JP2004230306A - Method for improving activity of photocatalyst consisting of visible light responsive metal nitride and metal oxynitride - Google Patents

Method for improving activity of photocatalyst consisting of visible light responsive metal nitride and metal oxynitride Download PDF

Info

Publication number
JP2004230306A
JP2004230306A JP2003022972A JP2003022972A JP2004230306A JP 2004230306 A JP2004230306 A JP 2004230306A JP 2003022972 A JP2003022972 A JP 2003022972A JP 2003022972 A JP2003022972 A JP 2003022972A JP 2004230306 A JP2004230306 A JP 2004230306A
Authority
JP
Japan
Prior art keywords
stainless steel
ammonia
transition metal
photocatalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022972A
Other languages
Japanese (ja)
Other versions
JP4070624B2 (en
Inventor
Kazunari Doumen
一成 堂免
Yukikazu Hara
亨和 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003022972A priority Critical patent/JP4070624B2/en
Publication of JP2004230306A publication Critical patent/JP2004230306A/en
Application granted granted Critical
Publication of JP4070624B2 publication Critical patent/JP4070624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the activity of a photocatalyst consisting of a visible light responsive transition metal nitride and a transition metal oxynitride. <P>SOLUTION: The photocatalyst activity improving method comprises heating, in the presence of ammonia having a pressure higher than 0.2 MPa (mega Pascal) and at a temperature of 300°C or higher, the photocatalyst consisting of the transition metal nitride and the transition metal oxynitride containing at least one transition metal, especially the photocatalyst selected from LaTaON<SB>2</SB>, MTaO<SB>2</SB>N (M: an alkaline earth metal selected from Ca, Sr, and Ba), Ta<SB>3</SB>N<SB>5</SB>, TaON, LaTiO<SB>2</SB>N, TiN<SB>x</SB>O<SB>y</SB>F<SB>z</SB>, and MNbO<SB>2</SB>N (M: an alkaline earth metal selected from Ca, Sr, and Ba). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒の光触媒活性を改善する方法に関する。
【0002】
【従来技術】
光で触媒反応を行う技術としては、光触媒能を有する固体化合物に光を照射し、生成した励起電子やホールで反応物を酸化、あるいは還元して目的物を得る方法が既に知られている。
中でも、水の光分解反応は光エネルギー変換の観点から興味が持たれている。また、水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での酸化還元反応といった機能を備えた高度な光機能材料と見ることができる。
【0003】
【非特許文献1】
Catal.Lett.,58(1999).153−155、Chem.Lett.,(1999),1207
【非特許文献2】
表面,Vol.36,No.12(1998),625−645
【特許文献1】
特開2002−66333、特許請求の範囲
【0004】
工藤、加藤等は、タンタル酸アルカリ、アルカリ土類等が、水の完全光分解反応に高い活性を示す光触媒であることを多くの先行文献を挙げて説明している〔例えば、前記非特許文献1および2〕。前記非特許文献2においては、水を水素または/および酸素に分解する反応を進めるのに有用な光触媒材料について解説しており、水の還元による水素生成反応、または酸化による酸素生成反応および水の完全光分解反応用光触媒についての多くの示唆をしている。
また、白金、NiOなどの助触媒を担持した光触媒などについいても言及している。
【0005】
しかしながら、ここで解説されているものは、非金属としては酸素を含むものが主である。また、多くの固体光触媒は価電子帯と伝導帯の間にある禁制帯の幅、即ち、バンドギャップエネルギ−が、3Evよりも大きいため、3eV未満の低いエネルギーの可視光で作動させることができない。一方、バンドギャップエネルギーが小さく、可視光で電子、ホールを生ずることのできる従来の固体光触媒のほとんどは水の光分解反応等の反応条件下で不安定である。例えばCdS、Cu−ZnS等のバンドギャップは2.4eVであるが酸化的な光腐食作用を受けるため、触媒反応が限定されている。
地表に到達する太陽光のほとんどはエネルギーの小さい可視光であり、太陽光で効率的に多様な触媒反応を進行させるためには可視光で作動しかつ安定な光触媒が必要不可欠である。しかしながら上述のように従来の技術で満足できるものは存在しない。
【0006】
ところで、前記したように地表で利用できる太陽光のほとんどは可視光であるので、可視光で励起電子とホールを生成でき、かつ種々の酸化および還元反応で安定な光触媒を提供することが本発明の課題である。
従来の安定な光触媒のほとんどは金属酸化物、すなわち非金属元素として酸素を含むものである。このようなものでは、伝導帯及び価電子帯のエネルギー的な位置関係は酸素の価電子、O2p軌道のエネルギーによって大きく支配されるため、バンドギャップエネルギ−が小さく、可視光で光触媒機能を発現させることができなかった。そこで、本発明者らは、価電子のエネルギーが酸素より高い元素を金属と化合させ、それらの価電子軌道を混成させた場合、価電子帯のエネルギー的位置が高くなり、バンドギャップエネルギーを小さくすることができ、かつ、このような化合物として光触媒反応条件下で安定であるものを見出すことができれば、可視光で作動する新しい光触媒を創出できるものと考えた。
【0007】
そこで、窒素原子の価電子は酸素原子のそれに比べ高いエネルギーをもつため、窒素原子を含有する金属化合物のバンドギャップエネルギーは金属酸化物のそれに比べ小さくすることができ、適切な量の窒素原子と結合した金属及び金属化合物は長波長の可視光の吸収によって励起電子とホールを生成することが可能となり、可視光で作動する光触媒となるであろうとの推測の下で、更に水の光分解等の反応条件下でも安定である化合物を見出すべく鋭意検討し、金属酸化物、金属塩等の前駆体を大気圧程度のアンモニア気流中で加熱し窒化して、少なくとも1つの遷移金属を含むオキシナイトライドからなる化合物が光触媒として機能することを発見している(前記特許文献1)。その化合物の多くはペロブスカイト結晶構造を取っていることにも言及している(K. Domen, A. Kudo and T. Ohnishi,J.Catal.,1986,102,92.)。また、それの光触媒反応における安定性の効果は前記結晶構造によるものと推測している。
【0008】
本発明者らは、前記原理に基づいて開発した光触媒として、LaTaON、MTaON(M:アルカリ土類金属)、Ta、TaONのようなタンタル系、LaTiON、TiNのようなチタン系、およびMNbON(M:アルカリ土類金属)のようなニオブ系の化合物を提案してきたが、光触媒の活性の改善の余地があった。
【0009】
【発明が解決しようとする課題】
本発明の課題は、前記窒化光触媒の光触媒活性を改善する方法を提供することである。
本発明者らは、前記光触媒が可視光活性を持つのは窒素化により酸素原子に代えて窒素原子を導入、置換することによるものであるから、窒素の導入、置換され方は、前記光触媒活性の活性の改善に相関するのではとの推測の下に、窒素の導入、置換の条件としてアンモニア圧を取り上げ、この条件と光触媒の活性の改善との関連を検討する中で、前記窒素化光触媒を少なくともアンモニア圧が0.2MPaより大きな条件、好ましくは0.8MPa以上の、より好ましくは10MPa以上のアンモニア圧の存在下で、300℃以上で、好ましくは400℃〜1000℃で加熱処理することにより光触媒の活性が改善されることを見出し前記課題を解決した。
【0010】
【課題を解決するための手段】
本発明は、少なくとも1つの遷移金属を含む遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒を0.2MPa(メガパスカル)を越えるアンモニア存在下、300℃以上で加熱処理することを特徴とする前記光触媒の光触媒活性の改善方法である。好ましくは、遷移金属がLa、Ta、Nb、Ti、Zrからなる群から選択される少なくとも1つであることを前記光触媒活性の改善方法であり、より好ましくは、遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒がLaTaON、MTaON(M:アルカリ土類金属)、Ta、TaON、LaTiON、TiN、およびMNbON(M:アルカリ土類金属)から選択されものであることを特徴とする請求項2に記載の光触媒活性の改善方法であり、また前記アルカリ土類金属がCa、SrおよびBaからなる群から選択される少なくとも1つである前記光触媒活性の改善方法である。
【0011】
また、好ましくは、アンモニア圧を0.8MPa以上とすることを特徴とする前記各光触媒活性の改善方法であり、より好ましくは、アンモニア圧を10MPa以上、加熱温度を400℃〜1000℃とすることを前記光触媒活性の改善方法である。
【0012】
【本発明の実施の態様】
本発明をより詳細に説明する。
I.一般的に窒化はアンモニア圧が高いほどよく進むが、前記従来の光触媒は大気圧程度のアンモニア圧で合成されるため窒素化が完全でなく、材料中に少量の窒素の欠陥等が存在することが考えられ、このような欠陥は少量でも光触媒の活性を妨げているものと考えられる。
そこで、これらの欠陥をとり除くのに、先行技術が遷移金属酸化物の窒化により光触媒活性の向上することの原理を押し進めて、窒素の導入、置換の改善を、アンモニア圧などとの関連で鋭意検討し、請求項に記載のアンモニア圧と温度による熱処理が光触媒の活性の改善に有効であること見出した。
【0013】
II.具体的には、前記先行技術の遷移金属ナイトライドおよび金属オキシナイトライド光触媒活性を向上させるためには0.2MPaを越えるアンモニアの存在下で加熱処理を行う必要がある。好ましい処理条件は0.8MPa以上のアンモニア存在下、300℃以上で加熱することである。加熱温度が300℃未満の場合はアンモニアの分解反応がほとんど進行せず、十分な窒化ができない。より好ましい処理は前記遷移金属ナイトライドおよび金属オキシナイトライドを10MPa以上のアンモニア存在下、400℃〜1000℃で加熱することである。400℃以上ではアンモニアの分解反応が進行し、効率的に材料の窒化を行えるが、1000℃を越えるとアンモニアの分解によって生じた水素が上記金属ナイトライド、金属オキシナイトライドの金属イオン(Ta5+、Ti5+、Nb5+)を還元し、光触媒活性を著しく低下させる。
【0014】
【実施例】
以下の実施例により本発明を具体的に説明するが、これによって本発明が限定されるものではない。
実施例1
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理後のTaに白金0.5wt%担持した材料0.2gを80vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は30μmolh−1であった。処理前のTaにおける水素生成活性は上記と同様の方法で測定した場合5μmolh−1であった。明らかに高圧アンモニア存在下での加熱処理がTaの光触媒活性を向上させている。
【0015】
実施例2
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を400℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を0.2MPaに保持した。
上記処理後のTaに白金0.5wt%担持した材料0.2gを80vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は8μmolh−1であり、明らかに高圧アンモニア存在下での加熱処理がTaの光触媒活性を向上させている。
【0016】
実施例3
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を0.8MPaに保持した。
上記処理後のTaに白金0.5wt%担持した材料0.2gを90vol%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は12μmolh−1であり、明らかに高圧アンモニア存在下での加熱処理がTaの光触媒活性を向上させている。
【0017】
実施例4
試験管状のステンレス製耐圧容器の底部に1gのTaONをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。上記処理後のTaONに白金1wt%担持した材料0.2gを10vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は70μmolh−1であった。処理前のTaONにおける水素生成活性は上記と同様の方法で測定した場合30μmolh−1であった。明らかに高圧アンモニア存在下での加熱処理がTaONの光触媒活性を向上させている。
【0018】
実施例5
試験管状のステンレス製耐圧容器の底部に1gのCaTaONをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理後のCaTaONに白金1wt%担持した材料0.2gを10vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は40μmolh−1であった。処理前のCaTaONにおける水素生成活性は上記と同様の方法で測定した場合18μmolh−1であった。明らかに高圧アンモニア存在下での加熱処理がCaTaONの光触媒活性を向上させている。
【0019】
実施例6
試験管状のステンレス製耐圧容器の底部に1gのLaTiONをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を500℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理後のLaTiONに白金0.5wt%担持した材料0.2gを10vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は52μmolh−1であった。処理前のLaTiONにおける水素生成活性は上記と同様の方法で測定した場合28μmolh−1であった。明らかに高圧アンモニア存在下での加熱処理がLaTiONの光触媒活性を向上させている。
【0020】
実施例7
試験管状のステンレス製耐圧容器の底部に1gのCaNbONをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理後のCaNbONに白金1wt%担持した材料0.2gを10vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は30μmolh−1であった。処理前のCaNbONにおける水素生成活性は上記と同様の方法で測定した場合8μmolh−1であった。明らかに高圧アンモニア存在下での加熱処理がCaNbONの光触媒活性を向上させている。
【0021】
比較例1
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を550℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を0.1MPaに保持した。
上記処理後のTaに白金0.5wt%担持した材料0.2gを80vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したときの、水素生成速度は処理前のTaにおける水素生成活性と同様であった。
【0022】
比較例2
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を250℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理後のTaに白金0.5wt%担持した材料0.2gを80vol.%メタノール水溶液0.200dmに懸濁し420nm以上の可視光を照射したときの、水素生成速度は処理前のTaにおける水素生成活性と同様であった。
【0023】
比較例3
試験管状のステンレス製耐圧容器の底部に1gのTaをいれ、高圧ガス導入装置に接続した。ステンレス製耐圧容器、高圧ガス導入装置内を真空ポンプで排気した後、液体アンモニア(99.999%)をステンレス製耐圧容器に導入した。その後、ステンレス製耐圧容器の温度を1200℃まで昇温し、この温度で24時間保持してから室温まで冷却した。なお、昇温中の熱膨張の及び処理温度でのアンモニアの分解反応のため上記加熱処理中にステンレス耐圧容器の圧力は常に上昇するが、圧力調整弁を用いて加熱処理中の圧力を40MPaに保持した。
上記処理によって得られた黒色粉末に白金0.5wt%担持した材料0.2gを80vol.%メタノール水溶液0.200dmに懸濁し、420nm以上の可視光を照射したとき、水素生成生成は全く観察されなかった。
【0024】
【発明の効果】
以上のように、本発明で提案したアンモニア圧および温度において、少なくとも1つの遷移金属を含む遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒を加熱処理することにより、可視光領域の光による光触媒反応における水素発生が著しく向上していることから、太陽光を次世代エネルギーとしての水素に変換する光触媒として一層有望である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for improving the photocatalytic activity of a photocatalyst comprising a transition metal nitride and a transition metal oxynitride.
[0002]
[Prior art]
As a technique for performing a catalytic reaction by light, a method of irradiating a solid compound having photocatalytic ability with light and oxidizing or reducing a reaction product with generated excited electrons or holes to obtain a target product is already known.
Above all, the photolysis reaction of water is of interest from the viewpoint of light energy conversion. In addition, a photocatalyst that is active in the photolysis reaction of water can be regarded as an advanced photofunctional material having functions such as light absorption, charge separation, and redox reaction on the surface.
[0003]
[Non-patent document 1]
Catal. Lett. , 58 (1999). 153-155, Chem. Lett. , (1999), 1207
[Non-patent document 2]
Surface, Vol. 36, no. 12 (1998), 625-645
[Patent Document 1]
JP-A-2002-66333, Claims
Kudo, Kato et al. Have described many prior documents that alkali tantalate, alkaline earth, and the like are photocatalysts exhibiting high activity in the complete photolysis reaction of water. 1 and 2]. Non-patent Document 2 describes a photocatalytic material useful for promoting a reaction of decomposing water into hydrogen and / or oxygen, and describes a hydrogen generation reaction by reduction of water, an oxygen generation reaction by oxidation, and water There are many suggestions for photocatalysts for complete photolysis reactions.
It also mentions a photocatalyst carrying a promoter such as platinum or NiO.
[0005]
However, those described here are mainly non-metals containing oxygen. Also, many solid-state photocatalysts cannot operate with visible light having a low energy of less than 3 eV because the width of the forbidden band between the valence band and the conduction band, that is, the bandgap energy is larger than 3 Ev. . On the other hand, most of conventional solid photocatalysts having a small bandgap energy and capable of generating electrons and holes with visible light are unstable under reaction conditions such as a photolysis reaction of water. For example, the band gap of CdS, Cu—ZnS or the like is 2.4 eV, but is subject to oxidative photocorrosion, so that the catalytic reaction is limited.
Most of the sunlight reaching the surface of the earth is visible light with small energy, and a stable photocatalyst that operates with visible light is indispensable in order to efficiently perform various catalytic reactions with sunlight. However, as described above, none of the conventional techniques is satisfactory.
[0006]
By the way, as described above, most of the sunlight that can be used on the surface of the earth is visible light, and it is therefore an object of the present invention to provide a photocatalyst that can generate excited electrons and holes with visible light and that is stable in various oxidation and reduction reactions. It is an issue of.
Most of the conventional stable photocatalysts are metal oxides, that is, those containing oxygen as a nonmetallic element. In such a device, the energy positional relationship between the conduction band and the valence band is largely governed by the valence electrons of oxygen and the energy of the O2p orbital, so that the band gap energy is small and the photocatalytic function is exhibited by visible light. I couldn't do that. Therefore, the present inventors have found that when an element having higher valence energy than oxygen is combined with a metal and their valence orbitals are mixed, the energy position of the valence band becomes higher and the band gap energy becomes smaller. It was considered that a new photocatalyst that operates with visible light could be created if such a compound could be found and was found to be stable under such photocatalytic reaction conditions as such a compound.
[0007]
Therefore, since the valence electrons of the nitrogen atom have higher energy than that of the oxygen atom, the band gap energy of the metal compound containing the nitrogen atom can be made smaller than that of the metal oxide, and an appropriate amount of the nitrogen atom can be obtained. Assuming that the bound metal and metal compound can generate excited electrons and holes by absorbing visible light of a long wavelength, they will become photocatalysts that operate with visible light, In order to find a compound that is stable even under the reaction conditions described above, a precursor such as a metal oxide or a metal salt is heated and nitrided in a stream of ammonia at about atmospheric pressure to form an oxynitride containing at least one transition metal. It has been discovered that a compound consisting of a ride functions as a photocatalyst (see Patent Document 1). It is also mentioned that many of the compounds have a perovskite crystal structure (K. Domen, A. Kudo and T. Ohnishi, J. Catal., 1986, 102, 92.). Further, it is presumed that the effect of the stability in the photocatalytic reaction is due to the crystal structure.
[0008]
The present inventors, as a photocatalyst which is developed based on the principle, LaTaON 2, MTaO 2 N ( M: alkaline earth metal), Ta 3 N 5, tantalum-based such as TaON, LaTiO 2 N, TiN x O titanium-based, such as y F z, and MNbO 2 N: have been proposed niobium-based compounds such as (M an alkaline earth metal), there is room for improvement of the photocatalytic activity.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for improving the photocatalytic activity of the nitriding photocatalyst.
The present inventors have found that the photocatalyst has visible light activity because nitrogen is introduced and substituted by a nitrogen atom instead of an oxygen atom by nitrogenation. Under the presumption that it correlates with the improvement in the activity of nitrogen, the introduction of nitrogen, ammonia pressure was taken up as a condition for substitution, and while examining the relationship between this condition and the improvement in photocatalytic activity, the nitrogenation photocatalyst was examined. Heat treatment at a temperature of 300 ° C. or more, preferably 400 ° C. to 1000 ° C. in the presence of an ammonia pressure of at least ammonia pressure of 0.2 MPa or more, preferably 0.8 MPa or more, more preferably 10 MPa or more. As a result, the activity of the photocatalyst was improved, and the above-mentioned problem was solved.
[0010]
[Means for Solving the Problems]
The present invention is characterized in that a photocatalyst comprising a transition metal nitride containing at least one transition metal and a transition metal oxynitride is heat-treated at 300 ° C. or more in the presence of ammonia exceeding 0.2 MPa (megapascal). This is a method for improving the photocatalytic activity of the photocatalyst. Preferably, the method for improving photocatalytic activity is that the transition metal is at least one selected from the group consisting of La, Ta, Nb, Ti, and Zr, and more preferably, the transition metal nitride and the transition metal oxy. photocatalyst LaTaON 2 consisting of nitride, MTaO 2 N (M: alkaline earth metal), Ta 3 N 5, TaON , LaTiO 2 N, TiN x O y F z, and MNbO 2 N (M: alkaline earth metal 3. The method for improving photocatalytic activity according to claim 2, wherein the alkaline earth metal is at least one selected from the group consisting of Ca, Sr, and Ba. This is a method for improving the photocatalytic activity.
[0011]
In addition, preferably, the method for improving each photocatalytic activity is characterized in that the ammonia pressure is 0.8 MPa or more, more preferably, the ammonia pressure is 10 MPa or more, and the heating temperature is 400 ° C. to 1000 ° C. Is a method for improving the photocatalytic activity.
[0012]
[Embodiment of the present invention]
The present invention will be described in more detail.
I. In general, nitridation proceeds better as the ammonia pressure is higher. However, since the conventional photocatalyst is synthesized at an ammonia pressure of about atmospheric pressure, the nitrogenation is not complete, and a small amount of nitrogen defects and the like are present in the material. It is considered that such a defect hinders the activity of the photocatalyst even in a small amount.
Therefore, in order to eliminate these defects, the prior art has pushed the principle of improving the photocatalytic activity by nitriding transition metal oxides, and has been diligently studying the improvement of nitrogen introduction and substitution in relation to ammonia pressure and the like. However, it has been found that the heat treatment using the ammonia pressure and temperature described in the claims is effective for improving the activity of the photocatalyst.
[0013]
II. Specifically, in order to improve the photocatalytic activity of the prior art transition metal nitride and metal oxynitride, it is necessary to perform heat treatment in the presence of ammonia exceeding 0.2 MPa. Preferred treatment conditions are heating at 300 ° C. or more in the presence of 0.8 MPa or more of ammonia. If the heating temperature is lower than 300 ° C., the decomposition reaction of ammonia hardly proceeds, and sufficient nitriding cannot be performed. A more preferred treatment is to heat the transition metal nitride and the metal oxynitride at 400 ° C. to 1000 ° C. in the presence of 10 MPa or more of ammonia. At a temperature of 400 ° C. or higher, the decomposition reaction of ammonia proceeds, and the material can be efficiently nitrided. However, at a temperature of over 1000 ° C., hydrogen generated by the decomposition of the ammonia is converted to the metal ion (Ta 5+) of the metal nitride or metal oxynitride. , Ti 5+ , Nb 5+ ) and significantly reduce photocatalytic activity.
[0014]
【Example】
The present invention will be specifically described by the following examples, but the present invention is not limited thereto.
Example 1
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. In addition, the pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the heating and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held.
After the above treatment, 0.2 g of a material having 0.5 wt% of platinum supported on Ta 3 N 5 was subjected to 80 vol. % Methanol aqueous solution was suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, and the hydrogen generation rate was 30 μmolh −1 . The hydrogen generation activity in Ta 3 N 5 before the treatment was 5 μmolh −1 when measured by the same method as described above. Obviously, the heat treatment in the presence of high-pressure ammonia has improved the photocatalytic activity of Ta 3 N 5 .
[0015]
Example 2
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 400 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. The pressure of the stainless steel pressure vessel is constantly increased during the above heat treatment due to the thermal expansion during the temperature increase and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 0.1 using a pressure regulating valve. It was kept at 2 MPa.
After the above treatment, 0.2 g of a material having 0.5 wt% of platinum supported on Ta 3 N 5 was subjected to 80 vol. % Methanol aqueous solution is suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, the hydrogen generation rate is 8 μmolh −1 , and the heat treatment in the presence of high-pressure ammonia clearly shows the photocatalytic activity of Ta 3 N 5 Has been improved.
[0016]
Example 3
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. The pressure of the stainless steel pressure vessel is constantly increased during the above heat treatment due to the thermal expansion during the temperature increase and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 0.1 using a pressure regulating valve. It was kept at 8 MPa.
When 0.2 g of a material in which 0.5 wt% of platinum is supported on Ta 3 N 5 after the above treatment is suspended in 0.200 dm 3 of a 90 vol% methanol aqueous solution and irradiated with visible light of 420 nm or more, the hydrogen generation rate is 12 μmol h −. 1, is clearly heating in the presence of a high pressure ammonia improve the photocatalytic activity of Ta 3 N 5.
[0017]
Example 4
1 g of TaON was placed at the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. In addition, the pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the heating and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held. 0.2 g of 10 wt. % Methanol aqueous solution was suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, and the hydrogen generation rate was 70 μmolh −1 . The hydrogen generation activity in TaON before the treatment was 30 μmolh −1 when measured by the same method as described above. Apparently, the heat treatment in the presence of high-pressure ammonia has improved the photocatalytic activity of TaON.
[0018]
Example 5
1 g of CaTaO 2 N was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. In addition, the pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the heating and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held.
0.2 g of a material in which 1 wt% of platinum is supported on CaTaO 2 N after the above treatment is added in 10 vol. % Methanol aqueous solution was suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, and the hydrogen generation rate was 40 μmolh −1 . The hydrogen generation activity in CaTaO 2 N before the treatment was 18 μmolh −1 when measured by the same method as described above. Apparently, the heat treatment in the presence of high-pressure ammonia has improved the photocatalytic activity of CaTaO 2 N.
[0019]
Example 6
1 g of LaTiO 2 N was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 500 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. In addition, the pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the heating and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held.
0.2 g of a material having 0.5 wt% of platinum supported on LaTiO 2 N after the above-mentioned treatment was added to 10 vol. % Methanol aqueous solution was suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, and the hydrogen generation rate was 52 μmolh −1 . The hydrogen generation activity in LaTiO 2 N before the treatment was 28 μmolh −1 when measured by the same method as described above. Apparently, the heat treatment in the presence of high-pressure ammonia has improved the photocatalytic activity of LaTiO 2 N.
[0020]
Example 7
1 g of CaNbO 2 N was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introducing device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. In addition, the pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the heating and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held.
0.2 g of a material in which 1 wt% of platinum is supported on CaNbO 2 N after the above treatment is added in 10 vol. % Methanol aqueous solution was suspended in 0.200 dm 3 and irradiated with visible light of 420 nm or more, and the hydrogen generation rate was 30 μmolh −1 . The hydrogen generation activity in CaNbO 2 N before the treatment was 8 μmolh −1 when measured by the same method as described above. Obviously, the heat treatment in the presence of high-pressure ammonia has improved the photocatalytic activity of CaNbO 2 N.
[0021]
Comparative Example 1
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introduction device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 550 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. The pressure in the stainless steel pressure vessel is constantly increased during the above heat treatment due to the thermal expansion during the temperature increase and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 0.1 using a pressure regulating valve. It was kept at 1 MPa.
After the above treatment, 0.2 g of a material having 0.5 wt% of platinum supported on Ta 3 N 5 was subjected to 80 vol. When suspended in 0.200 dm 3 of an aqueous methanol solution and irradiated with visible light of 420 nm or more, the hydrogen generation rate was the same as the hydrogen generation activity in Ta 3 N 5 before the treatment.
[0022]
Comparative Example 2
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introduction device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 250 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. Although the pressure of the stainless steel pressure-resistant container constantly rises during the above-mentioned heat treatment due to thermal expansion during the temperature rise, the pressure during the heat treatment was kept at 40 MPa using a pressure regulating valve.
After the above treatment, 0.2 g of a material having 0.5 wt% of platinum supported on Ta 3 N 5 was subjected to 80 vol. The hydrogen production rate when suspended in 0.200 dm 3 of a 0.2% aqueous methanol solution and irradiated with visible light of 420 nm or more was the same as the hydrogen production activity in Ta 3 N 5 before the treatment.
[0023]
Comparative Example 3
1 g of Ta 3 N 5 was placed in the bottom of a test tube-shaped stainless steel pressure vessel, and connected to a high-pressure gas introduction device. After evacuating the inside of the stainless steel pressure vessel and the high-pressure gas introduction device with a vacuum pump, liquid ammonia (99.999%) was introduced into the stainless steel pressure vessel. Thereafter, the temperature of the stainless steel pressure vessel was raised to 1200 ° C., kept at this temperature for 24 hours, and then cooled to room temperature. The pressure of the stainless steel pressure vessel is constantly increased during the heat treatment due to the thermal expansion during the temperature increase and the decomposition reaction of ammonia at the treatment temperature, but the pressure during the heat treatment is reduced to 40 MPa using the pressure regulating valve. Held.
The black powder obtained by the above process was loaded with 0.2 g of a material having 0.5 wt% of platinum supported thereon at 80 vol. When suspended in 0.200 dm 3 of a 0.2% aqueous methanol solution and irradiated with visible light of 420 nm or more, no hydrogen generation was observed.
[0024]
【The invention's effect】
As described above, at the ammonia pressure and the temperature proposed in the present invention, the photocatalyst including the transition metal nitride and the transition metal oxynitride containing at least one transition metal is subjected to the heat treatment, whereby the photocatalyst by the light in the visible light region is obtained. Since the generation of hydrogen in the reaction has been significantly improved, it is more promising as a photocatalyst for converting sunlight into hydrogen as next-generation energy.

Claims (6)

少なくとも1つの遷移金属を含む遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒を0.2MPa(メガパスカル)を越えるアンモニア存在下、300℃以上で加熱処理することを特徴とする前記光触媒の光触媒活性の改善方法。A photocatalyst comprising a transition metal nitride containing at least one transition metal and a transition metal oxynitride is subjected to a heat treatment at 300 ° C. or more in the presence of ammonia exceeding 0.2 MPa (megapascal). How to improve activity. 遷移金属がLa、Ta、Nb、Ti、Zrからなる群から選択される少なくとも1つであることを請求項1に記載の光触媒活性の改善方法。The method for improving photocatalytic activity according to claim 1, wherein the transition metal is at least one selected from the group consisting of La, Ta, Nb, Ti, and Zr. 遷移金属ナイトライドおよび遷移金属オキシナイトライドからなる光触媒がLaTaON、MTaON(M:アルカリ土類金属)、Ta、TaON、LaTiON、TiN、およびMNbON(M:アルカリ土類金属)から選択されるものであることを特徴とする請求項2に記載の光触媒活性の改善方法。Transition metal nitride and a photocatalyst comprising a transition metal oxynitride LaTaON 2, MTaO 2 N (M : alkaline earth metal), Ta 3 N 5, TaON , LaTiO 2 N, TiN x O y F z, and MNbO 2 3. The method for improving photocatalytic activity according to claim 2, wherein the photocatalytic activity is selected from N (M: alkaline earth metal). アルカリ土類金属がCa、SrおよびBaからなる群から選択される少なくとも1つであることを請求項3に記載の光触媒活性の改善方法。The method for improving photocatalytic activity according to claim 3, wherein the alkaline earth metal is at least one selected from the group consisting of Ca, Sr, and Ba. アンモニア圧を0.8MPa以上とすることを特徴とする請求項1、2、3または4に記載の光触媒活性の改善方法。5. The method for improving photocatalytic activity according to claim 1, wherein the ammonia pressure is 0.8 MPa or more. アンモニア圧を10MPa以上、加熱温度を400℃〜1000℃とすることを特徴とする請求項5に記載の光触媒活性の改善方法。The method for improving photocatalytic activity according to claim 5, wherein the ammonia pressure is 10 MPa or more and the heating temperature is 400C to 1000C.
JP2003022972A 2003-01-31 2003-01-31 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness Expired - Fee Related JP4070624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022972A JP4070624B2 (en) 2003-01-31 2003-01-31 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022972A JP4070624B2 (en) 2003-01-31 2003-01-31 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness

Publications (2)

Publication Number Publication Date
JP2004230306A true JP2004230306A (en) 2004-08-19
JP4070624B2 JP4070624B2 (en) 2008-04-02

Family

ID=32951909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022972A Expired - Fee Related JP4070624B2 (en) 2003-01-31 2003-01-31 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness

Country Status (1)

Country Link
JP (1) JP4070624B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
WO2007100039A1 (en) 2006-03-01 2007-09-07 Nissan Motor Co., Ltd. Photocatalyst activation system and method for activating photocatalyst
JP2007297268A (en) * 2006-03-31 2007-11-15 General Electric Co <Ge> Photoelectrolytic cell and related device and method
EP2020504A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Photocatalytic ignition system
JP2012050913A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Catalyst for visible light water decomposition and method for manufacturing photoelectrode
JP2012187520A (en) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp Photocatalyst immobilized material for water decomposition and method of producing hydrogen and/or oxygen
CN103599807A (en) * 2013-12-05 2014-02-26 河南师范大学 TiO2-BaTaO2N composite photocatalyst and preparation method thereof
CN103599808A (en) * 2013-12-05 2014-02-26 河南师范大学 TiO2-SrTaO2N composite photocatalyst and preparation method thereof
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
WO2015041238A1 (en) * 2013-09-18 2015-03-26 富士フイルム株式会社 Hydrolyzing photocatalyst for hydrolysis, production method for same, and hydrolyzing photoelectrode
CN106732717A (en) * 2013-05-31 2017-05-31 天津大学 Decomposition water produces application in hydrogen and oxygen to the catalyst being made up of element tantalum indium nickel oxygen and nitrogen under visible light
CN107308973A (en) * 2017-06-28 2017-11-03 西安交通大学 A kind of alkali formula cobalt phosphate nanoneedle is combined LTON photochemical catalysts and its preparation method and application
CN110156474A (en) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 Porous tantalum-based oxynitride ceramic and preparation method thereof
CN113387709A (en) * 2021-06-30 2021-09-14 中国人民解放军国防科技大学 Compact lanthanum tantalum oxynitride ceramic and preparation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
JP4662434B2 (en) * 2004-08-31 2011-03-30 旭化成ケミカルズ株式会社 Mesoporous oxynitride compound and / or mesoporous nitride compound
WO2007100039A1 (en) 2006-03-01 2007-09-07 Nissan Motor Co., Ltd. Photocatalyst activation system and method for activating photocatalyst
JP2007297268A (en) * 2006-03-31 2007-11-15 General Electric Co <Ge> Photoelectrolytic cell and related device and method
EP2020504A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Photocatalytic ignition system
JP2012050913A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Catalyst for visible light water decomposition and method for manufacturing photoelectrode
JP2012187520A (en) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp Photocatalyst immobilized material for water decomposition and method of producing hydrogen and/or oxygen
CN106732717A (en) * 2013-05-31 2017-05-31 天津大学 Decomposition water produces application in hydrogen and oxygen to the catalyst being made up of element tantalum indium nickel oxygen and nitrogen under visible light
CN106732717B (en) * 2013-05-31 2019-03-05 天津大学 Application in water generation hydrogen and oxygen is decomposed by the catalyst that element tantalum indium nickel oxygen and nitrogen form under visible light
WO2015041238A1 (en) * 2013-09-18 2015-03-26 富士フイルム株式会社 Hydrolyzing photocatalyst for hydrolysis, production method for same, and hydrolyzing photoelectrode
CN103599808A (en) * 2013-12-05 2014-02-26 河南师范大学 TiO2-SrTaO2N composite photocatalyst and preparation method thereof
CN103599807B (en) * 2013-12-05 2016-03-16 河南师范大学 A kind of TiO 2-BaTaO 2n composite photo-catalyst and preparation method thereof
CN103599807A (en) * 2013-12-05 2014-02-26 河南师范大学 TiO2-BaTaO2N composite photocatalyst and preparation method thereof
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
CN107308973A (en) * 2017-06-28 2017-11-03 西安交通大学 A kind of alkali formula cobalt phosphate nanoneedle is combined LTON photochemical catalysts and its preparation method and application
CN110156474A (en) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 Porous tantalum-based oxynitride ceramic and preparation method thereof
CN110156474B (en) * 2019-05-30 2022-03-11 中国人民解放军国防科技大学 Porous tantalum-based oxynitride ceramic and preparation method thereof
CN113387709A (en) * 2021-06-30 2021-09-14 中国人民解放军国防科技大学 Compact lanthanum tantalum oxynitride ceramic and preparation method thereof
CN113387709B (en) * 2021-06-30 2022-02-22 中国人民解放军国防科技大学 Compact lanthanum tantalum oxynitride ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP4070624B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP6680919B2 (en) Supported metal catalyst
JP6556695B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
Mateo et al. Photoassisted methanation using Cu 2 O nanoparticles supported on graphene as a photocatalyst
Hwang et al. Photocatalytic water splitting over highly donor-doped (110) layered perovskites
JP4107792B2 (en) Photocatalyst composed of metal oxynitride having visible light response
Li et al. Highly efficient and stable photocatalytic reduction of CO 2 to CH 4 over Ru loaded NaTaO 3
JP4070624B2 (en) Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness
Li et al. Investigations on the effect of Cu2+/Cu1+ redox couples and oxygen vacancies on photocatalytic activity of treated LaNi1− xCuxO3 (x= 0.1, 0.4, 0.5)
JP4107807B2 (en) Oxysulfide photocatalyst for visible light decomposition of water
KR101457098B1 (en) Catalyst, Electrode using the same, Dry reforming method using the catalyst
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
Fei et al. Steam reforming of ethanol over Zn-doped LaCoO3 perovskite nanocatalysts
Sohrabi et al. Synthesis, characterization, and catalytic activity of Ni/CeMnO2 catalysts promoted by copper, cobalt, potassium and iron for ethanol steam reforming
WO2013021506A1 (en) Redox material for thermochemical water decomposition and method for producing hydrogen
JP2023015303A (en) Oxygen generating transparent electrode, production method thereof, tandem water decomposition reaction electrode therewith, and oxygen generation device using the same
Kishida et al. Photocatalytic properties of lanthanide tungstates Ln2W2O9 (Ln= La, Pr, Nd, Sm, and Gd)
JP2003236389A (en) Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light
KR101466470B1 (en) Nickel based catalyst of core-shell structure for steam and carbon dioxide mixed reforming reaction and preparation method thereof
JP4112162B2 (en) Photocatalyst using oxide containing metal ion in d10 electronic state
JP2004008963A (en) Rh AND/OR Ir DOPED SrTiO3 PHOTOCATALYST FOR PRODUCING HYDROGEN FROM WATER UNDER VISIBLE LIGHT IRRADIATION
KR101466541B1 (en) Nickel based catalyst of core-shell structure for steam and carbon dioxide mixed reforming reaction and preparation method thereof
JP4051247B2 (en) Photocatalyst using composite oxide containing metal ions in d10 and d0 electronic states
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
JP4090827B2 (en) Photocatalyst using composite oxide containing metal ions in d10s2 and d0 electronic states
Miyake et al. Biogas reforming over BaTi1− xSnxO3-supported Ni-based catalysts recovered from spent Ni-metal-hydride batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350