JP2004230657A - Method for joining crosslinked polyethylene tube to joint - Google Patents

Method for joining crosslinked polyethylene tube to joint Download PDF

Info

Publication number
JP2004230657A
JP2004230657A JP2003020752A JP2003020752A JP2004230657A JP 2004230657 A JP2004230657 A JP 2004230657A JP 2003020752 A JP2003020752 A JP 2003020752A JP 2003020752 A JP2003020752 A JP 2003020752A JP 2004230657 A JP2004230657 A JP 2004230657A
Authority
JP
Japan
Prior art keywords
joint
joining
cross
joining member
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003020752A
Other languages
Japanese (ja)
Inventor
Ryosuke Ito
良輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003020752A priority Critical patent/JP2004230657A/en
Publication of JP2004230657A publication Critical patent/JP2004230657A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining a crosslinked polyethylene tube to a joint with the advantages that even a sleeve not crosslinked at all unexpectedly proves to be heat-resistant as a result of the study to find how the heat resistance and fusing strength of joint parts of the tube and the joint part change by the material, rotating velocity and the like of the sleeve and the frictional fusion joining of sufficient strength of the joint surface between the tube and the joint can be realized by setting the rotating velocity of the sleeve at the joint surface within a specified range. <P>SOLUTION: In this method, a frictional fusion layer of both joint parts of the joining member of is a polyethylene layer with a density of 0.93×10<SP>3</SP>to 0.95×10<SP>3</SP>kgf/m<SP>3</SP>and a melt flow rate of 0.1 to 10 g/10 min. The crosslinked polyethylene tube and the joint are forced into both joint parts of the joining member which rotate at a rotary velocity of 0.35 to 0.8 m/s and thus both tube and joint are joined together by frictional fusion. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は架橋ポリエチレン管と架橋ポリエチレン継手とを接合部材の回転摩擦溶融により接合する方法に関するものである。
【0002】
【従来の技術】
ガス用、上水道用、給水給湯用、温泉用、スプリンクラー用等の配管には、耐蝕性に優れた熱可塑性樹脂配管材が使用されている。就中、オレフィン系樹脂は、軽量で施工性に優れ、延性材料で耐震性に優れていることから、これらの用途に多用されている。
また、このオレフィン系樹脂は、融点が低いことから、融着法を用いて継ぎ目の無い管路を形成することで、機械的な接合に比べて配管全体の信頼性を向上させることができる。
融着法としては、熱板を用いて配管材の接合面を溶融し圧着するバット融着法や、継手内面に電熱線を内蔵させ、通電により継手および管を伝熱により溶融して接合する、所謂、エレクトロフュージョン継手を使用する電気融着法が一般的である。
【0003】
しかし、バット融着法は、伝熱による溶融接合であるために、接合に要する時間が非常に長くなるという欠点や、熱板を取り除く工程の際にできてしまうスキン層を押し出すために多くの溶融樹脂が必要となるという欠点があり、電気融着法では、継手に電熱線を内蔵するためにリサイクルが困難であると共に継手が複雑となるためコスト高となり、また、接合時間が長くかかるという問題があった。
【0004】
樹脂同士の融着は、分子の絡み合いにより生じるのであるが、樹脂分子は熱を与えることで拡散運動を生じ、接合面で双方の樹脂分子が相互に進入し、1分子長さ以上の分子が絡み合うことで高強度の融着を発現するようになる。
ところで、上記配管材は、耐熱性を向上させるために架橋が施されることが多い。この場合、ゲル分率が50%未満の樹脂同士では自由に相互拡散する分子が多いため熱を与えさえすれば、比較的どのような融着方法でも高強度に融着される。しかし、ゲル分率が50%以上の樹脂同士では、自由に相互拡散できる分子が少ないため、単に熱を与えるだけでは高強度の融着とはならない、という問題点があった。
【0005】
一方で、配管材同士の接合方法として、配管材を、その外径より小さい内径を有するスリーブの両端部に押圧挿入保持させ、上記スリーブを回転させることにより、その摩擦熱で、両配管材とスリーブとを融着させる、所謂、摩擦溶融接合法が提案されている。
また、管の外径より小さな内径の接合部と継手の内径より大きな外径の接合部とを有するスリーブを回転させ、この回転しているスリーブの両接合部に管と継手とを押圧挿入することにより、管と継手とを摩擦溶融接合することも提案されている。
【0006】
そこで、本願出願人は、架橋樹脂管と架橋樹脂継手とを接続するに当たり、回転しているスリーブを使用して摩擦溶融接合することを考え、実験した結果、熱可塑性樹脂により構成される、2つの配管材とスリーブとからなり、第1の配管材の外面とスリーブの内面、及び、第2の配管材の内面とスリーブの外面とが摩擦溶融接合により接合されており、上記2つの配管材の管内表層に露出された部位の樹脂のゲル分率が50%以上であり、第1の配管材とスリーブとの接合面の少なくともいずれか一方、及び、第2の配管材とスリーブとの接合面の少なくともいずれか一方における樹脂のゲル分率が50%未満となされていることを特徴とする熱可塑性樹脂管の接続構造とすることにより、可能であることを確認し、特許出願をした。(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開2002−103453号公報
【0008】
【発明が解決しようとする課題】
しかし、この特許文献1に記載のように、接合面の少なくともいずれか一方における樹脂のゲル分率を50%未満の一定かつ、接合面全体に均一なゲル分率となるように架橋度を調整することは非常に困難で、どうしても架橋度がばらついてしまう。
架橋度がばらつくと、回転しているスリーブを使用して摩擦溶融接合しても、架橋度により溶融状態が変わるため融着状態が変化して、融着強度に差が生じることとなり、特に、配管材またはスリーブの製造ロットが異なる場合には、回転速度を調整しないと、長期に渡って使用可能な強度のある融着ができないという問題があった。
【0009】
本発明は、上記の問題を解消するために、架橋ポリエチレン管と架橋ポリエチレン継手とを、スリーブの回転により摩擦溶融接合するに当たり、管および継手の架橋度、スリーブの材質、回転速度等により、管と継手との接合部の耐熱性や融着強度がどのように変化するかを検討したところ、意外にもスリーブが全く架橋していないものであっても、耐熱性を発現し、しかも、スリーブの管および継手との接合面における回転速度をある一定の範囲内の回転速度とすることにより、十分な強度の摩擦溶融接合が可能であることを見いだして、本発明を完成したものである。
【0010】
【課題を解決するための手段】
本願の請求項1に係る架橋ポリエチレン管と継手との接合方法は、架橋ポリエチレン管と架橋ポリエチレン継手とを接合部材の回転摩擦溶融接合により接合する方法であって、接合部材は架橋ポリエチレン管外径より小さい内径を有する接合部と架橋ポリエチレン継手の内径より大きい外径を有する接合部とを有し、両接合部の摩擦融着層は、密度0.93×10〜0.95×10kgf/m、メルトフローレート0.1〜10g/10分であるポリエチレン層であり、この接合部材を、接合部の回転速度が0.35〜0.8m/sの範囲で回転させ、この回転している接合部材の両接合部に前記管と継手とが押圧挿入され、摩擦溶融して接合されることを特徴とする。
【0011】
本発明はこのような構成となされ、接合部材の回転摩擦溶融接合において、接合部材の両接合部の摩擦融着部のポリエチレン層の密度とメルトフローレートとを特定の範囲のポリエチレン層とすると共に、回転摩擦融着時の接合部材の摩擦融着部の回転速度を特定の範囲とすることにより、接合部材を回転させ、この回転している接合部材の両接合部に、架橋ポリエチレン管と架橋ポリエチレン継手とを押圧挿入するだけで、架橋ポリエチレン管の端部外面と接合部材内面および接合部材外面と架橋ポリエチレン継手内面とが摩擦溶融して嵌合され、融着される。即ち、架橋ポリエチレン管と架橋ポリエチレン継手とを回転摩擦融着するのに、従来の非架橋のオレフィン系樹脂管と継手とを回転摩擦融着するのと全く同様の装置を使用して、同様の操作で、架橋ポリエチレン管の耐熱性を維持して、十分な強度の溶融接合が可能となったのである。
【0012】
また、請求項2に係る架橋ポリエチレン管と継手との接合方法は、請求項1において、架橋ポリエチレン管外径と接合部材の接合部内径との差および架橋ポリエチレン継手内径と接合部材の接合部外径との差が0.4〜1.6mmであることを特徴とする。
このような差を有していると、摩擦溶融が確実で強固な融着接合を簡単に行うことができる。
【0013】
本発明に使用される継手としては、たとえば、エルボ、チーズ、レジューサー、インクリーザー、ヘッダー、または片側が金属螺子インサートとなっているアダプターなどであってもよい。 .
【0014】
また、架橋ポリエチレン管と継手は、ポリエチレン樹脂、好ましくは中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどから成形され、架橋処理されて、耐熱性を有するものとなされている。耐熱性を有する程度に架橋する、特に、湯や温泉など高温下で使用する管路に適用する場合には、ゲル分率が65%以上とすることが必要である。なお、ゲル分率は、JIS K6796に準じて測定されたものであり、重量百分率で定義されたものである。
【0015】
ポリエチレン管および継手を架橋したものとするには、通常の架橋法が採用され、例えば、水架橋法、電子線架橋法、過酸化物等の架橋剤を用いた架橋法などが挙げられる。
【0016】
また、本発明に使用される接合部材は、耐熱性を有する樹脂成形品でも金属から形成されたものであってもよいが、架橋ポリエチレン管および架橋ポリエチレン継手との接合部には、密度0.93×10〜0.95×10kgf/m、メルトフローレート0.1〜10g/10分であるポリエチレン層である摩擦融着層を有していることが必要である。
このポリエチレン層は、接合部材の接合部に摩擦融着層として層状に形成されていても、接合部材全体がこのポリエチレン樹脂から成形されていてもよい。
ポリエチレン層としては、回転摩擦溶融時に、溶融する厚さ(例えば、0.5mm)以上の厚さを有していればよい。
【0017】
上記接合部材の製造方法としては特に限定されない。形状面で問題がなければ、成形コストの面から射出成形で製造するのがよい。また、耐熱性を有する樹脂成形品または金属部品をインサート射出成形したものであってもよい。
【0018】
本発明においては、上記接合部材を、接合部の回転速度が0.35〜0.8m/sの範囲で回転保持し、この回転している接合部材の接合部に前記架橋ポリエチレン管と継手とが押圧挿入され、接合部材の接合部内面と管外面および接合部外面と継手内面とが、摩擦溶融して接合される。
回転している接合部材の接合部に前記架橋ポリエチレン管と継手とが押圧挿入されて、接合部材の接合部内面と管外面および接合部外面と継手内面とが、摩擦溶融するためには、接合部材は架橋ポリエチレン管外径より小さい内径を有する接合部と架橋ポリエチレン継手の内径より大きい外径を有する接合部とを有していて、管および継手を接合部材の接合部に押圧挿入すると、押圧接触面が摩擦溶融して挿入される。
【0019】
管および継手を回転している接合部材の接合部に押圧挿入して、十分な融着強度を得るためには、架橋ポリエチレン管外径と接合部材の接合部内径との差および架橋ポリエチレン継手内径と接合部材の接合部外径との差が0.4〜1.6mmであると、融着強度が高く、しかも管と継手とを接合部材に容易に押圧挿入できて、接合作業が行い易いため好ましい。
【0020】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面を参照しつつ説明する。
図1は、本発明の架橋ポリエチレン管と継手との接合方法で接合された接合品の一例を示す断面図である。
図1において、1は架橋ポリエチレン管、2は架橋ポリエチレン継手の一種で管を分配するためのヘッダー、3は接合部材である。管1は押出成形後架橋処理されたものであり、ヘッダー2および接合部材3は射出成形後架橋処理されたものである。
【0021】
図1に示すように、架橋ポリエチレン管1と接合部材3とは、架橋ポリエチレン管1の端部外面11と接合部材3の接合部内面31とが回転摩擦溶融接合され、ヘッダー2の内面21と接合部材3の接合部外面32とが回転摩擦溶融接合されて接合されている。
【0022】
図2は、本発明の架橋ポリエチレン管1とヘッダー2とを、回転保持されている接合部材3の接合部に押圧挿入して、回転摩擦溶融接合するための接合装置の一例を示す側面図である。
【0023】
この接合装置は、中央位置に接合部材3の回転保持具4設けられている。回転保持具4は、フレーム41に接合部材3を回転保持する回転支持歯車42、42が設けられ、モーター43で回転する駆動歯車44との間に接合部材3が装着されて、回転保持されるようになっている。接合部材3には外周に従動歯車が設けられていて、この柔道歯車が回転支持歯車42、42と噛み合って保持され、駆動歯車44で回転させられるようになっている。接合部材3に設けられる従動歯車は接合部材3と一体に成形されていても、二つ割りの従動歯車が接合部材3の外周に取り付けられているものであってもよい。二つ割りの従動歯車が金属製のものであると回転による歯車の損傷がなく、融着後取り外すことができるので、すっきりした配管ラインを形成できる。
【0024】
架橋ポリエチレン管1は保持具45に保持され、ヘッダー2は保持具46に保持されて、エアシリンダー47、48の作動で、接合部材3の接合部に向けて移動可能となされている。
【0025】
この接合装置を使用して接合部材3の回転により、架橋ポリエチレン管1とヘッダー2とを融着接合するには、まず、回転保持具4の回転支持歯車42、42と駆動歯車44との間に従動歯車が噛み合うように装着し、保持具45、46にそれぞれ架橋ポリエチレン管1とヘッダー2とを接合部が同芯となるよう保持する。
そして、モーター43を起動して駆動歯車44を回転させ、従動歯車を回転させ、それにより接合部材3が回転する。次に、エアシリンダー47、48を作動させて、この回転する接合部材3の接合部に向けて、保持具45と46を移動させ、架橋ポリエチレン管1を回転部材3の接合部内面31に押圧挿入すると同時に、ヘッダー2の内面21に接合部外面32が押圧挿入される。
【0026】
架橋ポリエチレン管1の外径が接合部材3の接合部内面31より大となされ、ヘッダー2の内径が接合部材3の接合部外面32より小となされているので、架橋ポリエチレン管1とヘッダー2とを回転する接合部材3に押圧すると、摩擦熱で嵌合する両表面が溶融して挿入される。所定の寸法だけ挿入されたら、エアシリンダー47、48による保持具45、46の移動を止め、モーター43を停止する。摩擦溶融部が冷却固化するまで、停止状態を維持した後、接合装置から取り外される。
【0027】
【実施例・比較例】
本発明を実施例および比較例をもってさらに詳しく説明する。
(実施例1)
架橋ポリエチレン管1として、積水化学工業社製、製品名「エスロペックス13A」(三菱化学社製シラン架橋性ポリマーXHE740N:密度0.947g/cm、メルトフローレート0.35g/10分を使用して押出成形し、成形後、水架橋したもので、ゲル分率67%に調整したもの、外径D=17.2mm)を使用した。
また、ヘッダー2としては、上記架橋ポリエチレン管と同じ原料を用いて図3に示した形状(D1 =29mm、D2 =25.8mm、D3 =23.2mm、D4 =17.2mm、D5 =13.2mm、L1 =12mm、L2 =3mm)のものを射出成形により成形し、水架橋したもので、ゲル分率67%に調整したものを使用した。
また、接合部材3としては、中密度ポリエチレン(三井化学社製NZ4005M、密度0.942g/cm、融点129℃、メルトフローレート0.20g/10分)を用いて図4に示した形状(D11=29mm、D12=23.7mm、D13=16.7mm、L3 =23mm、L4 =13mm)のものを射出成形により成形したものを準備した。
【0028】
そして、架橋ポリエチレン管1、ヘッダー2および接合部材3を図2に示す接合装置に取付け、接合部材3を542rpmで回転させた。次いでエアシリンダー47、48を作動させて、架橋ポリエチレン管1およびヘッダー2を回転している接合部材3に向けて移動させ、架橋ポリエチレン管1を接合部材3の接合部内面31に押圧挿入すると共に、ヘッダー2の内面21を接合部材3の接合部外面32に押圧挿入する。所定の寸法だけ移動させたら、エアーシリンダー47、48の作動を止め、回転を8秒間させた後、モーター43を停止する。停止状態を60秒間維持して融着接合部が固化した後、図1に示す接合品が得られた。
この時の架橋ポリエチレン管1の外径は接合部材3の接合部内面31の内径より0.5mm大となされ、接合面における回転速度は0.49m/sであり、ヘッダー2の内面21の内径は接合部材3の接合部外面32外径より0.5mm小となされ、接合面における回転速度は0.66m/sであった。
【0029】
得られた接合品につき、95℃における内圧クリープ試験を行ったところ、最終的な状態は架橋ポリエチレン管1のクリープ破壊であり、接合部からの漏水は見られなかった。
【0030】
(比較例1)
実施例1において、接合部材3が密度0.948g/cm、メルトフローレート0.03g/10分のポリエチレンから成形されている以外は、実施例1と同一条件で架橋ポリエチレン管1とヘッダー2とを摩擦溶融接合した。
得られた接合品につき、1.3MPa の内圧で、95℃における内圧クリープ試験を行ったところ、約50時間で継手と接合部材の接合部から漏水した。
【0031】
(比較例2)
実施例1において、接合部材3が密度0.943g/cm、メルトフローレート20g/10分のポリエチレンから成形されている以外は、実施例1と同一条件で架橋ポリエチレン管1とヘッダー2とを摩擦溶融接合した。
得られた接合品につき、1.3MPa の内圧で、95℃における内圧クリープ試験を行ったところ、約50時間で継手と接合部材の接合部から漏水した。
【0032】
(比較例3)
実施例1において、接合部材3が密度0.914g/cm、メルトフローレート2.3g/10分のポリエチレンから成形されている以外は、実施例1と同一条件で架橋ポリエチレン管1とヘッダー2とを摩擦溶融接合した。
得られた接合品につき、1.3MPa の内圧で、95℃における内圧クリープ試験を行ったところ、約20時間で継手と接合部材の接合部から漏水した。
【0033】
(比較例4)
実施例1において、接合部材3が密度0.961g/cm、メルトフローレート0.63g/10分のポリエチレンから成形されている以外は、実施例1と同一条件で架橋ポリエチレン管1とヘッダー2とを摩擦溶融接合した。
得られた接合品につき、1.3MPa の内圧で、95℃における内圧クリープ試験を行ったところ、約20時間で継手と接合部材の接合部から漏水した。
【0034】
【発明の効果】
本発明は上述した通りの構成となされ、接合部材の回転摩擦溶融接合において、接合部材の両接合部の摩擦融着部のポリエチレン層の密度とメルトフローレートとを特定の範囲のポリエチレン層とすると共に、回転摩擦融着時の接合部材の摩擦融着部の回転速度を特定の範囲とすることにより、接合部材を回転させ、この回転している接合部材の両接合部に、架橋ポリエチレン管と架橋ポリエチレン継手とを押圧挿入するだけで、架橋ポリエチレン管の端部外面と接合部材内面および接合部材外面と架橋ポリエチレン継手内面とが摩擦溶融して嵌合され、融着される。即ち、架橋ポリエチレン管と架橋ポリエチレン継手とを回転摩擦融着するのに、従来の非架橋のオレフィン系樹脂管と継手とを回転摩擦融着するのと全く同様の装置を使用して、同様の操作で、架橋ポリエチレン管の耐熱性を維持して、十分な強度の溶融接合が可能となった。
【0035】
また、接合部材の両接合部の径に差があって、接合部材を回転させると、両接合部において回転速度に差が生じ、回転速度の差による溶融状態の差によって、融着強度に差が生じていたが、本発明においては、特定のポリエチレン層の接合部材を使用し、特定の回転速度で回転摩擦溶融接合することにより、接合部材の両接合部で同等の融着強度を有する接合ができる。
【0036】
また、請求項2に係る架橋ポリエチレン管と継手との接合方法は、請求項1において、架橋ポリエチレン管外径と接合部材の接合部内径との差および架橋ポリエチレン継手内径と接合部材の接合部外径との差が0.4〜1.6mmであることを特徴としているので、摩擦溶融が確実で強固な融着接合を簡単に行うことができる。
【図面の簡単な説明】
【図1】本発明の架橋ポリエチレン管と継手との接合方法で接合された接合品の一例を示す断面図である。
【図2】本発明の架橋ポリエチレン管と継手との接合方法を具現化するための接合装置の一例を示す側面図である。
【図3】実施例1および比較例1〜4で使用したヘッダー2の形状を示す断面図である。
【図4】実施例1および比較例1〜4で使用した接合部材3の形状を示す断面図である。
【符号の説明】
1 架橋ポリエチレン管
2 架橋ポリエチレン継手(ヘッダー)
3 接合部材
11 架橋ポリエチレン管1の外面
21 ヘッダー2の内面
31 接合部材3の接合部内面
32 接合部材3の接合部外面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for joining a crosslinked polyethylene pipe and a crosslinked polyethylene joint by rotational friction melting of a joining member.
[0002]
[Prior art]
For piping for gas, water supply, hot and cold water supply, hot springs, sprinklers, etc., thermoplastic resin piping materials having excellent corrosion resistance are used. Among them, olefin resins are widely used in these applications because they are lightweight, have excellent workability, and are ductile and have excellent earthquake resistance.
Further, since the olefin-based resin has a low melting point, the reliability of the entire pipe can be improved as compared with mechanical joining by forming a seamless pipe by using a fusion method.
As the fusion method, a butt fusion method of melting and bonding the joint surface of the piping material using a hot plate or a heating wire is built in the joint inner surface, and the joint and tube are melted by heat transfer and joined by energization. A so-called electrofusion method using an electrofusion joint is generally used.
[0003]
However, since the butt fusion method is fusion bonding by heat transfer, there are disadvantages that the time required for bonding is extremely long, and there are many methods for extruding a skin layer formed in a step of removing a hot plate. There is a drawback that a molten resin is required, and in the electric fusion method, it is difficult to recycle because the heating wire is built into the joint, and the joint becomes complicated, so that the cost is high and the joining time is long. There was a problem.
[0004]
The fusion between the resins is caused by the entanglement of the molecules, but the resin molecules generate a diffusion motion by applying heat, and the two resin molecules enter each other at the joint surface, and molecules having a length of one molecule or more are generated. By entanglement, high-strength fusion is developed.
Incidentally, the above-mentioned piping material is often subjected to crosslinking in order to improve heat resistance. In this case, the resin having a gel fraction of less than 50% contains many molecules that freely interdiffuse, so that as long as heat is applied, the resin is fused with high strength by any fusion method. However, there is a problem in that a resin having a gel fraction of 50% or more has few molecules that can freely diffuse into each other, so that simply applying heat does not result in high-strength fusion.
[0005]
On the other hand, as a method of joining the pipe members, the pipe members are pressed and held at both ends of a sleeve having an inner diameter smaller than the outer diameter, and by rotating the sleeve, the frictional heat causes the two pipe members to be in contact with each other. A so-called friction welding method for fusing the sleeve with the sleeve has been proposed.
Further, a sleeve having a joint having an inner diameter smaller than the outer diameter of the pipe and a joint having an outer diameter larger than the inner diameter of the joint is rotated, and the pipe and the joint are pressed and inserted into both joints of the rotating sleeve. Accordingly, it has been proposed to friction-weld the pipe and the joint.
[0006]
Therefore, the applicant of the present application considered that when connecting the cross-linked resin tube and the cross-linked resin joint to perform friction fusion welding using a rotating sleeve, and as a result of an experiment, it was found that An outer surface of the first piping material and an inner surface of the sleeve, and an inner surface of the second piping material and an outer surface of the sleeve are joined by friction welding. The gel fraction of the resin in the portion exposed to the inner surface layer of the pipe is 50% or more, and at least one of the joining surface between the first piping member and the sleeve, and the joining between the second piping member and the sleeve It was confirmed that this was possible by using a thermoplastic resin tube connection structure characterized in that the gel fraction of the resin on at least one of the surfaces was less than 50%, and a patent application was filed. (For example, refer to Patent Document 1).
[0007]
[Patent Document 1]
JP-A-2002-103453
[Problems to be solved by the invention]
However, as described in Patent Document 1, the degree of cross-linking is adjusted so that the gel fraction of the resin on at least one of the joining surfaces is constant at less than 50% and uniform over the entire joining surface. It is very difficult to do so, and the degree of crosslinking will inevitably vary.
When the degree of cross-linking varies, even if friction fusion bonding is performed using a rotating sleeve, the fusion state changes due to the change in the fusion state due to the degree of cross-linking, resulting in a difference in the fusion strength, When the production lot of the piping material or the sleeve is different, there has been a problem that unless the rotation speed is adjusted, it is not possible to perform the fusion with the strength that can be used for a long period of time.
[0009]
In order to solve the above problems, the present invention provides a method of friction-welding a cross-linked polyethylene pipe and a cross-linked polyethylene joint by rotation of a sleeve. After examining how the heat resistance and fusion strength of the joint between the joint and the joint change, surprisingly, even if the sleeve is not cross-linked at all, it expresses heat resistance, The present invention has been completed by finding that by making the rotational speed at the joint surface between the pipe and the joint within a certain range, it is possible to perform friction welding with sufficient strength.
[0010]
[Means for Solving the Problems]
A method for joining a crosslinked polyethylene pipe and a joint according to claim 1 of the present application is a method for joining a crosslinked polyethylene pipe and a crosslinked polyethylene joint by rotational friction fusion welding of a joining member, wherein the joining member has an outer diameter of the crosslinked polyethylene pipe. It has a joint having a smaller inner diameter and a joint having an outer diameter larger than the inner diameter of the crosslinked polyethylene joint, and the friction-fused layers of both joints have a density of 0.93 × 10 3 to 0.95 × 10 3. kgf / m 3 , a polyethylene layer having a melt flow rate of 0.1 to 10 g / 10 min. The joining member is rotated at a joining portion rotating speed of 0.35 to 0.8 m / s. The pipe and the joint are pressed and inserted into both joint portions of the rotating joining member, and are joined by friction melting.
[0011]
The present invention is configured as described above, and in the rotational friction fusion welding of the joining member, the density and the melt flow rate of the polyethylene layer of the friction welding portion of both joining portions of the joining member are set to a specific range of the polyethylene layer. By setting the rotation speed of the friction-welded portion of the joining member at the time of rotational friction welding to a specific range, the joining member is rotated, and the two joining portions of the rotating joining member are cross-linked with the cross-linked polyethylene pipe. Just by pressing and inserting the polyethylene joint, the outer surface of the end of the cross-linked polyethylene pipe and the inner surface of the joining member, and the outer surface of the joining member and the inner surface of the cross-linked polyethylene joint are fitted and fused by friction melting. That is, to perform rotational friction fusion between a cross-linked polyethylene pipe and a cross-linked polyethylene joint, using exactly the same apparatus as that used for rotational friction fusion between a conventional non-cross-linked olefin resin pipe and a joint, the same method is used. By the operation, the heat resistance of the cross-linked polyethylene pipe was maintained, and fusion bonding with sufficient strength became possible.
[0012]
The method for joining a crosslinked polyethylene pipe and a joint according to claim 2 is the method according to claim 1, wherein the difference between the outer diameter of the crosslinked polyethylene pipe and the inside diameter of the joint member and the outside diameter of the crosslinked polyethylene joint and the joint member of the joint member. It is characterized in that the difference from the diameter is 0.4 to 1.6 mm.
With such a difference, it is possible to easily perform strong fusion bonding in which frictional fusion is reliable and strong.
[0013]
The joint used in the present invention may be, for example, an elbow, a cheese, a reducer, an increaser, a header, or an adapter having a metal screw insert on one side. .
[0014]
Further, the crosslinked polyethylene pipe and the joint are molded from a polyethylene resin, preferably a medium density polyethylene, a high density polyethylene, an ultra high molecular weight polyethylene or the like, and are crosslinked to have heat resistance. Crosslinking to a degree having heat resistance, particularly when applied to a pipeline used under high temperature such as hot water or hot spring, the gel fraction needs to be 65% or more. The gel fraction is measured according to JIS K6796, and is defined as a weight percentage.
[0015]
In order to crosslink the polyethylene pipe and the joint, an ordinary crosslinking method is employed, and examples thereof include a water crosslinking method, an electron beam crosslinking method, and a crosslinking method using a crosslinking agent such as a peroxide.
[0016]
The joining member used in the present invention may be a resin molded product having heat resistance or a member formed of metal. It is necessary to have a friction fusion layer which is a polyethylene layer having a 93 × 10 3 to 0.95 × 10 3 kgf / m 3 and a melt flow rate of 0.1 to 10 g / 10 minutes.
The polyethylene layer may be formed in a layer shape as a frictional fusion layer at the joint of the joining member, or the entire joining member may be molded from the polyethylene resin.
The polyethylene layer only needs to have a thickness (for example, 0.5 mm) or more that melts during rotational friction melting.
[0017]
The method for manufacturing the joining member is not particularly limited. If there is no problem in terms of shape, it is preferable to manufacture by injection molding in terms of molding cost. Further, a resin molded product or a metal component having heat resistance may be subjected to insert injection molding.
[0018]
In the present invention, the above-mentioned joining member is rotated and held within a range of 0.35 to 0.8 m / s in the rotational speed of the joining portion, and the cross-linked polyethylene pipe and the joint are attached to the joining portion of the rotating joining member. Is pressed and inserted, and the joint inner surface and the tube outer surface and the joint outer surface and the joint inner surface of the joint member are friction-fused and joined.
In order for the cross-linked polyethylene pipe and the joint to be pressed and inserted into the joint of the rotating joining member, the joint inner surface and the tube outer surface, and the joint outer surface and the joint inner surface of the joint member frictionally melt, so that the joining is performed. The member has a joint having an inner diameter smaller than the outer diameter of the cross-linked polyethylene pipe and a joint having an outer diameter larger than the inner diameter of the cross-linked polyethylene joint. The contact surface is frictionally melted and inserted.
[0019]
To obtain sufficient fusion strength by pressing and inserting the pipe and the joint into the joint of the rotating joining member, the difference between the outside diameter of the cross-linked polyethylene pipe and the inside diameter of the joining member and the inside diameter of the cross-linked polyethylene joint When the difference between the outer diameter of the joint and the joining member is 0.4 to 1.6 mm, the welding strength is high, and furthermore, the pipe and the joint can be easily pressed and inserted into the joining member, and the joining operation can be easily performed. Therefore, it is preferable.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a joined product joined by a joining method of a crosslinked polyethylene pipe and a joint according to the present invention.
In FIG. 1, 1 is a cross-linked polyethylene pipe, 2 is a kind of cross-linked polyethylene joint, a header for distributing the pipe, and 3 is a joining member. The pipe 1 has been subjected to a crosslinking treatment after extrusion molding, and the header 2 and the joining member 3 have been subjected to a crosslinking treatment after injection molding.
[0021]
As shown in FIG. 1, the cross-linked polyethylene pipe 1 and the joining member 3 are joined by rotational friction fusion between the outer end portion 11 of the cross-linked polyethylene pipe 1 and the joining portion inner surface 31 of the joining member 3. The joining member outer surface 32 of the joining member 3 is joined by rotational friction fusion joining.
[0022]
FIG. 2 is a side view showing an example of a joining apparatus for press-inserting the crosslinked polyethylene pipe 1 and the header 2 of the present invention into the joining portion of the joining member 3 held in rotation, and performing rotational friction fusion joining. is there.
[0023]
This joining device is provided with a rotation holder 4 for the joining member 3 at a central position. The rotation holder 4 is provided with rotation supporting gears 42, 42 for rotating and holding the joining member 3 on a frame 41, and the joining member 3 is mounted between the frame 41 and a driving gear 44 rotated by a motor 43, and is held and rotated. It has become. A driven gear is provided on the outer periphery of the joining member 3, and the judo gear is held in mesh with the rotation supporting gears 42, 42, and is rotated by the driving gear 44. The driven gear provided on the joining member 3 may be formed integrally with the joining member 3, or may be one in which a split driven gear is attached to the outer periphery of the joining member 3. If the split driven gear is made of metal, the gear is not damaged by rotation and can be removed after fusion, so that a clean piping line can be formed.
[0024]
The cross-linked polyethylene tube 1 is held by a holder 45, and the header 2 is held by a holder 46, and is movable toward the joint of the joint member 3 by the operation of the air cylinders 47 and 48.
[0025]
In order to fuse and join the crosslinked polyethylene pipe 1 and the header 2 by rotating the joining member 3 using this joining device, first, the rotation supporting gears 42 and 42 of the rotating holder 4 and the driving gear 44 Are mounted so that the driven gears mesh with each other, and the cross-linked polyethylene pipe 1 and the header 2 are held by the holders 45 and 46 such that the joints are concentric.
Then, the motor 43 is activated to rotate the driving gear 44 and rotate the driven gear, whereby the joining member 3 is rotated. Next, the air cylinders 47 and 48 are operated to move the holders 45 and 46 toward the joining portion of the rotating joining member 3, and press the crosslinked polyethylene pipe 1 against the joining portion inner surface 31 of the rotating member 3. At the same time as the insertion, the joint outer surface 32 is pressed into the inner surface 21 of the header 2.
[0026]
Since the outer diameter of the cross-linked polyethylene pipe 1 is larger than the inner surface 31 of the joining member 3 and the inner diameter of the header 2 is smaller than the outer surface 32 of the joining member 3, the cross-linked polyethylene tube 1 and the header 2 When pressed against the rotating joining member 3, both surfaces fitted by frictional heat are melted and inserted. When a predetermined dimension is inserted, the movement of the holders 45 and 46 by the air cylinders 47 and 48 is stopped, and the motor 43 is stopped. Until the friction melting portion cools and solidifies, the stopped state is maintained and then removed from the joining device.
[0027]
[Examples and Comparative Examples]
The present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example 1)
As the crosslinked polyethylene pipe 1, a product name “Eslopex 13A” (manufactured by Mitsubishi Chemical Corporation, silane crosslinkable polymer XHE740N: density 0.947 g / cm 3 , melt flow rate 0.35 g / 10 min, manufactured by Sekisui Chemical Co., Ltd.) Extrusion molding, molding, and water-crosslinking, which had been adjusted to a gel fraction of 67%, and an outer diameter D of 17.2 mm) were used.
The header 2 is made of the same raw material as the above crosslinked polyethylene pipe, and has the shape shown in FIG. 3 (D1 = 29 mm, D2 = 25.8 mm, D3 = 23.2 mm, D4 = 17.2 mm, D5 = 13.3 mm). (2 mm, L1 = 12 mm, L2 = 3 mm) were molded by injection molding, crosslinked with water, and adjusted to a gel fraction of 67%.
As the joining member 3, a medium density polyethylene (NZ4005M manufactured by Mitsui Chemicals, density 0.942 g / cm 3 , melting point 129 ° C., melt flow rate 0.20 g / 10 minutes) was used as the shape shown in FIG. D11 = 29 mm, D12 = 23.7 mm, D13 = 16.7 mm, L3 = 23 mm, L4 = 13 mm) were prepared by injection molding.
[0028]
Then, the crosslinked polyethylene pipe 1, the header 2, and the joining member 3 were attached to the joining device shown in FIG. 2, and the joining member 3 was rotated at 542 rpm. Next, the air cylinders 47 and 48 are operated to move the crosslinked polyethylene tube 1 and the header 2 toward the rotating joining member 3, and the crosslinked polyethylene tube 1 is pressed and inserted into the joint inner surface 31 of the joining member 3. Then, the inner surface 21 of the header 2 is pressed and inserted into the outer surface 32 of the joining portion of the joining member 3. When the air cylinders 47 and 48 are moved by a predetermined distance, the operation of the air cylinders 47 and 48 is stopped, the rotation is performed for 8 seconds, and then the motor 43 is stopped. After maintaining the stopped state for 60 seconds and solidifying the fusion bonded portion, the bonded product shown in FIG. 1 was obtained.
At this time, the outer diameter of the cross-linked polyethylene pipe 1 is set to be 0.5 mm larger than the inner diameter of the inner surface 31 of the joining portion of the joining member 3, the rotation speed at the joining surface is 0.49 m / s, and the inner diameter of the inner surface 21 of the header 2 is Was made 0.5 mm smaller than the outer diameter of the joint outer surface 32 of the joint member 3, and the rotation speed at the joint surface was 0.66 m / s.
[0029]
An internal pressure creep test at 95 ° C. was performed on the obtained bonded product. As a result, the final state was a creep rupture of the crosslinked polyethylene pipe 1, and no water leakage from the bonded portion was observed.
[0030]
(Comparative Example 1)
In Example 1, the cross-linked polyethylene tube 1 and the header 2 were formed under the same conditions as in Example 1 except that the joining member 3 was formed from polyethylene having a density of 0.948 g / cm 3 and a melt flow rate of 0.03 g / 10 minutes. And were subjected to friction fusion bonding.
When an internal pressure creep test at 95 ° C. was performed on the obtained joint at an internal pressure of 1.3 MPa, water leaked from the joint between the joint and the joint member in about 50 hours.
[0031]
(Comparative Example 2)
In Example 1, the cross-linked polyethylene tube 1 and the header 2 were separated under the same conditions as in Example 1 except that the joining member 3 was formed from polyethylene having a density of 0.943 g / cm 3 and a melt flow rate of 20 g / 10 minutes. Friction fusion welding was performed.
When an internal pressure creep test at 95 ° C. was performed on the obtained joint at an internal pressure of 1.3 MPa, water leaked from the joint between the joint and the joint member in about 50 hours.
[0032]
(Comparative Example 3)
In Example 1, the cross-linked polyethylene pipe 1 and the header 2 were manufactured under the same conditions as in Example 1 except that the joining member 3 was molded from polyethylene having a density of 0.914 g / cm 3 and a melt flow rate of 2.3 g / 10 minutes. And were subjected to friction fusion bonding.
When an internal pressure creep test at 95 ° C. was performed on the obtained joint at an internal pressure of 1.3 MPa, water leaked from the joint between the joint and the joint member in about 20 hours.
[0033]
(Comparative Example 4)
A cross-linked polyethylene tube 1 and a header 2 were manufactured under the same conditions as in Example 1 except that the joining member 3 was formed from polyethylene having a density of 0.961 g / cm 3 and a melt flow rate of 0.63 g / 10 minutes. And were subjected to friction fusion bonding.
When an internal pressure creep test at 95 ° C. was performed on the obtained joint at an internal pressure of 1.3 MPa, water leaked from the joint between the joint and the joint member in about 20 hours.
[0034]
【The invention's effect】
The present invention is configured as described above, and in the rotational friction fusion welding of the joining member, the density and the melt flow rate of the polyethylene layer of the friction-welded portion of both joining portions of the joining member are set to a specific range of the polyethylene layer. At the same time, by setting the rotation speed of the friction welding portion of the joining member at the time of rotational friction welding to a specific range, the joining member is rotated, and a cross-linked polyethylene pipe is attached to both joining portions of the rotating joining member. Just by pressing and inserting the crosslinked polyethylene joint, the outer surface of the end of the crosslinked polyethylene pipe and the inner surface of the joining member, and the outer surface of the joining member and the inner surface of the crosslinked polyethylene joint are fitted and fused by friction melting. That is, to perform rotational friction fusion between a cross-linked polyethylene pipe and a cross-linked polyethylene joint, using exactly the same apparatus as that used for rotational friction fusion between a conventional non-cross-linked olefin resin pipe and a joint, the same method is used. By the operation, the heat resistance of the crosslinked polyethylene pipe was maintained, and the fusion bonding with sufficient strength became possible.
[0035]
In addition, there is a difference between the diameters of the two joining portions of the joining member, and when the joining member is rotated, a difference occurs in the rotational speed at the two joining portions. However, in the present invention, by using a joining member of a specific polyethylene layer and performing rotational friction fusion joining at a particular rotational speed, joining having equal fusion strength at both joining portions of the joining member is performed. Can be.
[0036]
The method for joining a crosslinked polyethylene pipe and a joint according to claim 2 is the method according to claim 1, wherein the difference between the outer diameter of the crosslinked polyethylene pipe and the inside diameter of the joint member and the outside diameter of the crosslinked polyethylene joint and the joint member of the joint member. Since the difference between the diameter and the diameter is 0.4 to 1.6 mm, it is possible to easily perform firm fusion bonding with reliable frictional fusion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a joined product joined by a joining method of a crosslinked polyethylene pipe and a joint according to the present invention.
FIG. 2 is a side view showing an example of a joining apparatus for realizing the method for joining a crosslinked polyethylene pipe and a joint according to the present invention.
FIG. 3 is a sectional view showing a shape of a header 2 used in Example 1 and Comparative Examples 1 to 4.
FIG. 4 is a cross-sectional view showing the shape of a joining member 3 used in Example 1 and Comparative Examples 1 to 4.
[Explanation of symbols]
1 Crosslinked polyethylene pipe 2 Crosslinked polyethylene joint (header)
3 joining member 11 outer surface 21 of cross-linked polyethylene pipe 1 inner surface 31 of header 2 joining inner surface 32 of joining member 3 joining outer surface of joining member 3

Claims (2)

架橋ポリエチレン管と架橋ポリエチレン継手とを接合部材の回転摩擦溶融接合により接合する方法であって、接合部材は架橋ポリエチレン管外径より小さい内径を有する接合部と架橋ポリエチレン継手の内径より大きい外径を有する接合部とを有し、両接合部の摩擦融着層は、密度0.93×10〜0.95×10kgf/m、メルトフローレート0.1〜10g/10分であるポリエチレン層であり、この接合部材を、接合部の回転速度が0.35〜0.8m/sの範囲で回転させ、この回転している接合部材の両接合部に前記管と継手とが押圧挿入され、摩擦溶融して接合されることを特徴とする架橋ポリエチレン管と継手との接合方法。A method of joining a cross-linked polyethylene pipe and a cross-linked polyethylene joint by rotational friction fusion welding of a joining member, wherein the joining member has a joint having an inner diameter smaller than the outer diameter of the cross-linked polyethylene pipe and an outer diameter larger than the inner diameter of the cross-linked polyethylene joint. And the frictional fusion layer of both the joints has a density of 0.93 × 10 3 to 0.95 × 10 3 kgf / m 3 and a melt flow rate of 0.1 to 10 g / 10 min. The joint member is rotated at a rotational speed of the joint between 0.35 and 0.8 m / s, and the pipe and the joint are pressed against both joints of the rotating joint member. A method for joining a crosslinked polyethylene pipe and a joint, wherein the joint is inserted, friction-fused, and joined. 架橋ポリエチレン管外径と接合部材の接合部内径との差および架橋ポリエチレン継手内径と接合部材の接合部外径との差が0.4〜1.6mmであることを特徴とする請求項1記載の架橋ポリエチレン管と継手との接合方法。The difference between the outside diameter of the cross-linked polyethylene pipe and the inside diameter of the joint at the joint member and the difference between the inside diameter of the cross-linked polyethylene joint and the outside diameter of the joint at the joint member are 0.4 to 1.6 mm. Of joining a crosslinked polyethylene pipe with a joint.
JP2003020752A 2003-01-29 2003-01-29 Method for joining crosslinked polyethylene tube to joint Withdrawn JP2004230657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020752A JP2004230657A (en) 2003-01-29 2003-01-29 Method for joining crosslinked polyethylene tube to joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020752A JP2004230657A (en) 2003-01-29 2003-01-29 Method for joining crosslinked polyethylene tube to joint

Publications (1)

Publication Number Publication Date
JP2004230657A true JP2004230657A (en) 2004-08-19

Family

ID=32950295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020752A Withdrawn JP2004230657A (en) 2003-01-29 2003-01-29 Method for joining crosslinked polyethylene tube to joint

Country Status (1)

Country Link
JP (1) JP2004230657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159813A (en) * 2009-01-08 2010-07-22 Inoac Housing & Construction Materials Co Ltd Resin pipe with joint
JP2012221733A (en) * 2011-04-08 2012-11-12 Kurashiki Kako Co Ltd Connector
US11022345B1 (en) * 2013-03-15 2021-06-01 Roy Dan Halloran Ground source heat pump heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159813A (en) * 2009-01-08 2010-07-22 Inoac Housing & Construction Materials Co Ltd Resin pipe with joint
JP2012221733A (en) * 2011-04-08 2012-11-12 Kurashiki Kako Co Ltd Connector
US11022345B1 (en) * 2013-03-15 2021-06-01 Roy Dan Halloran Ground source heat pump heat exchanger

Similar Documents

Publication Publication Date Title
EP0167870A2 (en) Welding fluoropolymer pipe and fittings
US6245174B1 (en) Heat recoverable article
WO2010121339A1 (en) Method for the highly-thick thermal coating of joints by using electrofusion in pipes used for conducting fluids, made of steel tubes externally coated with polyolefins
US20060182954A1 (en) Joining metal and plastics surfaces
JP2004230657A (en) Method for joining crosslinked polyethylene tube to joint
EP0454823B1 (en) Method of joining hollow plastics members by fusion
JP4527869B2 (en) Connection structure between piping material and fittings
JPH02258233A (en) Binding method of molded material
JPH11227051A (en) Method for connecting thermoplastic resin tube
JPH06226854A (en) Welding of plastic pipes
JP4071987B2 (en) Thermofusion bonding auxiliary material for thermoplastic resin tube and method for bonding thermoplastic resin tube
EP1064145B1 (en) Method of joining plastics pipes by heat fusion
JP2004100765A (en) Hose welding connection structure
JP2001009917A (en) Bonding method for thermoplastic resin tubular bodies
JP2935421B2 (en) Electrofusion fittings
JP2002103453A (en) Connecting structure of thermoplastic resin tube
JP3213875B2 (en) Method and apparatus for joining thermoplastic pipes
JP2000301615A (en) Method for connecting thermoplastic resin pipe
JP2006283813A (en) Elbow ef joint and its manufacturing method
JP2001150549A (en) Joining structure of thermoplastic crosslinked resin member and joining method
JP2000046280A (en) Connection method for resin pipe and resin coupling
JP2704990B2 (en) Electrofusion fittings
JPH05318594A (en) Connecting method for tubular molded form of polyallylene sulfide
JPH06331089A (en) Electrodeposition method for plastic tube
JPH0751997B2 (en) Joint sleeve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080128