposome containing the above compound as a membrane constituent is administered to a mammal including a human after the administration. A method comprising a step of detecting radiation generated by a liposome; a method for imaging a lesion of a vascular disease, wherein the liposome generates radiation after administration of the liposome containing the above compound as a membrane constituent to a mammal including a human. A method comprising the step of detecting is provided by the present invention.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The pentose, which is the basic skeleton of the formula (1), is selected from ribose, arabinose, xylose, and lyxose, and may be either right-handed sugar (D-) or left-handed sugar (L-). Ribose or lyxose is preferred, and D-ribose is more preferred.
[0015]
When Ar 1 and Ar 2 represent an aryl group substituted with at least one iodine atom, the number of iodine atoms on the aryl ring is preferably 2 or more, and more preferably 3 or more. The upper limit of the number of iodine atoms is not particularly limited, but is usually 5 or less. The kind of the aryl group represented by Ar 1 and Ar 2 is not particularly limited, but is preferably an anthracene group, a naphthalene group, or a phenyl group, and most preferably a phenyl group. When Ar 1 and Ar 2 represent a mono- or diiodophenyl group, the substitution position of the iodine atom on the benzene ring is not particularly defined. When Ar 1 and Ar 2 represent a triiodophenyl group, the substitution positions of the three iodine atoms on the benzene ring are not particularly defined, but for example, “2, 4, 6 position”, “2, 3, 5 position” , “3,4,5-position” substitution is preferred, more preferably “2,4,6-position” substitution, “2,3,4-position” substitution, among which “2,4,6-position” substitution is the most preferable.
[0016]
The aryl group represented by Ar 1 and Ar 2 may have a substituent on the ring. In this specification, when “substituted or unsubstituted” or “may have a substituent” for a certain functional group, the functional group may have one or more substituents. Although shown, the number of substituents to be bonded, the position of substitution, and the type are not particularly limited unless otherwise specified. When a certain functional group has two or more substituents, they may be the same or different. In this specification, when a certain functional group has a substituent, examples of the substituent include a halogen atom (in the present specification, “halogen atom” may be any of fluorine, chlorine, bromine, or iodine). An alkyl group (in this specification, the term “alkyl group” may be linear, branched, cyclic, or a combination thereof, and the cyclic alkyl group may be a polycyclic alkyl such as a bicycloalkyl group. The same applies to the alkyl moiety of other substituents including the alkyl moiety, including so-called steroid structures having a cyclopentanohydrophenanthrene skeleton), alkenyl groups (cycloalkenyl groups, bicycloalkenyl groups). Group), alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxy group Group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), acylamino group, aminocarbonyl Amino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and aryl Sulfinyl group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl and heterocyclic azo group, imide group, phosphino group, Sufiniru group, phosphinyloxy group, phosphinylamino group, and a silyl group.
[0017]
The kind, number, and substitution position of the substituents present on the ring of the aryl group represented by Ar 1 and Ar 2 are not particularly limited. When the aryl ring has a substituent, examples of preferred substituents include a halogen atom, an alkyl group, a cyano group, a hydroxyl group, an alkoxy group, an amino group, an acylamino group, an acyl group, a carboxyl group, an alkoxycarbonyl group, and a carbamoyl group. Groups. It is also preferred that the aryl ring represented by Ar 1 and Ar 2 does not have a substituent other than an iodine atom.
[0018]
L 1 and L 2 each represent a divalent linking group, and at least one heteroatom in the main chain (in the present specification, “heteroatom” refers to a carbon such as a nitrogen atom, an oxygen atom, a sulfur atom, etc. A divalent linking group having a main chain composed of 6 or more atoms is preferred. In this specification, the “main chain” means a group of atoms connecting a minimum number of groups represented by —O—CO— and Ar. The linking group may be a saturated group, but may contain an unsaturated bond. The number of heteroatoms in the main chain is not particularly limited, but is preferably 5 or less, more preferably 3 or less, and most preferably 1. The position of the hetero atom in the main chain is also not particularly defined, but when the number of hetero atoms is 1, it is preferably within 5 atoms from the Ar group. The linking group may contain a functional group containing a carbon atom adjacent to a hetero atom as a partial structure. Examples of the functional group containing an unsaturated moiety and / or a hetero atom contained in the linking group include an alkenyl group, an alkynyl group, and an ester group (including carboxylic acid ester, carbonate ester, sulfonate ester, and sulfinate ester), Examples include amide groups (including carboxylic acid amides, urethanes, sulfonic acid amides, and sulfinic acid amides), ether groups, thioether groups, disulfide groups, amino groups, and imide groups. The above functional group may further have a substituent, and a plurality of these substituents may be present in each of L 1 and L 2 . When two or more exist, they may be the same or different.
[0019]
The partial structure of the divalent linking group represented by L 1 and L 2 is preferably an alkenyl group, ester group, amide group, ether group, thioether group, disulfide group or amino group, more preferably an alkenyl group, An ester group and an ether group. The hetero atom contained in the main chain is preferably an oxygen atom or a sulfur atom, and most preferably an oxygen atom. L 1 and the carbon number of L 2 is preferably 7 to 30, more preferably from 10 to 25, and most preferably 10 to 20. L 1 and L 2 may have a substituent. When it has a substituent, a halogen atom or an alkyl group is preferable. Moreover, the case of no substitution is also preferable.
[0020]
Specific examples of the preferred embodiments of L 1 and L 2 are shown below, but the linking group in the compounds of the present invention is the it is not limited thereto. In the following examples, all are bonded to the Ar group by the bonds shown on the right side. — (CH 2 ) n —O—, — (CH 2 ) m —S—CH 2 —, — (CH 2 ) m — (C═O) O—, — (CH 2 ) m — (C═O) NH—, — (CH 2 ) m —O (C═O) —, — (CH 2 ) m —NH (C═O) —, — (CH 2 ) S —NH (C═O) — (CH 2 ) 2 —O—, —CH 2 —CH═CH— (CH 2 ) t —O—, — (CH 2 ) m —CH (CH 3 ) —O— [n represents an arbitrary integer of 10 to 20. M represents any integer from 9 to 19; s represents any integer from 8 to 18; t represents any integer from 7 to 17;
[0021]
R 1 in formula (I) represents a hydrogen atom or a monovalent substituent. Examples of the monovalent substituent represented by R 1 include an alkyl group having 1 to 5 carbon atoms and an acyl group having 2 to 5 carbon atoms. R 1 is preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an acetyl group, more preferably a hydrogen atom or a methyl group. Examples of the monovalent substituent represented by R 2 include an ester group having 2 to 40 carbon atoms bonded to an adjacent oxygen atom (carboxylic acid ester, carbonic acid ester, sulfonic acid ester, sulfinic acid ester, and phosphoric acid ester. An atomic group capable of forming an ether group having 1 to 40 carbon atoms, a sulfonic acid group, and the like, most preferably a hydrogen atom, an ester group-forming atomic group having 2 to 40 carbon atoms, And sulfonic acid groups.
[0022]
Since the compound of the present invention has four asymmetric carbons and may have one or more asymmetric carbons depending on the type of the substituent, the optically active substance or diastereomer based on the asymmetric carbon is used. There are stereoisomers such as isomers. Optically active substances based on these asymmetric carbons and any stereoisomers in racemic pure form, mixtures of arbitrary stereoisomers, racemates and the like are all included in the scope of the present invention. Moreover, although the compound of this invention may have an olefinic double bond, the arrangement | positioning may be either E or Z and may exist as a mixture of both. The compounds of the invention may exist as tautomers, but any tautomer, or mixture thereof, is included within the scope of the invention. Furthermore, the compound of the present invention may form a salt depending on the type of substituent, and the free form compound or the salt form compound may form a hydrate or solvate. Are also included within the scope of the present invention.
[0023]
Although the preferable example of the compound of this invention is shown below, the compound of this invention is not limited to these examples.
[0024]
[Chemical 3]
[0025]
[Formula 4]
[0026]
[Chemical formula 5]
[0027]
[Chemical 6]
[0028]
The general synthesis method of the compound represented by the general formula (I) of the present invention will be described, but the synthesis method of the compound of the present invention is not limited thereto. As a raw material for the synthesis of an iodoaryl group, preferably an iodophenyl group, particularly a triiodophenyl group, which is a partial structure of the compound of the present invention, commercially available materials may be used, or they may be appropriately synthesized depending on the application. May be. Examples of commercially available products include 2,4,6-triiodophenol and benzoic acid derivatives (for example, 3-amino-2,4,6-triiobenzoic acid, aceticoacid, iopamamide, diatrotic acid, histodenz, 5-amino-2). 4,6-triiodophthalic acid, 2,3,5-triiodobenzoic acid, tetrado-2-sulfobenzoic acid, iodopanic acid, iophenic acid, and the like can be used. When obtained by synthesis, for example, Richard C. et al. An iodo atom can be introduced onto an aromatic ring and used as a raw material by the method described by Larock, Comprehensive organic transformations (VCH).
[0029]
The above compound usually contains a hydroxyl group, amino group, thiol group, carboxyl group or the like as a partial structure, but these functional groups and divalent carboxylic acid, halogenated fatty acid, hydroxy fatty acid and the like are ether-linked / It can also be condensed as an ester linkage / amino linkage / amide linkage etc. and used as a synthetic intermediate as a carboxylic acid having an iodoaryl group. In these steps, if necessary, a protecting group can be used. In this case, examples of the protecting group include T.P. W. Green & P. G. M.M. Those described in Wuts, Protecting groups in organic synthesis (John Wiley & sonic, Inc.) can be appropriately selected and used. Examples of the divalent carboxylic acid include dodecanedioic acid, tetradecanedioic acid, docosansandioic acid, and 4,4′-dithiodibutanoic acid. Examples of the halogenated fatty acid include 12-bromododecanoic acid and 16-bromohexadecane. Examples of the hydroxy fatty acid include 10-hydroxydecanoic acid, 12-hydroxydodecanoic acid, and 12-hydroxystearic acid, but the divalent carboxylic acid is not limited thereto.
[0030]
The compound of the present invention can have an alkylene chain of any length as the divalent linking group represented by L 1 and L 2, but if no suitable synthetic raw material exists, an appropriate raw material compound is used. It can be prepared synthetically. Examples of the synthesis method include Wittig reaction, Barbier-Wieland decomposition, Arndt-Eister synthesis, and a method using acetylide (for example, the method described in Tetrahedron Lett. 35, 9501 (1994) can be referred to), chloroformate A method using an ester (for example, a method described in Synthesis 427 (1986)), a method using diethyl malonate (for example, a method described in Arch. Pharm. (Weinheim) 328, 271 (1995)), etc. However, these methods are only examples, and are not limited thereto. Carboxylic acids having an iodoaryl group, preferably an iodophenyl group, more preferably a triiodophenyl group, are described in, for example, Journal of American Chemical Society, Vol. 122, pages 8097-8098 (2000). The compound of the present invention can be derived according to the above.
[0031]
The compound of the present invention can be used as a membrane constituent of a liposome, and the liposome can be used as an active ingredient of an X-ray contrast agent. In the liposome containing the compound of the present invention, the content of the compound of the present invention is about 10 to 90% by mass, preferably 10 to 80% by mass, more preferably 20 to 80% by mass, based on the total mass of the membrane constituent components. It is. Although the compound of this invention may use 1 type as a film | membrane structural component, you may use it in combination of 2 or more types.
[0032]
As other components constituting the liposome membrane, any lipid compound usually used in the production of liposomes can be used. For example, Biochim. Biophys. Acta, 150 (4), 44 (1982), Adv. in Lipid. Res. , 16 (1) 1 (1978), “RESEARCH IN LIPOSOMES” (by P. Machy, L. Leserman, John Libey EUROEXT), “Liposome” (Nojima, Sunamoto, Inoue, Nankodo), etc. Yes. As the lipid compound, phospholipid is preferable, and phosphatidylcholine (PC) is particularly preferable. Preferred examples of phosphatidylcholines include, but are not limited to, eggPC, dimyristol PC (DMPC), dipalmitoyl PC (DPPC), distearoyl PC (DSPC), dioleyl PC (DOPC), and the like.
[0033]
In a preferred embodiment of the present invention, a phospholipid selected from the group consisting of phosphatidylcholine and phosphatidylserine (PS) can be used as the membrane constituent of the liposome, and in a more preferred embodiment, both can be used in combination. Examples of phosphatidylserine include compounds having the same lipid moiety as the phospholipids listed as preferred examples of phosphatidylcholine. When phosphatidylcholine and phosphatidylserine are used in combination, the preferred molar ratio of PC to PS is between PC: PS = 90: 10 to 10:90, more preferably between 30:70 to 70:30. is there.
[0034]
According to another preferred embodiment of the liposome of the present invention, there is a liposome containing phosphatidylcholine and phosphatidylserine as membrane constituents, and further containing a dialkyl phosphate. The two alkyl groups constituting the dialkyl ester of the phosphoric acid dialkyl ester are preferably the same, and the carbon number of each alkyl group is 6 or more, preferably 10 or more, and more preferably 12 or more. The upper limit of the carbon number of the alkyl group is not particularly limited, but is generally 24 or less. Examples of preferred dialkyl phosphates include, but are not limited to, dilauryl phosphate, dimyristyl phosphate, dicetyl phosphate, and the like. In this embodiment, the preferred amount of dialkyl phosphate used relative to the total weight of phosphatidylcholine and phosphatidylserine is 1 to 50% by weight, preferably 1 to 30% by weight, more preferably 1 to 20% by weight. .
[0035]
In the liposome containing phosphatidylcholine, phosphatidylserine, phosphate dialkyl ester, and the compound of the present invention as membrane constituents, the preferred mass ratio of the above components is PC: PS: phosphate dialkyl ester: 5-40% by mass of the compound of the present invention. : 5-40 mass%: 1-10 mass%: It can select between 15-80 mass%.
[0036]
The constituent components of the liposome of the present invention are not limited to the above four, and other components can be added. Examples include cholesterol, cholesterol esters, sphingomyelin, FEBS Lett. 223, 42 (1987); Proc. Natl. Acad. Sci. , USA, 85, 6949 (1988), etc., monosial ganglioside GM1 derivatives, Chem. Lett. , 2145 (1989); Biochim. Biophys. Acta, 1148, 77 (1992) and the like, glucuronic acid derivatives described in Biochim. Biophys. Acta, 1029, 91 (1990); FEBS Lett. , 268, 235 (1990) and the like, but are not limited thereto.
[0037]
The liposome of the present invention can be prepared by any method known in the art. Examples of the preparation method include Ann. Rev. Biophys. Bioeng. , 9, 467 (1980), “Liopsomes” (edited by MJ Ostro, MARCELL DEKKER, INC.) And the like. Specific examples include sonication, ethanol injection, French press method, ether injection method, cholic acid method, calcium fusion method, freeze-thaw method, reverse phase evaporation method, etc. Absent. The size of the liposome of the present invention may be any size that can be prepared by the above method, but the average is usually 400 nm or less, preferably 200 nm or less. The structure of the liposome is not particularly limited, and may be any structure such as unilamellar or multilamellar. Moreover, it is also possible to mix | blend the 1 type (s) or 2 or more types of a suitable drug and another contrast agent in the inside of a liposome.
[0038]
The liposome of the present invention can be used as a contrast agent, preferably an X-ray contrast agent. The contrast agent of the present invention can be preferably administered parenterally, more preferably intravenously administered. For example, a preparation in the form of an injection or infusion is provided as a powdered composition in a lyophilized form and is not dissolved in water or other appropriate medium (eg, physiological saline, glucose infusion, buffer, etc.) at the time of use. It can be resuspended and used. When the liposome of the present invention is used as an X-ray contrast agent, the dose can be appropriately determined so that the iodine content of the liposome is comparable to the iodine content of a conventional X-ray contrast agent.
[0039]
Without being bound to any particular theory, in vascular diseases such as arteriosclerosis or restenosis after PTCA, vascular smooth muscle cells that form the vascular media grow abnormally and migrate to the intima at the same time However, it is known to narrow the blood flow path. Although the triggers for normal vascular smooth muscle cells to begin to grow abnormally have not yet been fully clarified, macrophage migration and foaming are known to be important factors, followed by vascular smoothness. It has been reported that cells undergo phenotype conversion (contracted to synthetic).
[0040]
When the liposome of the present invention is used, the iodo compound of the present invention can be selectively incorporated into vascular smooth muscle cells abnormally proliferated by the influence of foamed macrophages. When the liposome of the present invention is used, it is possible to accumulate more iodine compound in vascular smooth muscle cells as compared with the case of using a suspension or oil emulsion which is a known technique. As a result, when the liposome of the present invention is used, X-ray imaging with high contrast is possible between a lesion and a vascular smooth muscle cell at a non-disease site. Therefore, the contrast agent of the present invention can be suitably used particularly for imaging of vascular diseases. For example, imaging of arteriosclerotic lesions and restenosis after PTCA can be performed.
[0041]
Also, for example, J. Org. Biol. Chem. , 265, 5226 (1990), it is known that liposomes composed of phospholipids, particularly liposomes formed from PC and PS, tend to accumulate in macrophages via scavenger receptors. Therefore, by using the liposome of the present invention, the iodine compound of the present invention can be accumulated in a tissue or a disease site where macrophages are localized. When the liposome of the present invention is used, it is possible to accumulate more iodine compound in macrophages than in the case of using a suspension or oil emulsion which is a known technique.
[0042]
Examples of the tissue in which macrophage localization is recognized and which can be suitably imaged by the method of the present invention include blood vessels, liver, alveoli, lymph nodes, lymph vessels, and kidney epithelium. Further, in certain diseases, it is known that macrophages are accumulated at the disease site. Examples of such diseases include tumors, arteriosclerosis, inflammation, infection and the like. Therefore, these disease sites can be identified by using the liposome of the present invention. In particular, it is known that foamed macrophages incorporating a large amount of denatured LDL via a scavenger receptor accumulate in the initial stage of atherosclerotic lesions (Am. J. Pathol., 103, 181 ( 1981), Annu. Rev. Biochem., 52, 223 (1983)), and by integrating X-ray imaging of the liposomes of the present invention in the macrophages, the position of the early stage of arteriosclerosis difficult by other means is difficult. Can be specified.
[0043]
The imaging method using the liposome of the present invention is not particularly limited. For example, contrast can be performed by irradiating X-rays in the same manner as a contrast method using a normal X-ray contrast agent. Further, it is also possible to perform imaging by a nuclear medicine method by forming a liposome using the compound of the present invention containing a radioisotope of iodine and using the liposome as a contrast agent for scintigraphy. The radioisotope of iodo is not particularly limited, but preferred examples include 122 I, 123 I, 125 I and 131 I, and particularly preferred examples include 123 I and 125 I.
[0044]
Radiolabeled compounds were synthesized after the corresponding non-labeled compound was synthesized, then Appl. Radiat. Isot. 37 (8), 907 (1986) and the like. When the compound of the present invention is a triiodobenzene derivative, it is preferable that at least one of the three iodo atoms on the same benzene ring is radioisotope. Preferably two or more are radioisotopes, most preferably three are labeled with the same radioisotope.
[0045]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example. The compound numbers in the examples correspond to the compound numbers shown as the preferred compounds described above.
Example 1
Add 10.0 g of hexadecanedioic acid, 8.3 g of 2,4,6-triiodophenol and 0.2 g of N, N-dimethylaminopyridine to 200 mL of dichloromethane, and then add 4.0 g of ethyldimethylaminopropylcarbodiimide to room temperature. For 1 day. The insoluble material was filtered off, and the obtained filtrate was concentrated and purified by silica gel column chromatography. 3.9 g (yield 30%) of hexadecanedioic acid mono 2,4,6-triiodophenyl was obtained. From heptadecanedioic acid, heptadecanedioic acid mono-2,4,6-triiodophenyl was obtained in the same manner as hexadecanedioic acid mono-2,4,6-triiodophenyl.
[0046]
4.8 g of 12-bromododecanoic acid and 9.1 g of 2,4,6-triiodophenol were added to 70 mL of ethanol and dissolved by refluxing. Potassium hydroxide 2.2g was added and stirring was continued for another 12 hours. The resulting precipitate was separated by filtration and washed with ethanol, chloroform and 1N hydrochloric acid were added, and the mixture was extracted twice with chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was removed, and the resulting residue was purified by silica gel column chromatography to obtain 7.0 g of 12- (2,4,6-triiodophenoxy) dodecanoic acid (yield 60 %)Obtained. 16- (2,4,6-triiodophenoxy) hexadecanoic acid was synthesized from 16-bromohexadecanoic acid in the same manner as 12- (2,4,6-triiodophenoxy) dodecanoic acid.
[0047]
4.7 g of ethyl 7-bromoheptanoate and 2.4 g of 2,4,6-triiodophenol were added to 20 mL of dimethylformamide (DMF), 2.1 g of potassium carbonate was added, and the mixture was stirred at room temperature for 1 day. Water was added and the mixture was extracted twice with ethyl acetate. The organic layer was washed three times with water, dried over anhydrous magnesium sulfate, and then the solvent was removed. The obtained residue was purified by silica gel column chromatography to obtain 6.0 g (yield 96%) of ethyl 7- (2,4,6-triiodophenoxy) heptanoate.
[0048]
After adding 4.0 g of ethyl 7- (2,4,6-triiodophenoxy) heptanoate to 30 mL of 95% ethanol and dissolving by refluxing, 0.5 g of sodium hydroxide was added and the mixture was further refluxed for 1.5 hours. Continued. The obtained crystals were separated by filtration, washed with ethanol, dichloromethane and 1N hydrochloric acid were added, and the mixture was extracted twice with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, the solvent was removed, and the resulting residue was purified by silica gel column chromatography to obtain 3.4 g (yield 90) of 7- (2,4,6-triiodophenoxy) heptanoic acid. %)Obtained. 11- (2,4,6-triiodophenoxy) undecanoic acid was obtained from methyl 11-bromoundecanoate in the same manner as 7- (2,4,6-triiodophenoxy) heptanoic acid.
[0049]
2.1 g of methyl 9-hydroxynonanoate and 1.8 g of pyridine were added to 20 mL of dichloromethane and stirred at 0 ° C., 1.3 mL of methanesulfonyl chloride was added, the temperature was gradually raised to room temperature, and the mixture was stirred for 1 day. After adding water, the mixture was extracted twice with dichloromethane, and the obtained organic layer was washed with 1N hydrochloric acid and saturated sodium hydrogen carbonate solution. The organic layer was dried over anhydrous sodium sulfate, the solvent was removed, and the resulting residue was purified by silica gel column chromatography to obtain 2.1 g (yield 68%) of methyl 9- (methanesulfonyloxy) nonanoate. 9- (2,4,6-triiodophenoxy) nonanoic acid was prepared in the same manner as 7- (2,4,6-triiodophenoxy) heptanoic acid using methyl 9- (methanesulfonyloxy) nonanoate. Obtained.
[0050]
25.6 g of 15-pentadecalactone was added to 150 mL of methanol, and 50 mL of a 28% sodium methoxide solution was further added, followed by refluxing for 3 hours. 1N Hydrochloric acid was added, and the mixture was extracted 3 times with ethyl acetate. The organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was removed. 28.5 g (yield 98%) of methyl 15-hydroxypentadecanoate was obtained. 15- (2,4,6-triiodophenoxy) pentadecanoic acid was obtained in the same manner as 9- (2,4,6-triiodophenoxy) nonanoic acid using methyl 15-hydroxypentadecanoate.
[0051]
Using tridecanedioic acid, Synth. Commun. , 17, 1339 (1987), monomethyl tridecanedioate was obtained. Further, using monomethyl tridecanedioate, Aust. J. et al. Chem. 48, 1893 (1995), methyl 13-hydroxytridecanoate was obtained. 13- (2,4,6-triiodophenoxy) tridecanoic acid was obtained in the same manner as 9- (2,4,6-triiodophenoxy) nonanoic acid using methyl 13-hydroxytridecanoate. Using tetradecanedioic acid, 14- (2,4,6-triiodophenoxy) tetradecanoic acid was obtained in the same manner as 13- (2,4,6-triiodophenoxy) tridecanoic acid.
[0052]
Using eicosandioic acid, 20- (2,4,6-triiodophenoxy) eicosanoic acid was obtained in the same manner as 13- (2,4,6-triiodophenoxy) tridecanoic acid. Using 15- (2,4,6-triiodophenoxy) pentadecanoic acid and diethyl malonate, Arch. Pharm. (Weinheim) 328, 271 (1995) was used to increase the number of carbons by 2 to obtain 17- (2,4,6-triiodophenoxy) heptadecanoic acid. 19- (2,4,6-triiodophenoxy) heptadecanoic acid was used in the same manner as 17- (2,4,6-triiodophenoxy) heptadecanoic acid. Iodophenoxy) nanodecanoic acid was obtained. 19- (2,4,6-triiodophenoxy) nanodecanoic acid was used in the same manner as 17- (2,4,6-triiodophenoxy) heptadecanoic acid, and 21- (2,4,6-trioic acid). Iodophenoxy) heneicosanoic acid was obtained.
[0053]
Compound 1-1-1 to Compound 1-1-12 are prepared according to the method described in Journal of American Chemical Society, Vol. 122, pages 8097-8098 (2000) (Non-patent Document 10). Manufactured.
Compound 1-1-1
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 39 (4H, m) 1.90 (4H, m) 1.70 (4H, m) 1.64-1.52 (4H, m) 1.52-1.38 (4H, m)
Compound 1-1-2:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 40 (4H, m) 1.90 (4H, m) 1.70 (4H, m) 1.64-1.52 (4H, m) 1.52-1.38 (8H, m)
[0054]
Compound 1-1-3:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 39 (4H, m) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, quin, J = 6.4 Hz) 1.58-1.46 (4H, m) 1.6-1.30 (20H, m)
Compound 1-1-4:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.6-1.30 (24H, m)
[0055]
Compound 1-1-5:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, quin, J = 6.4 Hz) 1.58-1. 46 (4H, m) 1.6-1.30 (28H, m)
Compound 1-1-6:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.6-1.30 (32H, m)
[0056]
Compound 1-1-7:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.38 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, m) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.46-1. 30 (36H, m)
Compound 1-1-8:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, m) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.46-1. 30 (40H, m)
[0057]
Compound 1-1-9:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.46-1.30 (44H, m)
Compound 1-1-11:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.6-1.30 (52H, m)
Compound 1-1-12:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.03 (4H, s) 5.37 (1H, t) 5.24 (1H, d) 4.90 (1H, bs) 4.22 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3.61 (1H, m) 3.45 (3H, s) 35 (4H, t, J = 6.4 Hz) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, m) 1.58-1.46 (4H, m) 1.6-1.30 (60H, m)
[0058]
(Synthesis of Compound 1-9 to Compound 1-15)
Compound 1-9 to Compound 1-15 were synthesized by standard esterification, alkylation, sulfonation, and corrination using Compound 1-1-3 as a starting material.
1-9:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.32 (1H, t) 5.24 (1H, d) 4.89 (1H, bs) 4.41 (1H, dd) 4.30 (1H, m) 4.18 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.86-3.76 (1H, m) 3.72-3. 61 (1H, m) 3.45 (3H, s) 2.39 (4H, m) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.58 (4H, quin, J = 6.4 Hz) 1.58-1.46 (4H, m) 1.46-1.30 (20H, m)
[0059]
1-10:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.32 (1H, dd) 5.24 (1H, d) 4.89 (1H, bs) 4.41 (1H, dd) 4.30 (1H, m) 4.18 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.74 (4H, t) 3.38 (3H, s) 26 (2H, s) 2.60 (4H, t) 2.32 (4H, m) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.40 (8H, m) 46-1.30 (20H, m)
1-12:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.32 (1H, dd) 5.24 (1H, d) 4.89 (1H, bs) 4.48-4. 00 (3H, m) 3.93 (4H, t, J = 6.4 Hz) 3.74 (4H, t) 3.38 (3H, s) 3.26 (2H, s) 2.48-2. 25 (10H, m) 1.95-1.80 (4H, m) 1.70-1.50 (16H, m) 1.40-1.25 (H, m) 0.95-0.80 ( 6H, m)
[0060]
1-14:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.35 (1H, t) 5.18 (1H, dd) 4.89 (1H, d) 4.35 (2H, bs) 4.23 (1H, dd) 4.07-3.95 (1H, m) 3.93 (4H, t, J = 6.4 Hz) 3.82 (2H, bs) 3.38 (12H, s) 2.60 (4H, t) 2.32 (4H, m) 1.90 (4H, quin, J = 6.4 Hz) 1.70-1.40 (8H, m) 1.46-1. 30 (20H, m)
1-15:
1 H-NMR (300 MHz, CDCl 3 ) δ: 8.04 (4H, s) 5.42 (1H, m) 5.23 (1H, m) 4.92 (1H, bs) 4.35-4. 12 (3H, m) 3.93 (4H, t, J = 6.4 Hz) 3.42 (3H, s) 2.35 (4H, t) 2.32 (4H, m) 1.90-1. 75 (8H, m) 1.70-1.40 (8H, m) 1.46-1.30 (20H, m)
[0061]
Test Example 1: Iodo atom uptake in vascular smooth muscle cells Di-palmitoyl PC (Funakoshi, No. 1201-41-0225), Di-palmitoyl PS (Funakoshi, No. 1201) at the following ratios -42-0237) in J. Med. Chem. , 25 (12), 1500 (1982), the iodine compound of the present invention and an eggplant-shaped flask were dissolved in chloroform to form a homogeneous solution, and then the solvent was distilled off under reduced pressure to form a thin film on the bottom of the flask. Formed. The thin film was dried in vacuum, 0.9% physiological saline (manufactured by Hikari Pharmaceutical Co., Ltd., No. 512) was added in an appropriate amount, and ultrasonic irradiation (Branson Co., Ltd., No. 3542 probe type oscillator, 0.1 mW) was ice-cooled. By carrying out for 5 minutes, a uniform liposome dispersion was obtained. As a result of measuring the particle size of the obtained dispersion with a WBC analyzer (manufactured by Nihon Kohden Co., Ltd., A-1042), the particle size was 40 to 65 nm. The following liposome preparation prepared by this method was added to the mixed culture system of vascular smooth muscle cells and macrophages described in WO 01/82777, and cultured at 37 ° C. and 5% CO 2 for 24 hours. The incorporated iodine compound was quantified. As shown in the following table, it is clear that the compound of the present invention is efficiently taken up by vascular smooth muscle cells and has excellent properties as a constituent lipid of liposomes for X-ray contrast agents.
[0062]
[Table 1]
[0063]
Test example 2: Mice 3 day continuous administration toxicity test Test method ICR mouse male 6 weeks old (Nippon Charles River) was purchased, and after a quarantine period of 1 week, in clean animal house (air conditioning: Hepafilter class 1000, room temperature : 20 ° C to 24 ° C, humidity: 35% to 60%) for 1 week. Thereafter, in order to determine the MTD value, a liposome preparation was administered from the tail vein. The liposome preparation was administered using either physiological saline (manufactured by Hikari Pharmaceutical Co., Ltd.) or glucose solution (manufactured by Otsuka Pharmaceutical Co., Ltd.) as a solvent. Next, based on the determined MTD value, 1/2 of that amount was administered for 3 days from the tail vein for 3 consecutive days (n = 3). Symptoms were observed for up to 6 hours after each administration. After completion of administration, autopsy was performed and findings were observed for major organs. No abnormalities were observed.
[Table 2]
[0064]
Test Example 3: Production of S9 and degradation test SD rat male 6 weeks old (manufactured by Charles River Japan) was purchased and acclimated for 1 week. After acclimatization for 1 week, the body weight was measured and the blood was decapitated. The liver was removed and washed 3 times with chilled 0.15M KCl. After washing, the wet weight of the liver was measured, and 0.15 M KCl cooled to 3 times its weight was added and transferred to a homogenizer. Homogenization was performed in ice-cooling, and then the homogenate was cooled and centrifuged at 9000 g for 10 minutes. This supernatant was called S9 and stored at -80 ° C or lower.
[0065]
The stored S9 was dissolved in running water. To 0.1 ml of dissolved S9, 0.02 ml of 0.4M MgCl 2, 0.02 ml of 1.65M KCl, 0.5 ml of 0.2M Na phosphate buffer (pH 7.4) was added, and glucose hexaphosphate (Oriental) was added. Yeast Co., Ltd.), NADPH (Oriental Yeast Co., Ltd.) and NADH (Oriental Yeast Co., Ltd.) were added to 4 μM, and distilled water was added to make the total volume 1 ml (this is called S9Mix). The test substance was added to 1 ml of S9Mix so as to have a concentration of 5 μg / ml, and shaken at 37 ° C. The amount of the test substance (unmodified) in S9Mix was measured over time using HPLC. The test substance was previously dissolved in DMSO (manufactured by Wako Pure Chemical Industries). In the results, the unchanged mass immediately after addition to S9Mix was taken as 100, and the unchanged mass after 30 minutes was converted to the percentage and expressed. It is clear that the compound of the present invention is efficiently degraded in the S9 degradation test, and it is clear that it has excellent properties as a constituent lipid of liposomes for X-ray contrast agents.
[Table 3]
[0066]
【The invention's effect】
The compound of the present invention has an excellent property as a membrane component of a liposome for an X-ray contrast medium and a scintigraphic contrast medium. X-ray imaging using a liposome containing this compound causes vascular disease. Can selectively contrast lesions.