JP2004230645A - Method for manufacturing soil mortar - Google Patents

Method for manufacturing soil mortar Download PDF

Info

Publication number
JP2004230645A
JP2004230645A JP2003020211A JP2003020211A JP2004230645A JP 2004230645 A JP2004230645 A JP 2004230645A JP 2003020211 A JP2003020211 A JP 2003020211A JP 2003020211 A JP2003020211 A JP 2003020211A JP 2004230645 A JP2004230645 A JP 2004230645A
Authority
JP
Japan
Prior art keywords
soil
improved
mortar
generated
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020211A
Other languages
Japanese (ja)
Other versions
JP4359436B2 (en
Inventor
Toshimori Kojima
利司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okutama Kogyo Co Ltd
Original Assignee
Okutama Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okutama Kogyo Co Ltd filed Critical Okutama Kogyo Co Ltd
Priority to JP2003020211A priority Critical patent/JP4359436B2/en
Publication of JP2004230645A publication Critical patent/JP2004230645A/en
Application granted granted Critical
Publication of JP4359436B2 publication Critical patent/JP4359436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the recycling rate of a generated soil in manufacturing a soil mortar. <P>SOLUTION: In this method, the generated soil is dried by a dryer and ground/finely granulated to such a particle size that a particle with a maximum particle diameter can be conveyed by an air vehicle. Next, a solidifying material is added/mixed and then the generated soil mixed with the solidifying material is conveyed to a kneading water mixing site by the air vehicle. At the kneading water mixing site, the kneading water is mixed to manufacture the soil mortar. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、土木建設工事等において主として発生土を用いて行われるソイルモルタルの製造方法に関するものである。
【0002】
【従来の技術】
土木建設工事における土砂の埋め戻し、裏込め、充填および盛土等の施工には、施工用土砂として、施工現場の発生土、例えば、掘削残土などを用い、該発生土に固化材および混練水を添加し混合し流動化させたソイルモルタルを用いる流動化処理工法が広く知られている。
【0003】
ソイルモルタルは一般的には流動化処理土と同じものであり、土に、水(混練水)と固化材、例えば、セメント、高炉スラグ、石膏を混合し、コンクリートのような流動性をもたせたものである。
【0004】
また、建設発生土によっては軟弱なものもあり、強度発現の低下や機械的に取り扱いが難しい。そこで、土自身を改良するために、土に、石灰(生石灰、消石灰)、セメント、高炉スラグ、石膏を混合して改良土(1次処理土)を製造し、しかる後に、水(混練水)と固化材とを混合し流動化処理土(2次処理土)を製造することもある。このように、土質改良土、特に、発生土に生石灰を添加した改良土、すなわち、石灰改良土を製造後、2次処理を行ったほうがソイルモルタルの土の利用率(後述)が向上する。なお、この場合に、生石灰と土との反応を確実にするために、養生期間を設けることが行なわれている。
【0005】
流動化処理工法に石灰改良土が用いられると、生石灰添加により土塊が解砕され易くなり、細粒化が促進され、篩い分けが容易になり粒径分布が安定する。また、固化材および混練水を石灰改良土に添加し混練したときに石灰の団粒化作用により、土粒の溶出が抑制され、流動性に優れたソイルモルタルが得られる。(特許文献1〜3参照)。
【0006】
また、流動化処理工法において流動化処理の急速化を図り、流動化処理土の品質の向上を図る方法として、建築残土等の土砂に水を加え泥水状とし、更に、セメント系固化材あるいは石灰系固化材と共に混合してなる速硬性流動化処理土が知られている(特許文献4参照)。更に、発生土に粘土、シルト、ベントナイト程度の細粒土を含む泥水を混合して特定性状の調整泥水とし、これを流動化処理土に使用する方法も知られている(特許文献5参照)。
【0007】
【特許文献1】
特開平11−172718号公報
【特許文献2】
特開2000−256669号公報
【特許文献3】
特開2001−19956号公報
【特許文献4】
特開平6−344328号公報
【特許文献5】
特許第2728846号公報
【0008】
【発明が解決しようとする課題】
しかしながら、従来のソイルモルタルの製造には、土(発生土)の利用率が低いという問題があった。発生土の利用率とは、最終的にできあがるソイルモルタル(流動化処理土)の一定容積(例えば、1m)当りに、どれだけの土が利用されているかを示すものである。土をそのまま盛土した場合の利用率は概ね100%である。建設現場での発生土をソイルモルタルに再利用するので再利用率ともいう。再利用率が高ければ高いほど評価が高くなる。石灰改良土を用いて2次処理を行ったほうが、再利用率は高くなる。
【0009】
石灰改良土を用いる特許文献1〜3は、1次処理後、すなわち、石灰改良土の製造後において、生石灰の水和反応による膨張の恐れや、生石灰改良効果を十分に発現させるために、生石灰混合後に数日間の養生を行い、しかる後に2次処理の固化材および混練水による混練が行われている。しかしながら、養生の日数および養生するための場所(スペース)が必要であり、更に、横持ちのための重機などにコストがかかるという問題がある。特許文献4、5においてもモルタルに利用される土砂や残土の利用率の低さは改善されていない。
【0010】
従って、この発明の目的は、上述の問題を解決し、流動化処理工法の作業効率を向上し、発生土の再利用率を高めることができる、ソイルモルタルの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1記載の発明は、土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土に固化材および混練水を混合し流動化することに特徴を有するものである。
【0012】
請求項2記載の発明は、土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土を所定の細粒化手段によって所定粒径まで細粒化し、次いで、細粒化した前記土または前記改良土に固化材および混練水を混合し流動化することに特徴を有するものである。
【0013】
請求項3記載の発明は、土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土を所定の細粒化手段によって所定粒径まで細粒化し、次いで、細粒化した前記土または前記改良土に固化材を混合し、次いで、固化材を混合した場所とは別の場所において、固化材を混合した前記土または前記改良土に混練水を混合し流動化することに特徴を有するものである。
【0014】
請求項4記載の発明は、粉砕および篩い分けのうちの少なくとも1つを行って前記発生土を細粒化することに特徴を有するものである。
【0015】
請求項5記載の発明は、乾燥した前記土または前記改良土の最大粒径が5mm以下となるまで細粒化することに特徴を有するものである。
【0016】
請求項6記載の発明は、前記土が土木建設工事等において発生する発生土、前記改良土が前記発生土に生石灰を混合してなる石灰改良土であることに特徴を有するものである。
【0017】
【発明の実施の形態】
土木建設工事等において、ソイルモルタルの製造は主として施工現場の発生土、例えば、掘削残土などを用いて行われる。本発明においては、発生土、または、石灰(生石灰、消石灰)、セメント、高炉スラグあるいは石膏などにより発生土の土質を改良した改良土を用いる。特に、生石灰を混合した石灰改良土を用いるとよい。
【0018】
請求項1〜3の発明は、ソイルモルタルの製造において、土または改良土を乾燥することに特徴を有する。乾燥した土または改良土を用いたソイルモルタルは、所定の流動性を得るために必要な全水量が少ないため、ソイルモルタル中に利用される土または改良土の量を多くできるので、乾燥をしない場合よりも発生土の再利用率が向上する。含水比が0%になるまで乾燥するのがよい。石灰改良土においては、該石灰改良土を乾燥することにより、石灰の水和反応が短時間となり、処理時間を短縮する効果もある。
【0019】
乾燥を実施する手段としては、土または改良土を所定温度に加熱可能な乾燥機を用いて乾燥する方法などを用いるとよい。乾燥機を用いれば短時間で乾燥することができる。このように乾燥は強制的に行なうのがよいが、自然乾燥でもよい。
【0020】
請求項2、3の発明は、乾燥した土または改良土を細粒化することに特徴を有する。細粒化手段として、粉砕や篩い分けを用いるとよい。乾燥した土または改良土を細粒化して最大粒径を一定の粒径以下にすることにより、エアー車などの搬送手段を用いることができる。エアー車とは、セメントのような粉体を、圧縮空気で管の中を移動させる技術を応用したものであり、細粒化した土または改良土を短時間で大量に搬送することができる。このエアー車は密封された容器(サイロのようなもの)を持った大型車であり、圧縮空気を用いて該容器内の粉体を排出し管の中を移動させて搬送するようになっている。エアー車を用いれば、搬送するのに袋に詰めたりすることを必要としないため、短時間で効率良く搬送でき作業効率が向上する。また、搬送コストも向上する。ただし、その構造上粒径の大きなものがあるとうまく容器から排出できないため、ある程度以下の粒径であることが必要である。従来のエアー車においては、生石灰の粉体を搬送する場合において5mm以下の粒径であれば搬送可能であることが知られており、本発明においても最大粒径5mm以下とするとよい。エアー車の機能に応じて最大粒径を調整すればよい。
【0021】
また、このように土または改良土を細粒化することにより、混練水を混合する混練作業を、セメントミルクプラントのような規模の小さい設備によって行なうことができる。また、細粒化により、固化材が混合された土または改良土を、サイロなどに貯蔵することができる。
【0022】
なお、土または改良土を乾燥することにより得られる上述した本発明の作用効果は、乾燥した土または改良土を細粒化してもなんら変わることはない。
【0023】
請求項3の発明は、混練水の混合場所を固化材混合場所とは別の場所で行なうことに特徴を有する。土または改良土を細粒化することにより、エアー車等の搬送手段により効率良く搬送できるため、固化材混合場所と混練水混合場所とを別の場所に設定することができる。このように固化材混合場所と混練水混合場所とを同じ場所に設定しなくてすむため、立地上有利である。また、細粒化によりサイロを使用することができるため、固化材が混合された土または改良土を一時サイロに貯蔵しておくことができる。そして、随時、このように予め固化材が混合された土または改良土を混練水混合場所に搬送し流動化処理をすることができる。
【0024】
【実施例】
次に、発生土からソイルモルタルを製造するこの発明の実施例を説明する。
【0025】
[実施例1]
表1に示す処理方法▲1▼〜▲3▼によって、ソイルモルタルを製造した。発生土(地山)は、礫混じり粘性土を用いた。試料土、固化材、混練水は、ソイルモルタルのフロー値が200〜240mmになる配合条件により配合した。発生土の含水比は39%、乾燥密度(ρd)は1.240g/cmであった。
【0026】
ここで含水比とは、JIS A 1203に規定される土の含水比試験で求められる値である。乾燥密度(ρd)とは、JIS A 1225に規定される土の湿潤密度試験によって求められる値である。また、ソイルモルタルのフロー値とは、日本道路公団規格「エアモルタル及びエアミルクの試験方法」JHS A313・1992)の中のコンシステンシー試験方法のシリンダー法に規定されているフロー試験によって求められる値で、流動性を表す値の1つである。この数値が大きいほど流動性がよい。
【0027】
本発明の実施例である処理方法▲3▼は、下記の通りであった。
【0028】
発生土を110℃の乾燥能力を有する乾燥機に配し、110℃の温度によって1日間(24時間)乾燥した。次いで、このように乾燥した土に、表1に示す配合条件によって固化材および混練水を添加し、ミキサーによって10分間混合してソイルモルタルを製造した。
【0029】
比較例である処理方法▲1▼は、下記の通りであった。
【0030】
乾燥をしない発生土に、表1に示す配合条件によって混練水および固化材を添加し、ミキサーによって10分間混合してソイルモルタルを製造した。
【0031】
比較例である処理方法▲2▼は、下記の通りであった。
【0032】
乾燥をしない発生土に生石灰を8%(湿潤重量比)混合し、3日間(36時間)養生した。次いで、養生した石灰改良土に表1に示す配合条件によって混練水および固化材を添加し、ミキサーによって10分間混合してソイルモルタルを製造した。
【0033】
このような処理方法▲1▼〜▲3▼により製造されたソイルモルタルの土固形分および発生土の再利用率を表1に示す。
【0034】
【表1】

Figure 2004230645
【0035】
表1において、試料土含水比とは、ソイルモルタルとして使うときの試料土の含水比を示す。処理方法▲1▼においては、試料土は発生土のままで乾燥しない状態である。処理方法▲2▼においても試料土は乾燥をしないが、発生土を石灰処理しているため処理方法▲1▼より含水比が小さい。処理方法▲3▼の本発明実施例においては、乾燥処理して試料土含水比は0%である。
【0036】
試料土固形分とは、試料土から水(含水)を除いた質量である。そのため、処理方法▲1▼と▲2▼との比較では含水がある分処理方法▲1▼のほうが固形分が減ってしまっている。
【0037】
処理方法▲2▼は生石灰を添加して石灰改良土としているため、表1においてその分を差し引くため消石灰として記載した。なお、生石灰は水との反応により消石灰になっているため、消石灰の質量として記載されている。
【0038】
ソイルモルタルの土固形分とはソイルモルタルの土そのものの質量である。
【0039】
ソイルモルタルの再利用率とは、ソイルモルタルの一定容積(例えば、1m)当りに、どれだけの土が利用されているかを示す割合である。すなわち、「再利用率=ソイルモルタル1m中の地山容積=土固形分/地山乾燥密度(ρd)」により、求められる。
【0040】
表1に示すように、本発明実施例である処理方法▲3▼においては、乾燥処理により試料土含水比が0.0%であり、試料土固形分が比較例の処理方法▲1▼、▲2▼よりも多い1163kg/mであり、ソイルモルタルの土固形分も同じ値の1163kg/mであった。その結果、ソイルモルタル1m中の地山容積が94%で、発生土の再利用率が処理方法▲1▼、▲2▼よりも高いことがわかる。
【0041】
なお、この処理方法▲3▼は、発生土を用いた例であるが、発生土に生石灰を混合して石灰改良土とし、この石灰改良土を用いて本発明方法によりソイルモルタルを製造した場合も、発生土を用いた処理方法▲3▼と同等あるいはそれ以上の高い再利用率が得られる。また、本発明においては、発生土あるいは石灰改良土を利用する場合でも養生を実施しなくても十分に高い再利用率が得られる。
【0042】
一方、処理方法▲1▼は、乾燥をしないため、含水する発生土のままであり、試料土固形分が本発明実施例より少なく、再利用率が本発明実施例▲3▼より低かった。
【0043】
処理方法▲2▼は、石灰改良土を用い、養生もしているが、乾燥をしないため、試料土固形分が本発明の処理方法▲3▼より低く、3日間の養生の割りには発生土の再利用率は低かった。
【0044】
[実施例2]
本実施例2では、発生土として火山灰質粘性土を用い、実施例1と同様にソイルモルタルのフロー値を200〜240mmになる配合条件により、実施例1と同様の処理方法▲1▼〜▲3▼によりソイルモルタルを製造した。発生土(火山灰質粘性土)の含水比は90%、乾燥密度(ρd)は0.745g/cmであった。
【0045】
処理方法▲1▼〜▲3▼により製造されたソイルモルタルの土固形分および発生土の再利用率を表2に示す。なお、表2に示す表1と同じ語の記載は表1と同意である。
【0046】
【表2】
Figure 2004230645
【0047】
表2に示すように、本発明実施例である処理方法▲3▼においては、乾燥処理により試料土含水比が0.0%であり、試料土固形分が比較例の処理方法▲1▼、▲2▼よりも多い682kg/mであり、ソイルモルタルの土固形分も同じ値の682kg/mであった。その結果、ソイルモルタル1m中の地山容積が92%で、火山灰質粘性土においても発生土の再利用率が処理方法▲1▼、▲2▼よりも高いことがわかる。
【0048】
一方、乾燥をしない処理方法▲1▼および▲2▼においては、本発明実施例の処理方法▲3▼よりも発生土の再利用率が低かった。
【0049】
実施例1、2に示すように、本発明によれば、礫混じり粘性土でも火山灰質粘性土でも同じように高い再利用率が得られることがわかる。
【0050】
【発明の効果】
以上説明したように、この発明によれば下記に示す有用な効果がもたらされる。
1 ソイルモルタルを製造するに当り、発生土または改良土を乾燥することにより含水比が減少し、土固形分が増え、できあがったソイルモルタル中に利用される発生土の再利用率が向上する。
2 発生土または改良土を細粒化することにより、エアー車を用いて短時間で大量搬送することができ作業効率が向上し、搬送コストが低下する。また、サイロなどに貯蔵することができる。
3 発生土または改良土の細粒化によりエアー車等の搬送手段により効率良く搬送でき、固化材混合場所と混練水混合場所とを別の場所に設定することができ、立地上有利である。また、予め固化材を混合した発生土または改良土をサイロに貯蔵しておくことにより、随時混練水の混合場所に供給してソイルモルタルの流動化処理に供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a soil mortar mainly performed using generated soil in civil engineering construction work or the like.
[0002]
[Prior art]
For backfilling, backfilling, filling and embankment of earth and sand in civil engineering construction work, as soil for construction, soil generated at the construction site, for example, using excavated residual soil, etc., and solidified material and kneading water are used for the generated soil. A fluidization treatment method using a soil mortar added, mixed and fluidized is widely known.
[0003]
Soil mortar is generally the same as fluidized soil, and water (kneading water) and a solidifying material such as cement, blast furnace slag, and gypsum are mixed into the soil to give it a fluidity like concrete. Things.
[0004]
In addition, some construction soils are soft, and the strength development is low and mechanical handling is difficult. Therefore, in order to improve the soil itself, lime (quick lime, slaked lime), cement, blast furnace slag, and gypsum are mixed with the soil to produce improved soil (primarily treated soil), and then water (kneading water) And the solidifying material may be mixed to produce fluidized treated soil (secondary treated soil). As described above, the soil mortar utilization rate (to be described later) is improved by performing the secondary treatment after the production of the soil improvement soil, particularly the improvement soil obtained by adding quicklime to the generated soil, that is, the lime improvement soil. In this case, a curing period is provided in order to ensure a reaction between quicklime and soil.
[0005]
When lime-improved soil is used for the fluidization treatment method, the addition of quicklime makes it easier to break up the clod, promotes fine-graining, facilitates sieving, and stabilizes the particle size distribution. In addition, when the solidifying material and the kneading water are added to the lime-improved soil and kneaded, the lime is agglomerated to suppress the dissolution of the soil particles, thereby obtaining a soil mortar having excellent fluidity. (See Patent Documents 1 to 3).
[0006]
In addition, as a method of accelerating the fluidization treatment in the fluidization treatment method and improving the quality of the fluidized treatment soil, water is added to soil and soil such as construction residual soil to make it muddy, and further, cement-based solidified material or lime. A rapid-hardening fluidized soil mixed with a system solidifying material is known (see Patent Document 4). Furthermore, a method is known in which muddy water containing clay, silt, bentonite or other fine-grained soil is mixed with the generated soil to obtain an adjusted muddy water having specific properties, and this is used for fluidized soil (see Patent Document 5). .
[0007]
[Patent Document 1]
JP-A-11-172718 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-256669 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2001-19956 [Patent Document 4]
JP-A-6-344328 [Patent Document 5]
Japanese Patent No. 2728846 [0008]
[Problems to be solved by the invention]
However, the conventional production of soil mortar has a problem that the utilization rate of soil (generated soil) is low. The utilization rate of the generated soil indicates how much soil is used per fixed volume (for example, 1 m 3 ) of the finally completed soil mortar (fluidized soil). When the soil is laid as it is, the utilization rate is approximately 100%. Since the soil generated at the construction site is reused for soil mortar, it is also called the reuse rate. The higher the reuse rate, the higher the rating. When the secondary treatment is performed using the lime-improved soil, the reuse rate becomes higher.
[0009]
Patent Literatures 1 to 3 using lime-improved soil include, after the primary treatment, that is, after the production of lime-improved soil, a risk of expansion due to a hydration reaction of quicklime and a quicklime improving effect. After mixing, curing is performed for several days, and then kneading with a solidifying material and kneading water for secondary treatment is performed. However, there is a problem that the number of days for curing and a place (space) for curing are required, and furthermore, there is a problem that a heavy machine or the like for lateral holding is costly. Patent Literatures 4 and 5 do not improve the low utilization rate of earth and sand or residual soil used for mortar.
[0010]
Accordingly, an object of the present invention is to provide a method for producing a soil mortar capable of solving the above-mentioned problems, improving the working efficiency of the fluidization treatment method, and increasing the recycling rate of generated soil.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that the soil or the improved soil is dried, and then the solidified material and the kneading water are mixed and fluidized with the dried soil or the improved soil.
[0012]
The invention according to claim 2 is characterized in that the soil or the improved soil is dried, and then the dried soil or the improved soil is refined to a predetermined particle size by a predetermined refining means, and then the refined soil is reconstituted. Alternatively, it is characterized in that a solidifying material and kneading water are mixed and fluidized with the improved soil.
[0013]
According to a third aspect of the present invention, the soil or the improved soil is dried, and then the dried soil or the improved soil is refined to a predetermined particle size by a predetermined refinement means. Alternatively, the solidified material is mixed with the improved soil, and then, at a place different from the place where the solidified material is mixed, mixing water is mixed with the soil or the improved soil mixed with the solidified material and fluidized. Have
[0014]
The invention according to claim 4 is characterized in that at least one of pulverization and sieving is performed to make the generated soil fine.
[0015]
The invention according to claim 5 is characterized in that the dried soil or the improved soil is refined until the maximum particle size becomes 5 mm or less.
[0016]
The invention according to claim 6 is characterized in that the soil is generated soil generated in civil engineering construction work or the like, and the improved soil is lime improved soil obtained by mixing quicklime with the generated soil.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In civil engineering construction work and the like, production of soil mortar is mainly performed using soil generated at a construction site, for example, excavated soil. In the present invention, an improved soil obtained by improving the soil quality of the generated soil by lime (quick lime, slaked lime), cement, blast furnace slag, gypsum, or the like is used. In particular, it is preferable to use lime-improved soil mixed with quicklime.
[0018]
The invention of claims 1 to 3 is characterized in drying soil or improved soil in the production of soil mortar. Soil mortar using dried soil or improved soil is not dried because the total amount of water required to obtain a predetermined fluidity is small, and the amount of soil or improved soil used in soil mortar can be increased. The reuse rate of the generated soil is higher than in the case. It is preferable to dry until the water content becomes 0%. In the lime-improved soil, drying the lime-improved soil shortens the hydration reaction of the lime and has an effect of shortening the treatment time.
[0019]
As a means for carrying out the drying, a method of drying the soil or the improved soil using a dryer capable of heating to a predetermined temperature may be used. If a dryer is used, drying can be performed in a short time. As described above, drying is preferably performed forcibly, but may be air drying.
[0020]
The invention according to claims 2 and 3 is characterized in that dried soil or improved soil is refined. Pulverization or sieving may be used as a means for refining. By making the dried soil or the improved soil finer to reduce the maximum particle size to a certain particle size or less, it is possible to use a conveying means such as an air wheel. An air wheel is an application of a technique of moving powder such as cement through a pipe with compressed air, and is capable of transporting a large amount of fine or improved soil in a short time. This pneumatic car is a large car with a sealed container (like a silo). The compressed air is used to discharge the powder in the container, move it through a pipe, and transport it. I have. If an air wheel is used, it is not necessary to pack it in a bag for transport, so that it can be transported efficiently in a short time and the work efficiency is improved. Also, the transportation cost is improved. However, due to its structure, if there is a substance having a large particle size, it cannot be discharged from the container well, so it is necessary that the particle size is somewhat smaller. It is known that, in the case of a conventional pneumatic wheel, when quicklime powder is conveyed, it can be conveyed if it has a particle size of 5 mm or less. In the present invention, the maximum particle size may be 5 mm or less. The maximum particle size may be adjusted according to the function of the air wheel.
[0021]
In addition, by kneading the soil or the improved soil in this way, the kneading operation of mixing the kneading water can be performed by a small-scale facility such as a cement milk plant. In addition, by the grain refinement, the soil or the improved soil mixed with the solidifying material can be stored in a silo or the like.
[0022]
The above-mentioned effects of the present invention obtained by drying the soil or the improved soil do not change at all even if the dried soil or the improved soil is refined.
[0023]
The invention of claim 3 is characterized in that the mixing place of the kneading water is performed in a place different from the place where the solidifying material is mixed. By making the soil or improved soil finer, it can be efficiently transported by a transport means such as an air wheel, so that the solidified material mixing location and the kneading water mixing location can be set at different locations. As described above, it is not necessary to set the solidification material mixing place and the kneading water mixing place at the same place, which is advantageous in terms of location. In addition, since silos can be used by fine-graining, soil or improved soil mixed with a solidifying material can be temporarily stored in silos. Then, at any time, the soil or the improved soil in which the solidified material has been mixed in advance as described above can be conveyed to a kneading water mixing place to perform fluidization treatment.
[0024]
【Example】
Next, an embodiment of the present invention for producing soil mortar from generated soil will be described.
[0025]
[Example 1]
Soil mortar was manufactured by the processing methods (1) to (3) shown in Table 1. The soil generated was a cohesive soil mixed with gravel. The sample soil, the solidifying material, and the kneading water were blended under the blending conditions under which the flow value of the soil mortar was 200 to 240 mm. The water content of the generated soil was 39%, and the dry density (ρd) was 1.240 g / cm 3 .
[0026]
Here, the water content is a value determined by a soil water content test specified in JIS A1203. The dry density (ρd) is a value determined by a soil wet density test specified in JIS A1225. The flow value of soil mortar is a value determined by a flow test specified in the cylinder method of the consistency test method in the Japan Road Public Corporation Standard “Test method for air mortar and air milk” JHS A313 / 1992). , One of the values representing fluidity. The larger the value, the better the fluidity.
[0027]
The processing method (3) as an example of the present invention was as follows.
[0028]
The generated soil was placed in a dryer having a drying capacity of 110 ° C., and dried at a temperature of 110 ° C. for one day (24 hours). Next, a solidifying material and kneading water were added to the thus dried soil under the mixing conditions shown in Table 1, and mixed with a mixer for 10 minutes to produce a soil mortar.
[0029]
The processing method (1) as a comparative example was as follows.
[0030]
Kneading water and a solidifying material were added to the generated soil that was not dried under the mixing conditions shown in Table 1, and mixed for 10 minutes with a mixer to produce a soil mortar.
[0031]
The processing method (2) as a comparative example was as follows.
[0032]
8% (wet weight ratio) of quicklime was mixed with the generated soil which was not dried, and cured for 3 days (36 hours). Next, kneading water and a solidifying material were added to the cured lime improved soil under the mixing conditions shown in Table 1, and mixed with a mixer for 10 minutes to produce a soil mortar.
[0033]
Table 1 shows the soil solids of the soil mortars produced by such treatment methods (1) to (3) and the recycling rate of the generated soil.
[0034]
[Table 1]
Figure 2004230645
[0035]
In Table 1, the sample soil water content indicates the water content of the sample soil when used as soil mortar. In the treatment method (1), the sample soil is in a state where it is not dried as it is generated soil. Even in the treatment method (2), the sample soil is not dried, but since the generated soil is lime-treated, the water content is smaller than that in the treatment method (1). In the embodiment of the present invention of the treatment method (3), the water content of the sample soil after the drying treatment is 0%.
[0036]
The sample soil solid content is a mass obtained by removing water (water content) from the sample soil. Therefore, in the comparison between the treatment methods (1) and (2), the solid content is reduced in the treatment method (1) because of the presence of water.
[0037]
In the treatment method (2), quicklime was added to obtain a lime-improved soil. Therefore, in Table 1, the amount is shown as slaked lime to subtract the amount. In addition, since quicklime becomes slaked lime by reaction with water, it is described as the mass of slaked lime.
[0038]
The soil solid content of soil mortar is the mass of the soil mortar itself.
[0039]
The recycling rate of the soil mortar is a ratio indicating how much soil is used per fixed volume (for example, 1 m 3 ) of the soil mortar. That is, it can be obtained by “recycling rate = volume of ground in 1 m 3 of soil mortar = soil solids / dry density of ground (ρd)”.
[0040]
As shown in Table 1, in the treatment method (3), which is an example of the present invention, the moisture content of the sample soil is 0.0% by the drying treatment, and the solid content of the sample soil is 0.05%. ▲ 2 ▼ was often 1163kg / m 3 than the soil solids in the soil mortar was also 1163kg / m 3 of the same value. As a result, soil natural ground volume in mortar 1 m 3 is 94% reuse ratio processing method for generating soil ▲ 1 ▼, ▲ 2 ▼ seen that higher than.
[0041]
In addition, this treatment method (3) is an example using the generated soil. However, when the generated lime is mixed with the generated lime to obtain a lime-improved soil, the soil mortar is manufactured by the method of the present invention using the lime-improved soil. Also, a high recycling rate equivalent to or higher than the treatment method (3) using the generated soil can be obtained. Further, in the present invention, a sufficiently high recycling rate can be obtained without using curing even when the generated soil or the lime improved soil is used.
[0042]
On the other hand, in the treatment method (1), since the dried soil was not generated, the generated soil containing water remained as it was, the solid content of the sample soil was lower than that of the example of the present invention, and the recycling rate was lower than the example (3) of the present invention.
[0043]
Treatment method (2) uses lime-improved soil and cures, but since it is not dried, the solid content of the sample soil is lower than that of treatment method (3) of the present invention. The reuse rate was low.
[0044]
[Example 2]
In the second embodiment, a volcanic ash clayey soil is used as the generated soil, and the same processing methods (1) to (1) as in the first embodiment are performed under the same mixing conditions as those in the first embodiment, with the flow value of the soil mortar being 200 to 240 mm. A soil mortar was manufactured according to 3). The water content of the generated soil (volcanic ash clayey soil) was 90%, and the dry density (ρd) was 0.745 g / cm 3 .
[0045]
Table 2 shows the soil solids of the soil mortars produced by the treatment methods (1) to (3) and the recycling rate of the generated soil. In addition, the description of the same word as Table 1 shown in Table 2 is synonymous with Table 1.
[0046]
[Table 2]
Figure 2004230645
[0047]
As shown in Table 2, in the treatment method (3) according to the embodiment of the present invention, the moisture content of the sample soil was 0.0% by the drying treatment, and the solid content of the sample soil was 0.03%. ▲ 2 ▼ was often 682kg / m 3 than the soil solids in the soil mortar was also 682kg / m 3 of the same value. As a result, soil mortar 1m natural ground volume 92% in 3, reuse rate of occurrence soil in volcanic ash quality viscous soil treatment method ▲ 1 ▼, ▲ 2 ▼ seen that higher than.
[0048]
On the other hand, in the treatment methods (1) and (2) without drying, the recycling rate of the generated soil was lower than in the treatment method (3) of the present invention.
[0049]
As shown in Examples 1 and 2, according to the present invention, it can be seen that the same high recycling rate can be obtained in both cohesive soil mixed with gravel and volcanic ash cohesive soil.
[0050]
【The invention's effect】
As described above, according to the present invention, the following useful effects are provided.
1 In producing soil mortar, drying the generated soil or the improved soil reduces the water content, increases the solid content of the soil, and improves the recycling rate of the generated soil used in the completed soil mortar.
(2) By making the generated soil or the improved soil finer, a large amount of the soil can be transported in a short time using an air wheel, thereby improving work efficiency and reducing transport costs. Further, it can be stored in a silo or the like.
(3) The generated soil or the improved soil can be efficiently transported by a transporting means such as an air wheel by finer granulation, and the solidified material mixing place and the kneading water mixing place can be set in different places, which is advantageous in terms of location. In addition, by storing the generated soil or improved soil mixed with the solidifying material in advance in a silo, it can be supplied to the mixing location of the kneading water at any time and used for fluidizing soil mortar.

Claims (6)

土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土に固化材および混練水を混合し流動化することを特徴とするソイルモルタルの製造方法。A method for producing soil mortar, comprising drying soil or improved soil, and then mixing and fluidizing a solidified material and kneading water with the dried soil or improved soil. 土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土を所定の細粒化手段によって所定粒径まで細粒化し、次いで、細粒化した前記土または前記改良土に固化材および混練水を混合し流動化することを特徴とするソイルモルタルの製造方法。Drying the soil or the improved soil, and then granulating the dried soil or the improved soil to a predetermined particle size by a predetermined grain refining means, and then solidifying the ground or the improved soil with the solidified material and A method for producing soil mortar, comprising mixing and fluidizing kneading water. 土または改良土を乾燥し、次いで、乾燥した前記土または前記改良土を所定の細粒化手段によって所定粒径まで細粒化し、次いで、細粒化した前記土または前記改良土に固化材を混合し、次いで、固化材を混合した場所とは別の場所において、固化材を混合した前記土または前記改良土に混練水を混合し流動化することを特徴とするソイルモルタルの製造方法。The soil or the improved soil is dried, and then the dried soil or the improved soil is refined to a predetermined particle size by a predetermined granulation means, and then the solidified material is added to the refined soil or the improved soil. A method for producing soil mortar, comprising mixing and then mixing and kneading water with the soil or the improved soil mixed with the solidified material at a location different from the location where the solidified material is mixed and then mixed. 粉砕および篩い分けのうちの少なくとも1つを行って前記発生土を細粒化する請求項2または3記載のソイルモルタルの製造方法。The method for producing a soil mortar according to claim 2 or 3, wherein at least one of pulverization and sieving is performed to refine the generated soil. 乾燥した前記土または前記改良土の最大粒径が5mm以下となるまで細粒化する請求項2から4のうちのいずれか1に記載のソイルモルタルの製造方法。The method for producing a soil mortar according to any one of claims 2 to 4, wherein the soil is refined until the maximum particle size of the dried soil or the improved soil is 5 mm or less. 前記土が土木建設工事等において発生する発生土、前記改良土が前記発生土に生石灰を混合してなる石灰改良土である請求項1から5のうちのいずれか1に記載のソイルモルタルの製造方法。The production of a soil mortar according to any one of claims 1 to 5, wherein the soil is generated soil generated in civil engineering construction work or the like, and the improved soil is lime improved soil obtained by mixing quicklime with the generated soil. Method.
JP2003020211A 2003-01-29 2003-01-29 Method for producing soil mortar Expired - Fee Related JP4359436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020211A JP4359436B2 (en) 2003-01-29 2003-01-29 Method for producing soil mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020211A JP4359436B2 (en) 2003-01-29 2003-01-29 Method for producing soil mortar

Publications (2)

Publication Number Publication Date
JP2004230645A true JP2004230645A (en) 2004-08-19
JP4359436B2 JP4359436B2 (en) 2009-11-04

Family

ID=32949903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020211A Expired - Fee Related JP4359436B2 (en) 2003-01-29 2003-01-29 Method for producing soil mortar

Country Status (1)

Country Link
JP (1) JP4359436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108584A (en) * 2007-10-30 2009-05-21 Shimizu Corp Processing device for tunnel excavated soil
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108584A (en) * 2007-10-30 2009-05-21 Shimizu Corp Processing device for tunnel excavated soil
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil

Also Published As

Publication number Publication date
JP4359436B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP2013056980A (en) Sludge improver, method of producing the sludge improver, and method of stably solidifying sludge
JP2001019956A (en) Lime-improved soil mortar, its production and fluidization treating method of construction using the same
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
JP2015071540A (en) Method for producing solidified body
JP6633885B2 (en) Manufacturing method of earthwork material
JP2009028639A (en) Sludge treatment method
JP4359436B2 (en) Method for producing soil mortar
JP2001276599A (en) Method for treating fine powder and apparatus therefor
JP3839642B2 (en) Method for producing fluidized soil
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
JP2018127529A (en) Fluid backfilling material
JP2006326446A (en) Construction sludge improvement method and improvement system used for it
JP4112666B2 (en) Solidified material
JP3235019B2 (en) Construction sludge regeneration treatment method
JP2005179428A (en) Fluidization treatment method of construction emission
JP2004197356A (en) Soil column material, soil column, and construction method for soil column
JPH11267696A (en) Treatment of mud water and wet soil
JPH10195437A (en) Self-filling filler material and usage thereof
CN108484008A (en) It is a kind of to make the hydraulic powder material on island for blowing sand
JP2004339801A (en) Fluid filler manufacturing method and plant
JPH06504515A (en) Method for activating garbage, settled sludge, and special garbage combustion ash
JP2003002725A (en) Construction material using site generated rock material
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JPH10280380A (en) Fluidization treatment soil of coal ash effective utilization and utilization method of the fluidity treatment soil
JP2012121016A (en) Mud solidification treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140814

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees