JP2004229867A - Fibrous raw material for humor purification column and production method therefor - Google Patents

Fibrous raw material for humor purification column and production method therefor Download PDF

Info

Publication number
JP2004229867A
JP2004229867A JP2003021544A JP2003021544A JP2004229867A JP 2004229867 A JP2004229867 A JP 2004229867A JP 2003021544 A JP2003021544 A JP 2003021544A JP 2003021544 A JP2003021544 A JP 2003021544A JP 2004229867 A JP2004229867 A JP 2004229867A
Authority
JP
Japan
Prior art keywords
component
fiber
body fluid
purification column
toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021544A
Other languages
Japanese (ja)
Inventor
Takashi Ota
隆司 太田
Takeo Matsunase
武雄 松名瀬
Koji Takashina
康二 高階
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003021544A priority Critical patent/JP2004229867A/en
Publication of JP2004229867A publication Critical patent/JP2004229867A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrous raw material for a humor purification column which can prevent broken pieces from mixing in the humor during an external circulation treatment and can adsorb a toxin with high efficiency. <P>SOLUTION: The fibrous raw material for the humor purification column which comprises at least a component A and a component B, and is a composite fiber wherein the surrounding of the component A is encompassed by the component B, is characterized in that a distance from the surface of the fiber to the component A is 1 μm or more when the single thread fineness is 4.5 dtex or more and the distance from the surface of the fiber to the component A is 5% or more of the diameter of the fiber when the single thread fineness is less than 4.5 dtex. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、体液中の毒素を除去する体液浄化カラム用の繊維素材及びその製造方法に関する。
【0002】
【従来の技術】
細菌感染は種々の疾患に伴って発生し、その後、敗血症等の重篤な状態に陥ることもある。一般に、細菌感染に対しては抗生剤の投与による治療が行われるが患者の容態や菌の薬剤耐性化等により効果が出ない場合も多い。このような抗生剤の効果の低い患者に対しては、体液浄化カラム等を用いてエンドトキシン、ペプチドグリカン、リポタイコ酸、スーパー抗原、エンテロトキシン等細菌由来の成分を積極的に体外に除去する療法が治療の一つとして行われている。
【0003】
細菌由来の成分を吸着し体外に除去する物として、ポリスチレン繊維にポリミキシンを固定化した吸着剤を充填したエンドトキシンを除去するカラムが知られている(例えば、特許文献1参照)。
【0004】
そして、繊維に直接ポリミキシンのような毒素吸着基を化学的に導入する場合、繊維自体の強度が低下することがあるが、それに対しては毒素吸着基導入反応に不活性なポリマーを島成分に配して補強する海島型複合繊維を用いることが提案されている(例えば、特許文献2〜4参照)。
【0005】
しかし、海島型複合繊維を用いて補強した場合、従来の2成分系海島型複合繊維の紡糸方法によって得られた海島型複合繊維では、毒素吸着基導入反応や機械的応力によって島成分の飛び出しや繊維表面の割れが発生することがあった。このため毒素吸着基を導入した繊維素材を充填したカラムの出口にフィルターを取り付けても、割れ片が小さい場合にはフィルターをすり抜けてしまい、体外循環による治療時に体液中へ混入する問題が懸念されていた。さらに、繊維表面が割れることによって、せっかく毒素吸着基を導入した海成分が脱落してしまうため毒素吸着効率が低下する問題もあり、反応条件やカラム充填作業の管理が非常に難しかった。
【0006】
【特許文献1】
特開昭60−209525号公報
【0007】
【特許文献2】
特開平9−235263号公報(第3、10−11頁)
【0008】
【特許文献3】
特開平10−147518号公報(第2、4、7頁)
【0009】
【特許文献4】
特開平10−147541号公報(第2、4、6頁)
【0010】
【発明が解決しようとする課題】
本発明は、かかる従来技術の問題点に鑑み、補強成分の飛び出しや繊維表面の割れを防ぐことにより体外循環治療時における体液中への割れ片混入を防止でき、かつ毒素吸着効率が高い体液浄化カラム用の繊維素材を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、海島型複合繊維中の島成分の位置が制御できないため図1のように島成分が繊維表面近くまで押し出され易く、繊維表面から最外島成分までの距離が非常に短くなり、その結果、毒素吸着基導入反応や機械的応力によって島成分の飛び出しや繊維表面の割れが発生することをつきとめ、本発明に到達した。
【0012】
上述の目的を達成するため本発明は、次の通りの構成をとるものである。
(1)少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ単糸繊度4.5dtex以上の複合繊維であって、繊維表面からA成分に達するまでの距離が1μm以上である複合繊維からなることを特徴とする体液浄化カラム用繊維素材。
(2)少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ単糸繊度4.5dtex未満の複合繊維であって、繊維表面からA成分に達するまでの距離が繊維直径の5%以上である複合繊維からなることを特徴とする体液浄化カラム用繊維素材。
(3)B成分が繊維の30wt%以上占めることを特徴とする前記(1)または(2)に記載の体液浄化カラム用繊維素材。
(4)B成分が少なくともポリスチレン、ポリスルホン、ポリメチルメタクリレート及びそれらの誘導体から選ばれるポリマーを含むことを特徴とする前記(1)〜(3)のいずれかに記載の体液浄化カラム用繊維素材。
(5)複合繊維が海島型複合繊維であることを特徴とする前記(1)〜(4)のいずれかに記載の体液浄化カラム用繊維素材。
(6)海島型複合繊維における島の数が10以上であることを特徴とする前記(5)に記載の体液浄化カラム用繊維素材。
(7)前記(1)〜(6)のいずれかの体液浄化カラム用繊維素材に毒素吸着基を導入したことを特徴とする毒素吸着材。
(8)海島型複合繊維を芯成分を紡糸し、その後または同時に、その周りに少なくとも海成分と同一のポリマーを含む鞘成分を配置して、芯鞘型繊維として製糸することを特徴とする体液浄化カラム用繊維素材の製造方法。
【0013】
【発明の実施の形態】
以下、さらに詳しく本発明について説明をする。
【0014】
本発明の体液浄化カラム用繊維素材は、少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ複合繊維であって、単糸繊度が4.5dtex以上の場合には、繊維表面からA成分に達するまでの距離が1μm以上であることを特徴とするものであり、また、単糸繊度が4.5dtex未満の場合には、繊維表面からA成分に達するまでの距離が繊維直径の5%以上であることを特徴とするものである。
【0015】
本発明において繊維表面からA成分に達するまでの距離とは、図2に示す通り繊維表面からA成分(A成分が複数に分かれている場合、すなわち複数の島となっている場合は最も外側に存在する島)までの最短距離を言う。
【0016】
本発明において体液とは、血液、血漿、血清、腹水、リンパ液、関節内液及びこれらから得られた分画成分、ならびにその他の生体由来の液性成分をいう。
【0017】
複合繊維を用いることにより、毒素吸着基を導入するB成分を反応に不活性なA成分で補強することができる。しかし、A成分を用いて補強することによって複合繊維自体の強度は高くなるものの、毒素吸着基導入反応の際の膨潤や寸歩変化及びカラム充填作業時等の機械的応力によって補強成分であるA成分が飛び出したり、繊維表面が割れてしまう場合がある。これを防止するため、本発明における複合繊維は繊維表面からA成分に達するまでの距離が、単糸繊度が4.5dtex以上の場合には1μm以上、単糸繊度が4.5dtex未満の場合には繊維直径の5%以上であることが必要である。このような複合繊維を体液浄化カラム用繊維素材に適用することで毒素吸着基導入反応の際やカラム充填作業時におけるA成分の飛び出しや割れを防ぐことができる。すなわち、本発明の体液浄化カラム用繊維素材を用いれば、体外循環治療時に割れ片等が血液中に混入することがないため安全な体液浄化カラムとして使用することができる。
【0018】
このような観点から、本発明において、単糸繊度4.5dtex以上の場合、複合繊維の繊維表面からA成分に達するまでの距離は2μm〜10μmであることがより好ましく、3μm〜8μmあることがさらに好ましい。繊維表面からA成分に達するまでの距離が大きくなりすぎると、A成分による補強効果が繊維表面まで及ばなくなり、却って繊維表面のポリマーが脱落しやすくなるため好ましくない。また、複合繊維の単糸繊度が4.5dtex未満まで細くなる場合には、繊維自体がしなやかになるため応力に対して割れ難く、繊維表面からA成分に達するまでの距離が1μm未満であっても繊維直径の5%以上、より好ましくは5%〜30%、さらに好ましくは6%〜20%の範囲内であれば本発明の効果は期待できる。すなわち、単糸繊度が細くなればその繊維表面からA成分までの距離の繊維直径に対する比率が大きくなるので、距離そのものの値よりもむしろ、比率の方がA成分の飛び出しや割れに影響を及ぼすようになる。そして、その比率に影響され易くなる繊度が4.5dtex辺りからである。また、繊維表面からA成分に達するまでの距離の直径に対する比率が大きくなりすぎると前述の通り繊維表面のポリマーが脱落しやすくなるため好ましくない。
【0019】
なお、本発明の繊維素材は丸型断面だけでなく、三角型、四角型、H型、扁平形、中空形などさまざまな異形断面の繊維が好ましく適用できるが、この場合の繊維表面からA成分に達するまでの距離とは繊維表面からA成分までの距離(A成分が複数に分かれている場合、すなわち複数の島となっている場合は最も外側に存在する島までの距離)のうち最短の長さを言うものである。
【0020】
本発明の体液浄化カラム用繊維素材の形態については、特に限定されるものではないが、反応する場合やカラムに充填する場合の扱い易さを考慮すると、織物、編物、フェルト、不織布等のシート状形態であることが好ましい。織物、編物として用いる場合に繊維はモノフィラメントでもマルチフィラメントでも何ら問題なく適用できるが、特にマルチフィラメントを用いることは総繊度に対して多くの毒素吸着基を導入できるため好ましい態様である。このような観点からマルチフィラメントを用いる場合の好ましいフィラメント数は5以上であり、より好ましくは10以上である。複合繊維の総繊度は製織、製編加工時にある程度の強力を有する必要があるため30dtex以上であることが好ましく、40〜300dtexであることがより好ましい。太くなり過ぎると織り難く、編み難くなるからである。また、本発明の繊維素材の単糸繊度は、特に限定されないが、20dtex以下であることが好ましく、より好ましくは10dtex以下であり、さらに好ましくは0.1dtex〜7dtexである。単糸繊度を細くすると繊維自体がしなやかになるため、反応後のカラムへの充填作業等に対しても扱いやすく、割れ難くなり、さらにカラム充填量(g)あたりの比表面積が向上するため多くの毒素吸着基が導入でき、吸着効率も高くなるからである。但し、単糸繊度が細くなりすぎると、繊維全体として強力が無くなりカラムへの充填作業時などで単糸切れが発生し易くなり好ましくない。
【0021】
本発明における複合繊維は、B成分が30wt%以上占めることが好ましく、40wt%〜80wt%がより好ましく、50wt%〜70wt%がさらに好ましい。B成分に毒素吸着基を導入するため繊維中のB成分が占める割合が低すぎると十分に毒素吸着基が導入されず、毒素吸着率が低下してしまう。またB成分の割合が高くなりすぎると繊維素材の補強的役割を果たすA成分の割合少なくなるため、繊維素材として必要な強度を維持できなくなるからである。
【0022】
B成分に使用するポリマーは、毒素吸着基を化学的に導入できるものであれば特に制限はないが、ポリスチレン、ポリスルホン、ポリメチレンメタクリレート及びそれらの誘導体、例えば、ポリ−α−メチルスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリクロロメチルスチレン、などのホモ重合体、これら2種以上共重合体もしくは他のポリマーとの共重合体がより好ましく用いられる。さらにセルロース、コラーゲン、キチン、キトサン及びそれらの誘導体を含む天然高分子なども好適に用いられる。また、B成分として用いるポリマーは必ずしも1種類である必要はなく、例えば、上記ポリマーと反応に不活性なポリマーをブレンドして用いることは、補強効果や割れ防止効果を高めることができるので好ましい態様である。
【0023】
A成分として用いるポリマーは、補強用としてポリエステル、ポリアミド、ポリエーテルイミド、ポリアミド、ポリエーテル、ポリフェニレンスルフィド、ポリ−α−オレフィンなどのホモ重合体、又はこれらの共重合体、ブレンドが用いられ、その中でも耐薬品性に優れたポリ−α−オレフィンが好ましく用いられる。ポリ−α−オレフィンとしてはポリプロピレン、ポリエチレン、ポリ−3−メチルブテン−1、ポリ−4−メチル−メチルペンテン−1などが好ましく用いられる。
【0024】
本発明における複合繊維の形態は、A成分の周りをB成分が取り囲んだ形態であれば特に限定されるものでなく、芯鞘型複合繊維形態や海島型複合繊維形態などが好ましく適用できるが、繊維自体の強度を保ちつつしなやかさを発現させる観点からは、海島型複合繊維形態が特に好ましい。ここで海島型複合繊維形態とは、少なくとも2成分以上からなり、一方の成分(島成分)の周りを他方の成分(海成分)が取り囲んでおり、かつ島の数が2以上である繊維形態を言う。すなわち、毒素吸着基を導入後のB成分の強度は大きく低下し、実質A成分の強度が繊維自体の強度となっているため、A成分である島成分の比率を高くすることで繊維自体の強度は高くなる一方、島の比率を上げることにより繊維の剛性が増し、機械的応力によって繊維表面が割れ易くなるが、海島型複合繊維形態とすれば、実質的に島成分の比率が同じであっても、島の数を増やして島の個々を細くすることで繊維の剛性向上を抑えつつ繊維自体の強度を保つことができる。またさらに島の数が増えると、島成分と海成分とが接触する面積が大きくなるので、海成分が特に剥がれ難くなる。このような観点から、島の数は10以上が好ましく、15〜100であることがさらに好ましい。島の数が多過ぎると、紡糸する際に島成分同士が一つになる、いわゆる合流が起こって太くなるため却って剛性が高くなり割れ易くなる。
【0025】
本発明の繊維素材を用いた体液浄化カラムで除去する毒素とは、一般に数多く存在する毒素の他、通常無害のものや良い効果を示すものであってもその時々の状況に応じて害を及ぼす場合があるため、特に限定されるものではないが、例えば、黄色ブドウ球菌の腸管毒素、溶血毒素、ロイコシジン、コアグラーゼやプロテインA、コレラ菌のコレラ毒素、出血性大腸菌や赤痢菌の産生するベロ毒素、緑膿菌の産生する外毒素A、連鎖球菌の産生する発熱性外毒素などの分泌性の毒素や、リポポリサッカライド等の細菌自体を構成する化合物や細菌の遺伝子構成成分であるデオキシリボ核酸等、さらにはTNF−αやIL−6などのサイトカインなども毒素として挙げられる。さらに、これらの中でパイロジェンと称される一群の毒素がある。パイロジェンは発熱性を有する一群の物質の総称であり、細菌感染を通じて体内に侵入することにより発熱やショック症状を誘引することが知られている強毒性の物質である。このパイロジェン活性を有する毒素としてはグラム陰性菌の細胞膜構成成分であるリポポリサッカライド(エンドトキシン)、黄色ブドウ球菌の腸管毒素やトクシックショックシンドロームトキシン−1等が挙げられる。
【0026】
また、本発明の体液浄化カラム用繊維素材が効果を発揮できる毒素吸着基は、毒素に対する吸着性能が高いものであれば、特に限定しないが、水素結合可能な官能基を有することが好ましく、水素結合可能な官能基としては、尿素結合、チオ尿素結合、アミド結合、アミノ基及び水酸基から選ばれる置換基を有することが好ましく、より好ましくは更に疎水結合を形成可能な官能基を有するものが用いられる。尿素結合あるいはチオ尿素結合あるいはアミド結合を有する置換基としてはとくに限定はなく、ヘキシル基、オクチル基、ドデシル基などの脂肪族化合物やシクロヘキシル基、シクロペンチル基などの脂肪族化合物、より好ましくはフェニル基、ナフチル基、アントラシル基等の芳香族化合物が用いられる。また、アミノヘキシル基、モノメチルアミノヘキシル基、ジメチルアミノヘキシル基、アミノオクチル基、アミノドデシル基、トリル基、クロロフェニル基、ニトロフェニル基、ジフェニルメチル基、アミンジフェニルメチル基等の誘導体も好適に用いられる。アミノ基を有する化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、ポリエチレンイミン、N−2,2−ジアミノジエチルアミン等が好ましく用いられる。水酸基を有する化合物としては、例えば、ヒドロキシプロパン、1,3−ジアミノ−2−ヒドロキシプロパン、ヒドロキシブタン、ヒドロキシ酪酸、ヒドロキシピリジン等の化合物やグルコース、グルコサミン、ガラクトサミン、マルトース、セルビオース、スクロース、アガロース、セルロース、キチン、キトサン等の単糖、オリゴ糖、多糖糖の糖質あるいはそれらの誘導体が置換基として好ましく用いられる。また、エーテル結合を有する化合物としては、例えば、1,2−ビス(2−アミノエトキシ)エタンや3,9ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン等を用いることができる。さらに、カルボキシル基、メルカプト基、ウレタン基、グアニジノ基、エステル基等のような水素結合を形成可能な官能基を持つものも官能基として好適に用いられる。
【0027】
毒素吸着率の測定方法としては種々考えられ、その違い、例えば吸着体と被吸着液との容積比や被吸着液中の夾雑物濃度や反応時間、撹拌の有無等により除去率が変動すると考えられる。本発明おける吸着率の測定を以下に示す。
【0028】
細菌成分と抗生剤等の医薬品の吸着率の測定は0.15M塩化ナトリウムを含む0.1Mリン酸緩衝液(pH7.4)中に5mg/mlの濃度になるように牛血清アルブミン(フラクションV)を溶解させた溶液を用いる。容積比は吸着体0.1gを被吸着液1ml中に添加して行い、反応温度は37℃、吸着時間は2時間、旋回撹拌の条件において行った。これらの結果より下式(1)を用いて吸着率を計算した。
(C0−C)/C0・・・・・・(1)式
ここで、C0は被吸着物の吸着前の溶液中の初期濃度、Cは被吸着物の吸着後の溶液中の濃度である。
【0029】
本発明の体液浄化カラム用繊維素材の製造方法は特に限定されるものではないが、以下に好ましい例をあげる。
【0030】
本発明における複合繊維は、少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ複合繊維であるが、ここでは海島型複合繊維を例にとって説明する。その製造方法の好ましい例としては、図3のように島成分と海成分とからなる海島型複合繊維を芯成分とし、その周りに少なくとも海成分同一のポリマーを含む鞘成分が取り囲んだ芯鞘型繊維として製糸することである。この方法によって、島成分がA成分、海成分と鞘成分がB成分に該当する複合繊維とすることができ、鞘成分の供給量を制御することで、これまで困難であった繊維表面からA成分に達するまでの距離を自在に制御することができる。ここで、特に注目すべきは、海成分と鞘成分に同一のポリマーを含むことである。これにより相互に馴染みやすくなるため反応時やカラム充填作業時に海成分から鞘成分が剥離するのを防止することができる。このような観点から、海成分と鞘成分に同一のポリマーを用いることは好ましい態様である。
【0031】
複合繊維を製造する紡糸装置はそれぞれ島成分、海成分、鞘成分に対応できる3成分系のものが好ましく使用できる。この製造方法の特徴は、従来の3成分系の紡糸と異なり、海成分と鞘成分に同一ポリマーを用いれば実質的に2成分系の繊維ができることである。この方法によって、前述の通り島成分の位置は繊維の鞘成分の厚さを変更して任意に制御でき、従来問題になっていた反応時の島繊維の飛び出しや海成分の割れを抑制することができる。好ましい鞘成分の重量比率は5wt%〜80wt%であり、10wt%〜60wt%がより好ましく、15wt%〜50wt%がさらに好ましい。鞘成分の重量比率が低すぎると、本発明の特徴である繊維表面からA成分に達するまでの距離が1μm以上、もしくは繊維直径の5%以上とすることができなくなり、また比率が高くなりすぎると、結果として島成分の比率が低くなるため繊維自体の強度が低くなってしまう。
【0032】
また2成分系の紡糸装置であっても、紡糸する際にパック内で海成分と鞘成分に分配し、その分配比率を制御することによって3成分系の場合と同様に好ましく製造することができる。
【0033】
本発明の体液浄化カラム用繊維素材は、毒素吸着基を導入して用いられるが、導入方法は任意であり、毒素吸着基の種類によって化学反応、コーティング、その他の方法によって、一段階もしくは多段階の操作により好ましく導入できる。また、毒素吸着基を導入する時期も、織物、編物等のシート状形態にする前でも、後でもよい。その一例としては、アミノ基を有する毒素吸着基を導入する場合、まずアミノ基と共有結合で固定化できる反応性官能基を化学反応などによってB成分のポリマーに導入し、続いてその官能基に毒素吸着基のアミノ基を共有結合させて導入する方法が好ましい。また、アミノ基と共有結合する官能基を有する毒素吸着基であれば、導入したアミノ基と反応させて毒素吸着基を導入することも好ましい方法である。さらに、毒素吸着基導入前に本発明の繊維素材を予め熱収縮させて、耐薬品性を向上させる方法も、割れ防止の観点から好ましい方法である。
【0034】
本発明の体液浄化用カラムは、本発明の体液浄化カラム用繊維素材に毒素吸着基を導入した毒素吸着材をカラム容器に充填することによって製造することができる。カラムの構成としては、特に限定されないが、なかでも、毒素吸着材を平板状に形成し、これを重ねて容器に充填したカラム、毒素吸着材が円筒形状に巻かれてなる円筒状フィルターが、両端部に体液入口と体液出口とを有する円筒容器に納められているカラム、毒素吸着材が円筒状にまかれてなる中空円筒状フィルターが、その両端部を封止された状態で体液入口と体液出口とを有する円筒状容器に納められており、容器の体液入口は前記中空円筒状フィルターの外周部に通じる部位に、また容器の体液出口は前記中空円筒状フィルターの内周部に通じる部位にそれぞれ設けられているカラムが好ましい。
【0035】
【実施例】
以下、実験例により、本発明をさらに具体的に説明する。
【0036】
実施例1
35wt%の島成分(ポリプロピレン)、35wt%の海成分(ポリスチレン)及び35wt%の鞘成分(ポリスチレン)とからなる海島型複合繊維(島数:16)を3成分紡糸装置を用いて吐出量14.4g/分、引取速度1600m/分で紡糸した。得られた繊維は単糸繊度4.5dtex、フィラメント数18であり、単繊維の断面を顕微鏡により観察すると、丸型断面で繊維表面から最外島に達するまでの距離が5μmであった。この繊維を2本合わせて合撚し(S33t/m、162dtex、フィラメント数36)、その後筒編地を作製した。これを本実施例の繊維素材とした。
【0037】
この編地を50gのN−メチロール−α−クロロアセトアミド、400gのニトロベンゼン、400gの98%硫酸、0.85gのパラホルムアルデヒドの混合溶液と20℃で1時間反応させた。その後、編地をニトロベンゼンで洗浄し、その後、水により反応を停止させた後、メタノールで再び洗浄することによりα−クロロアセトアミドメチル化架橋ポリスチレン編地(以下AMPSt編地と略す。)を得た。
【0038】
次に、テトラエチレンペンタミン6.3g、n−ブチルアミン7.2gをジメチルスルホキシド(以下DMSOと略す。)500mlに溶解した液に、20gのAMPSt編地を撹拌しつつ加えた。反応は30℃で3時間行い、その後、反応した編地をガラスフィルター上でDMSO500mlを用いて洗浄し、さらにその編地を、2.3gの4−クロロフェニルイソシアネートを溶解したDMSO500mlの溶液に添加し、反応を25℃で1時間行った。その後ガラスフィルター上でDMSO1000mlを用いて洗浄し、尿素結合を導入したAMPSt編地(以下UAMP編地と略す。)を得た。
【0039】
作製したUAMP編地を用いて細菌由来成分の吸着試験を行った。細菌由来成分としては黄色ブドウ球菌の産生する外毒素であるトキシックショックシンドロームトキシン−1(以下TSST−1と略す。トキシンテクノロジー社製)、プロテインA(以下PrAと略す。ザイメット社製)、αヘモリジン(以下aHLと略す。リサーチバイオケミカルインスティテュート社より購入)および蛋白質分解酵素(以下SPEBと略す。トキシンテクノロジー社製)および大腸菌由来のリポポリサッカライド、E.coli0111B4(以下LPSと略す。シグマ社製)を用いた。濃度は、TSST−1、PrA、aHL、SPEBに関しては酵素免疫学的に、LPSに関してはリムルス試薬(和光純薬製)により測定した。
【0040】
TSST−1、PrA、aHL、SPEBを1ng/ml、LPSを10ng/mlとなるように0.15M塩化ナトリウム、5mg/ml牛血清アルブミン(フラクションV)(生化学工業社製)を含む0.1Mリン酸ナトリウム緩衝液(pH7.4)中に溶解させ被吸着液とした。UAMP0.1gをこの被吸着液1ml中に添加し、37℃で2時間旋回撹拌しつつ吸着反応を行った。吸着前後の濃度を測定し前述した式(1)を用いて除去率を算出した結果を表1に示した。細菌由来成分に対して50%以上の高い除去性能を示した。
【0041】
また、得られたUAMP編地を電子顕微鏡により繊維表面の状態を観察したところ、繊維表面は凹凸があるものの、島成分の飛び出しや割れは発生していなかった。
【0042】
実施例2
実施例1と同じ口金を用いて、40wt%の島成分(ポリエチレン)、35wt%の海成分(ポリスチレン)及び25wt%の鞘成分(ポリスチレン)とからなる海島型複合繊維(島数:16)を3成分紡糸装置を用いて吐出量7.9g/分、引取速度1600m/分で作製した。得られた繊維は単糸繊度2.5dtex、フィラメント数18であり、単繊維の断面を顕微鏡により観察すると、丸型断面で繊維表面から最外島に達するまでの距離が0.9μmであった。これは、直径(15μm)の6%に相当するものであった。
【0043】
得られた繊維に実施例1と同様の方法で、UAMP繊維を作製し、吸着試験を行った。その結果、表1に示したように高い除去性能を示した。
【0044】
また、電子顕微鏡により繊維表面状態を観察したところ、実施例1の場合と同様に島成分の飛び出しや割れは発生していなかった。
【0045】
比較例1
海島部分については、実施例1及び2と同じである口金を用いて、35wt%の島成分(ポリプロピレン)と65wt%の海成分(ポリスチレン)とからなる海島型複合繊維(島数:16)を2成分紡糸装置を用いて吐出量14.4g/分、引取速度1600m/分で作製した。得られた繊維は単糸繊度4.5dtex、フィラメント数18であり、繊維の断面を顕微鏡により観察すると、繊維表面から最外島までの距離が0.7μmであった。この繊維を2本合わせて、合撚し(S33t/m、162dtex、フィラメント数36)、筒編地を作製した。
【0046】
得られた編地を実施例1と同様の方法で、UAMP編地を作製した。得られた編地の吸着試験の結果を表1に示した。実施例1及び2に比べ、除去性能が低かった。
【0047】
また、電子顕微鏡により表面状態を観察したところ、島成分であるポリプロピレンが数多く露出しており、所々に表面が割れたり、剥がれた後があった。
【0048】
実施例3、比較例2
実施例1及び比較例1で得られたUAMP編地を円筒形状に巻いて円筒状フィルターとし、これを両端部に血液入口と血液出口とを有する円筒容器に入れて、それぞれ血液浄化カラムを作製した。得られたカラムを後述の方法によりそれぞれ微粒子数を測定し、結果を表2に示した。実施例3のカラムでは、微粒子は少なく、通水時間とともに減少していくのに対し、比較例2のカラムは、微粒子が多く、4時間後でもかなり多くの微粒子が発生しており、体外循環治療用には不適当であった。
【0049】
(流出微粒子量の測定方法)
体外循環治療時に割れ片が体液中の混入するおそれがあるか否かを調べるために、
体液浄化カラムに通液した場合に流出する微粒子を測定した。その測定方法は以下の通りである。
【0050】
体液浄化カラムに粒径5μm以上の異物数が5個/ml以下、25μm以上の異物数が0.01個/ml以下のメンブレンフィルター濾過水を体液ポンプを用いて、200ml/分の流速で4時間通し、その流出液を、送液開始後、1時間、2時間、3時間、4時間後に採取した。それぞれの液に含まれる粒径5μm以上及び25μm以上の異物数を測定し、5μm以上の異物が10個/ml以下、25μm以上の異物が0.01個/ml以下の場合を合格レベルと判断した。
【0051】
【表1】

Figure 2004229867
【0052】
【表2】
Figure 2004229867
【0053】
【発明の効果】
補強成分の飛び出しや繊維表面の割れを防ぐことにより体外循環治療時における体液中への割れ片混入を防止でき、かつ毒素吸着効率が高い体液浄化カラム用の繊維素材を提供することができる。
【図面の簡単な説明】
【図1】従来の2成分系紡糸方法で製造した繊維の断面を示す。
【図2】繊維表面からA成分に達するまでの距離を説明する図を示す。
【図3】本発明の製造方法で製造した繊維の断面の一例を示す。
【符号の説明】
1:島成分
2:海成分
3:繊維表面からA成分に達するまでの距離
4:島成分(A成分)
5:海成分(B成分)
6:鞘成分(B成分)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fiber material for a body fluid purification column for removing toxins in a body fluid and a method for producing the same.
[0002]
[Prior art]
Bacterial infections occur with various diseases, and can then lead to serious conditions such as sepsis. Generally, bacterial infections are treated by administration of antibiotics, but in many cases, the effects are not obtained due to the condition of the patient or the drug resistance of the bacteria. For patients with a low effect of such antibiotics, treatment to actively remove bacterial-derived components such as endotoxin, peptidoglycan, lipoteichoic acid, superantigen, and enterotoxin from the body using a body fluid purification column or the like is a therapeutic treatment. It is done as one.
[0003]
As a substance that adsorbs bacteria-derived components and removes them from the body, there is known a column for removing endotoxin, which is filled with an adsorbent in which polymyxin is immobilized on polystyrene fibers (for example, see Patent Document 1).
[0004]
When chemically introducing a toxin-adsorbing group such as polymyxin directly into the fiber, the strength of the fiber itself may be reduced, but a polymer that is inert to the toxin-adsorbing group introduction reaction is used as an island component. It has been proposed to use sea-island composite fibers that are arranged and reinforced (for example, see Patent Documents 2 to 4).
[0005]
However, when reinforced with sea-island composite fibers, the sea-island composite fibers obtained by the conventional spinning method of two-component sea-island composite fibers may cause island components to jump out due to toxin adsorption group introduction reaction or mechanical stress. Cracking of the fiber surface sometimes occurred. For this reason, even if a filter is attached to the outlet of a column filled with a fiber material into which a toxin-adsorbing group has been introduced, if the fragments are small, they may slip through the filter, and there is a concern that they may be mixed into body fluids during treatment by extracorporeal circulation. I was In addition, the sea surface into which the toxin-adsorbing groups are introduced falls off due to the cracking of the fiber surface, so that the toxin-adsorbing efficiency is reduced. Therefore, it has been very difficult to control the reaction conditions and the column packing operation.
[0006]
[Patent Document 1]
JP-A-60-209525
[0007]
[Patent Document 2]
JP-A-9-235263 (pages 3, 10-11)
[0008]
[Patent Document 3]
JP-A-10-147518 (pages 2, 4, 7)
[0009]
[Patent Document 4]
JP-A-10-147541 (pages 2, 4, and 6)
[0010]
[Problems to be solved by the invention]
In view of the above problems of the prior art, the present invention can prevent spalling of reinforcing components and cracking of the fiber surface, thereby preventing the incorporation of debris into body fluid during extracorporeal circulation treatment and achieving high toxin adsorption efficiency in body fluid purification. An object is to provide a fiber material for a column.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that because the position of the island component in the sea-island type conjugate fiber cannot be controlled, the island component is easily extruded as close to the fiber surface as shown in FIG. 1, and the distance from the fiber surface to the outermost island component is very small. As a result, it has been found that island components jump out or fiber surface cracks occur due to a toxin adsorbing group introduction reaction or mechanical stress, and the present invention has been achieved.
[0012]
To achieve the above object, the present invention has the following configuration.
(1) A composite fiber composed of at least the A component and the B component, and having the single component fineness of 4.5 dtex or more surrounded by the B component around the A component, wherein the distance from the fiber surface to the A component is 1 μm or more. A fiber material for a body fluid purification column, comprising a composite fiber.
(2) A conjugate fiber composed of at least the A component and the B component, and having the single component fineness of less than 4.5 dtex surrounded by the B component around the A component, wherein the distance from the fiber surface to the A component is the fiber diameter. A fiber material for a body fluid purification column, comprising a composite fiber of 5% or more.
(3) The fiber material for a body fluid purification column according to the above (1) or (2), wherein the B component accounts for 30% by weight or more of the fiber.
(4) The fiber material for a body fluid purification column according to any one of (1) to (3), wherein the B component contains at least a polymer selected from polystyrene, polysulfone, polymethyl methacrylate, and derivatives thereof.
(5) The fiber material for a body fluid purification column according to any one of (1) to (4), wherein the conjugate fiber is a sea-island type conjugate fiber.
(6) The fiber material for a body fluid purification column according to the above (5), wherein the number of islands in the sea-island composite fiber is 10 or more.
(7) A toxin adsorbent characterized in that a toxin adsorbing group is introduced into the fiber material for a body fluid purification column according to any one of (1) to (6).
(8) A bodily fluid characterized in that a core component is spun from a sea-island composite fiber, and thereafter or simultaneously, a sheath component containing at least the same polymer as the sea component is disposed around the core component to produce a core-sheath fiber. A method for producing a fiber material for a purification column.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0014]
The fiber material for a body fluid purification column of the present invention is a composite fiber comprising at least the A component and the B component, and the A component is surrounded by the B component, and the single fiber fineness is 4.5 dtex or more. The distance from the surface to the A component is 1 μm or more, and when the single yarn fineness is less than 4.5 dtex, the distance from the fiber surface to the A component is less than the fiber length. It is characterized by being at least 5% of the diameter.
[0015]
In the present invention, the distance from the fiber surface to the A component means the A component from the fiber surface as shown in FIG. Shortest distance to an existing island).
[0016]
In the present invention, the body fluid refers to blood, plasma, serum, ascites, lymph, joint fluid, fraction components obtained therefrom, and other liquid components derived from living organisms.
[0017]
By using the composite fiber, the B component for introducing the toxin adsorbing group can be reinforced with the A component that is inert to the reaction. However, although the strength of the conjugate fiber itself is increased by the reinforcement using the component A, the swelling and step change during the reaction of introducing the toxin adsorbing group and the mechanical stress such as during column filling work are the reinforcing components A. Components may fly out or the fiber surface may crack. In order to prevent this, the distance from the fiber surface to the A component in the conjugate fiber of the present invention is 1 μm or more when the single yarn fineness is 4.5 dtex or more, and when the single yarn fineness is less than 4.5 dtex. Should be at least 5% of the fiber diameter. By applying such a conjugate fiber to a fiber material for a body fluid purification column, it is possible to prevent the A component from jumping out or cracking during the reaction of introducing a toxin-adsorbing group or during the column packing operation. That is, when the fibrous material for a body fluid purification column of the present invention is used, it is possible to use the fibrous material for a body fluid purification column as a safe body fluid purification column because cracks and the like do not enter the blood during extracorporeal circulation treatment.
[0018]
From such a viewpoint, in the present invention, when the single yarn fineness is 4.5 dtex or more, the distance from the fiber surface of the composite fiber to the A component is more preferably 2 μm to 10 μm, and more preferably 3 μm to 8 μm. More preferred. If the distance from the fiber surface to the component A is too large, the reinforcing effect of the component A does not reach the fiber surface, and the polymer on the fiber surface is more likely to fall off, which is not preferable. Further, when the single fiber fineness of the conjugate fiber is reduced to less than 4.5 dtex, the fiber itself becomes pliable, so that it is difficult to crack against stress, and the distance from the fiber surface to the A component is less than 1 μm. The effect of the present invention can be expected if the fiber diameter is 5% or more, more preferably 5% to 30%, and still more preferably 6% to 20%. In other words, as the fineness of the single yarn becomes smaller, the ratio of the distance from the fiber surface to the A component to the fiber diameter increases, so that the ratio affects the jumping out and cracking of the A component rather than the value of the distance itself. Become like The fineness that is easily affected by the ratio is around 4.5 dtex. On the other hand, if the ratio of the distance from the fiber surface to the component A to the diameter is too large, it is not preferable because the polymer on the fiber surface easily falls off as described above.
[0019]
In addition, the fiber material of the present invention can be preferably applied not only to a round cross-section, but also to fibers of various irregular cross-sections such as triangular, square, H-shaped, flat, and hollow. Is the shortest of the distances from the fiber surface to the A component (if the A component is divided into a plurality of islands, that is, if there are multiple islands, the distance to the outermost island). It refers to length.
[0020]
The form of the fiber material for a body fluid purification column of the present invention is not particularly limited, but in consideration of ease of handling when reacting or filling the column, a sheet of woven fabric, knitted fabric, felt, nonwoven fabric, etc. Preferably, it is in the shape of a letter. When used as a woven or knitted fabric, the fibers can be used as monofilaments or multifilaments without any problem. In particular, the use of multifilaments is a preferred embodiment because many toxin-adsorbing groups can be introduced into the total fineness. From such a viewpoint, the preferred number of filaments when using a multifilament is 5 or more, and more preferably 10 or more. The total fineness of the conjugate fiber is preferably 30 dtex or more, and more preferably 40 to 300 dtex, since it is necessary to have a certain degree of strength during weaving and knitting. If it is too thick, it will be difficult to weave and knit. In addition, the single fiber fineness of the fiber material of the present invention is not particularly limited, but is preferably 20 dtex or less, more preferably 10 dtex or less, and further preferably 0.1 dtex to 7 dtex. When the fineness of the single yarn is reduced, the fiber itself becomes pliable, so that it is easy to handle even after filling the column after the reaction, it is difficult to break, and the specific surface area per column packing amount (g) is improved. This is because the toxin adsorbing group can be introduced, and the adsorbing efficiency also increases. However, if the fineness of the single yarn is too small, the fiber as a whole loses its strength and the single yarn breakage is liable to occur at the time of filling the column, which is not preferable.
[0021]
In the composite fiber of the present invention, the B component preferably accounts for 30 wt% or more, more preferably 40 wt% to 80 wt%, and even more preferably 50 wt% to 70 wt%. If the proportion occupied by the B component in the fiber is too low because the toxin adsorbing group is introduced into the B component, the toxin adsorbing group will not be sufficiently introduced and the toxin adsorption rate will decrease. On the other hand, if the proportion of the B component is too high, the proportion of the A component that plays a role of reinforcing the fiber material will decrease, so that the strength required for the fiber material cannot be maintained.
[0022]
The polymer used for the component B is not particularly limited as long as it can chemically introduce a toxin-adsorbing group. However, polystyrene, polysulfone, polymethylene methacrylate and derivatives thereof, for example, poly-α-methylstyrene, polyvinyl toluene , Polyvinyl xylene, polychloromethylstyrene, and other homopolymers, and copolymers of two or more of these or copolymers with other polymers are more preferably used. Further, natural polymers containing cellulose, collagen, chitin, chitosan and derivatives thereof are also preferably used. Further, the polymer used as the B component is not necessarily one kind, and for example, it is preferable to use a blend of the above polymer and a polymer inert to the reaction because the reinforcing effect and the crack prevention effect can be enhanced. It is.
[0023]
The polymer used as the component A is a polyester, a polyamide, a polyetherimide, a polyamide, a polyether, a polyphenylene sulfide, a homopolymer such as poly-α-olefin, or a copolymer or a blend thereof, for reinforcement. Among them, a poly-α-olefin excellent in chemical resistance is preferably used. As the poly-α-olefin, polypropylene, polyethylene, poly-3-methylbutene-1, poly-4-methyl-methylpentene-1 and the like are preferably used.
[0024]
The form of the conjugate fiber in the present invention is not particularly limited as long as the B component surrounds the A component, and a core-sheath type conjugate fiber form or a sea-island type conjugate fiber form can be preferably applied. From the viewpoint of maintaining the strength of the fiber itself and exhibiting flexibility, the sea-island composite fiber form is particularly preferable. Here, the sea-island composite fiber form is a fiber form in which at least two components are included, one component (island component) is surrounded by the other component (sea component), and the number of islands is two or more. Say That is, the strength of the B component after the introduction of the toxin adsorbing group is greatly reduced, and the strength of the A component is substantially the strength of the fiber itself. While the strength is increased, the rigidity of the fiber is increased by increasing the ratio of islands, and the fiber surface is easily cracked by mechanical stress.However, if it is a sea-island type composite fiber form, the ratio of island components is substantially the same. Even so, by increasing the number of islands and making each of the islands thinner, it is possible to maintain the strength of the fibers themselves while suppressing the improvement in the rigidity of the fibers. Further, when the number of islands further increases, the area where the island component and the sea component come into contact increases, so that the sea component is particularly difficult to peel off. From such a viewpoint, the number of islands is preferably 10 or more, and more preferably 15 to 100. If the number of islands is too large, the island components become one at the time of spinning, so-called merging occurs, and the island becomes thicker.
[0025]
The toxin to be removed by the body fluid purification column using the fiber material of the present invention is, in addition to toxins generally present in large numbers, usually harmless or even those showing good effects, depending on the situation at the time. Although there is a case, it is not particularly limited, for example, enterotoxin of Staphylococcus aureus, hemolytic toxin, leucocidin, coagulase and protein A, cholera toxin of cholera, velotoxin produced by hemorrhagic Escherichia coli and Shigella Secretory toxins such as exotoxin A produced by Pseudomonas aeruginosa, pyrogenic exotoxin produced by streptococci, compounds constituting bacteria themselves such as lipopolysaccharide, and deoxyribonucleic acid which is a component of bacterial genes And cytokines such as TNF-α and IL-6. Furthermore, among these are a group of toxins called pyrogens. Pyrogens are a general term for a group of substances having a pyrogenic property, and are highly toxic substances known to induce fever and shock symptoms by invading the body through bacterial infection. Examples of the toxin having pyrogen activity include lipopolysaccharide (endotoxin), which is a cell membrane component of Gram-negative bacteria, enteric toxin of Staphylococcus aureus, and Toxic shock syndrome toxin-1.
[0026]
Further, the toxin adsorbing group that the fiber material for a body fluid purification column of the present invention can exert its effect is not particularly limited as long as it has high adsorption performance for toxin, but preferably has a functional group capable of hydrogen bonding, The bondable functional group preferably has a substituent selected from a urea bond, a thiourea bond, an amide bond, an amino group and a hydroxyl group, and more preferably has a functional group capable of further forming a hydrophobic bond. Can be There is no particular limitation on the substituent having a urea bond, a thiourea bond or an amide bond, and an aliphatic compound such as a hexyl group, an octyl group, or a dodecyl group or an aliphatic compound such as a cyclohexyl group or a cyclopentyl group, and more preferably a phenyl group And an aromatic compound such as a naphthyl group and an anthracyl group. Further, derivatives such as aminohexyl group, monomethylaminohexyl group, dimethylaminohexyl group, aminooctyl group, aminododecyl group, tolyl group, chlorophenyl group, nitrophenyl group, diphenylmethyl group, and amine diphenylmethyl group are also preferably used. . As the compound having an amino group, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, polyethyleneimine, N-2,2-diaminodiethylamine and the like are preferably used. Examples of the compound having a hydroxyl group include compounds such as hydroxypropane, 1,3-diamino-2-hydroxypropane, hydroxybutane, hydroxybutyric acid, and hydroxypyridine, and glucose, glucosamine, galactosamine, maltose, cellobiose, sucrose, agarose, and cellulose. Monosaccharides, oligosaccharides and polysaccharides such as chitin and chitosan, and saccharides or derivatives thereof are preferably used as substituents. Examples of the compound having an ether bond include 1,2-bis (2-aminoethoxy) ethane and 3,9bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5. 5] Undecane or the like can be used. Further, those having a functional group capable of forming a hydrogen bond, such as a carboxyl group, a mercapto group, a urethane group, a guanidino group, and an ester group, are also suitably used as the functional group.
[0027]
There are various methods for measuring the toxin adsorption rate, and the removal rate may vary depending on the difference, for example, the volume ratio between the adsorbent and the liquid to be adsorbed, the concentration of impurities in the liquid to be adsorbed, the reaction time, the presence or absence of stirring, and the like. Can be The measurement of the adsorption rate in the present invention is shown below.
[0028]
The measurement of the adsorption rate of bacterial components and pharmaceuticals such as antibiotics was performed by measuring bovine serum albumin (fraction V) so that the concentration was 5 mg / ml in 0.1 M phosphate buffer (pH 7.4) containing 0.15 M sodium chloride. ) Is used. The volume ratio was determined by adding 0.1 g of the adsorbent to 1 ml of the liquid to be adsorbed, the reaction temperature was 37 ° C., the adsorption time was 2 hours, and the stirring was performed under swirling conditions. From these results, the adsorption rate was calculated using the following equation (1).
(C0−C) / C0 (1)
Here, C0 is the initial concentration of the substance to be adsorbed in the solution before adsorption, and C is the concentration of the substance to be adsorbed in the solution after adsorption.
[0029]
The method for producing the fiber material for a body fluid purification column of the present invention is not particularly limited, but preferred examples are given below.
[0030]
The conjugate fiber in the present invention is a conjugate fiber composed of at least the A component and the B component, and the A component is surrounded by the B component. Here, the sea-island type conjugate fiber will be described as an example. As a preferable example of the production method, as shown in FIG. 3, a core-in-sheath type composite material in which a sea-island composite fiber composed of an island component and a sea component is used as a core component and a sheath component containing at least the same polymer as the sea component is surrounded therearound. It is to produce yarn as fibers. According to this method, it is possible to obtain a composite fiber in which the island component corresponds to the A component and the sea component and the sheath component correspond to the B component. The distance until the component is reached can be freely controlled. Here, it should be particularly noted that the sea component and the sheath component contain the same polymer. As a result, the components are easily compatible with each other, so that the sheath component can be prevented from peeling off from the sea component at the time of reaction or column packing. From such a viewpoint, it is a preferable embodiment to use the same polymer for the sea component and the sheath component.
[0031]
As a spinning device for producing a conjugate fiber, a three-component spinning device capable of handling an island component, a sea component, and a sheath component can be preferably used. The feature of this production method is that, unlike the conventional three-component spinning, if the same polymer is used for the sea component and the sheath component, a substantially two-component fiber can be produced. By this method, as described above, the position of the island component can be arbitrarily controlled by changing the thickness of the sheath component of the fiber, and the jumping out of the island fiber and the cracking of the sea component at the time of the reaction, which has been a problem in the past, can be suppressed. Can be. The preferred weight ratio of the sheath component is 5 wt% to 80 wt%, more preferably 10 wt% to 60 wt%, even more preferably 15 wt% to 50 wt%. If the weight ratio of the sheath component is too low, the distance from the fiber surface to the A component, which is a feature of the present invention, cannot be 1 μm or more, or 5% or more of the fiber diameter, and the ratio becomes too high. As a result, the strength of the fiber itself is reduced because the ratio of the island component is reduced.
[0032]
Even in the case of a two-component spinning device, it can be preferably produced as in the case of the three-component system by distributing the sea component and the sheath component in the pack during spinning and controlling the distribution ratio. .
[0033]
The fiber material for a body fluid purification column of the present invention may be used by introducing a toxin-adsorbing group, and the introduction method is optional. Depending on the type of the toxin-adsorbing group, a chemical reaction, coating, or other method may be used in one step or multiple steps. It can be preferably introduced by the operation described above. Further, the timing of introducing the toxin-adsorbing group may be before or after forming into a sheet form such as a woven or knitted fabric. As an example, when introducing a toxin adsorbing group having an amino group, first, a reactive functional group that can be immobilized by a covalent bond with the amino group is introduced into the polymer of the B component by a chemical reaction or the like, and then, the functional group A method is preferred in which the amino group of the toxin adsorbing group is covalently bonded and introduced. Further, as long as the toxin adsorbing group has a functional group covalently bonded to an amino group, it is also a preferable method to react with the introduced amino group to introduce the toxin adsorbing group. Further, a method of improving the chemical resistance by heat-shrinking the fiber material of the present invention before introducing the toxin-adsorbing group is also a preferable method from the viewpoint of preventing cracking.
[0034]
The body fluid purifying column of the present invention can be manufactured by filling a column container with a toxin adsorbent obtained by introducing a toxin adsorbing group into the fiber material for a body fluid purifying column of the present invention. The configuration of the column is not particularly limited, but among them, among others, a column in which the toxin adsorbent is formed in a flat plate shape, the column is filled with the toxin adsorbent, and a cylindrical filter in which the toxin adsorbent is wound into a cylindrical shape, A column contained in a cylindrical container having a bodily fluid inlet and a bodily fluid outlet at both ends, a hollow cylindrical filter in which a toxin adsorbent is wrapped in a cylindrical shape, and a bodily fluid inlet with both ends sealed. The body fluid outlet is housed in a cylindrical container having a body fluid outlet, and the body fluid inlet of the container is connected to an outer peripheral portion of the hollow cylindrical filter, and the container body fluid outlet is connected to an inner peripheral portion of the hollow cylindrical filter. Are preferably provided.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to experimental examples.
[0036]
Example 1
A sea-island composite fiber (number of islands: 16) composed of 35% by weight of an island component (polypropylene), 35% by weight of a sea component (polystyrene), and 35% by weight of a sheath component (polystyrene) is discharged using a three-component spinning apparatus with a discharge rate of 14%. The fiber was spun at a rate of 1.4 g / min and a take-up speed of 1600 m / min. The obtained fiber had a single fiber fineness of 4.5 dtex and the number of filaments was 18, and when the cross section of the single fiber was observed with a microscope, the distance from the fiber surface to the outermost island in a round cross section was 5 μm. Two of these fibers were combined and twisted (S33 t / m, 162 dtex, 36 filaments), and then a tubular knitted fabric was produced. This was used as the fiber material of this example.
[0037]
The knitted fabric was reacted with a mixed solution of 50 g of N-methylol-α-chloroacetamide, 400 g of nitrobenzene, 400 g of 98% sulfuric acid, and 0.85 g of paraformaldehyde at 20 ° C. for 1 hour. Thereafter, the knitted fabric is washed with nitrobenzene, the reaction is stopped with water, and then washed again with methanol to obtain an α-chloroacetamidomethylated crosslinked polystyrene knitted fabric (hereinafter abbreviated as AMPSt knitted fabric). .
[0038]
Next, 20 g of AMPSt knitted fabric was added to a solution of 6.3 g of tetraethylenepentamine and 7.2 g of n-butylamine dissolved in 500 ml of dimethyl sulfoxide (hereinafter abbreviated as DMSO) with stirring. The reaction was carried out at 30 ° C. for 3 hours. Thereafter, the reacted knitted fabric was washed on a glass filter using 500 ml of DMSO, and the knitted fabric was added to a solution of 2.3 g of 4-chlorophenylisocyanate in 500 ml of DMSO. The reaction was carried out at 25 ° C. for 1 hour. Thereafter, the resultant was washed with 1000 ml of DMSO on a glass filter to obtain an AMPSt knitted fabric into which a urea bond was introduced (hereinafter abbreviated as UAMP knitted fabric).
[0039]
Using the produced UAMP knitted fabric, an adsorption test of a component derived from bacteria was performed. Toxic shock syndrome toxin-1 (hereinafter abbreviated as TSST-1; manufactured by Toxin Technology), protein A (hereinafter abbreviated as PrA, manufactured by Zymet), α-hemolysine, which is an exotoxin produced by Staphylococcus aureus, includes bacterial components. (Hereinafter abbreviated as aHL; purchased from Research Biochemical Institute), a protease (hereinafter abbreviated as SPEB, manufactured by Toxin Technology), lipopolysaccharide derived from Escherichia coli, and E. coli. coli0111B4 (hereinafter abbreviated as LPS, manufactured by Sigma) was used. The concentration was measured by enzyme immunoassay for TSST-1, PrA, aHL, and SPEB, and by Limulus reagent (manufactured by Wako Pure Chemical Industries) for LPS.
[0040]
0.15 M sodium chloride, 5 mg / ml bovine serum albumin (fraction V) (Seikagaku Corporation) containing TSST-1, PrA, aHL, SPEB at 1 ng / ml and LPS at 10 ng / ml. It was dissolved in a 1 M sodium phosphate buffer (pH 7.4) to obtain a liquid to be adsorbed. 0.1 g of UAMP was added to 1 ml of the liquid to be adsorbed, and the adsorbing reaction was carried out while rotating and stirring at 37 ° C. for 2 hours. Table 1 shows the results of measuring the concentration before and after the adsorption and calculating the removal rate using the above-mentioned equation (1). High removal performance of 50% or more against bacterial components.
[0041]
The state of the fiber surface of the obtained UAMP knitted fabric was observed with an electron microscope. As a result, although the fiber surface had irregularities, no jumping out or cracking of island components occurred.
[0042]
Example 2
Using the same base as in Example 1, sea-island composite fibers (number of islands: 16) composed of 40 wt% of an island component (polyethylene), 35 wt% of a sea component (polystyrene), and 25 wt% of a sheath component (polystyrene) were prepared. It was produced at a discharge rate of 7.9 g / min and a take-up speed of 1600 m / min using a three-component spinning apparatus. The obtained fiber had a single fiber fineness of 2.5 dtex and the number of filaments was 18. When the cross section of the single fiber was observed with a microscope, the distance from the fiber surface to the outermost island in a round cross section was 0.9 μm. This corresponded to 6% of the diameter (15 μm).
[0043]
UAMP fibers were prepared from the obtained fibers in the same manner as in Example 1, and an adsorption test was performed. As a result, high removal performance was exhibited as shown in Table 1.
[0044]
When the surface state of the fiber was observed with an electron microscope, no jumping out or cracking of the island component occurred as in the case of Example 1.
[0045]
Comparative Example 1
For the sea-island portion, sea-island composite fibers (number of islands: 16) composed of 35 wt% of an island component (polypropylene) and 65 wt% of a sea component (polystyrene) were formed using the same base as in Examples 1 and 2. It was produced at a discharge rate of 14.4 g / min and a take-up speed of 1600 m / min using a two-component spinning apparatus. The obtained fiber had a single yarn fineness of 4.5 dtex and a filament number of 18, and when the cross section of the fiber was observed with a microscope, the distance from the fiber surface to the outermost island was 0.7 μm. Two of these fibers were combined and twisted (S33 t / m, 162 dtex, 36 filaments) to produce a tubular knitted fabric.
[0046]
A UAMP knitted fabric was produced from the obtained knitted fabric in the same manner as in Example 1. Table 1 shows the results of the adsorption test of the obtained knitted fabric. The removal performance was lower than in Examples 1 and 2.
[0047]
Further, when the surface state was observed with an electron microscope, it was found that a large amount of polypropylene as an island component was exposed, and the surface was sometimes cracked or peeled off.
[0048]
Example 3, Comparative Example 2
The UAMP knitted fabrics obtained in Example 1 and Comparative Example 1 were wound into a cylindrical shape to form a cylindrical filter, which was placed in a cylindrical container having a blood inlet and a blood outlet at both ends to prepare blood purification columns, respectively. did. The obtained column was measured for the number of fine particles by the method described below, and the results are shown in Table 2. In the column of Example 3, the amount of fine particles was small and decreased with the passage of water. On the other hand, the column of Comparative Example 2 had a large amount of fine particles and generated a considerable amount of fine particles even after 4 hours. Unsuitable for therapeutic use.
[0049]
(Method of measuring the amount of spilled fine particles)
In order to investigate whether or not there is a risk that splinters may enter the body fluid during extracorporeal circulation treatment,
The fine particles flowing out when passed through the body fluid purification column were measured. The measuring method is as follows.
[0050]
Using a body fluid pump, a body fluid purification column was used to filter the filtered water of a membrane filter having a particle count of 5 μm or more with 5 particles / ml or less and a particle size of 25 μm or more with 0.01 particles / ml at a flow rate of 200 ml / min. Throughout the time, the effluent was collected 1 hour, 2 hours, 3 hours, and 4 hours after the start of the liquid sending. The number of foreign particles having a particle size of 5 μm or more and 25 μm or more contained in each liquid was measured. did.
[0051]
[Table 1]
Figure 2004229867
[0052]
[Table 2]
Figure 2004229867
[0053]
【The invention's effect】
By preventing protrusion of the reinforcing component and cracking of the fiber surface, it is possible to prevent the mixing of cracks in body fluid during extracorporeal circulation treatment, and to provide a fiber material for a body fluid purification column having high toxin adsorption efficiency.
[Brief description of the drawings]
FIG. 1 shows a cross section of a fiber produced by a conventional two-component spinning method.
FIG. 2 is a diagram illustrating a distance from a fiber surface to an A component.
FIG. 3 shows an example of a cross section of a fiber produced by the production method of the present invention.
[Explanation of symbols]
1: Island component
2: Sea component
3: Distance from fiber surface to A component
4: Island component (A component)
5: Sea component (B component)
6: Sheath component (B component)

Claims (8)

少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ単糸繊度4.5dtex以上の複合繊維であって、繊維表面からA成分に達するまでの距離が1μm以上である複合繊維からなることを特徴とする体液浄化カラム用繊維素材。A conjugate fiber comprising at least the A component and the B component, wherein the B component surrounds the A component and has a single yarn fineness of 4.5 dtex or more, and the distance from the fiber surface to the A component is 1 μm or more. A fiber material for a body fluid purification column, comprising: 少なくともA成分とB成分からなり、A成分の周りをB成分が取り囲んだ単糸繊度4.5dtex未満の複合繊維であって、繊維表面からA成分に達するまでの距離が繊維直径の5%以上である複合繊維からなることを特徴とする体液浄化カラム用繊維素材。A composite fiber comprising at least the A component and the B component, wherein the B component surrounds the A component and has a single yarn fineness of less than 4.5 dtex, and the distance from the fiber surface to the A component is at least 5% of the fiber diameter. A fiber material for a body fluid purification column, characterized by comprising a composite fiber as described above. B成分が繊維の30wt%以上占めることを特徴とする請求項1または2に記載の体液浄化カラム用繊維素材。The fiber material for a body fluid purification column according to claim 1 or 2, wherein the B component accounts for 30 wt% or more of the fiber. B成分が少なくともポリスチレン、ポリスルホン、ポリメチルメタクリレート及びそれらの誘導体から選ばれるポリマーを含むことを特徴とする請求項1〜3のいずれかに記載の体液浄化カラム用繊維素材。The fiber material for a body fluid purification column according to any one of claims 1 to 3, wherein the B component contains at least a polymer selected from polystyrene, polysulfone, polymethyl methacrylate, and derivatives thereof. 複合繊維が海島型複合繊維であることを特徴とする請求項1〜4のいずれかに記載の体液浄化カラム用繊維素材。The fiber material for a body fluid purification column according to any one of claims 1 to 4, wherein the conjugate fiber is a sea-island type conjugate fiber. 海島型複合繊維における島の数が10以上であることを特徴とする請求項5に記載の体液浄化カラム用繊維素材。The fiber material for a body fluid purification column according to claim 5, wherein the number of islands in the sea-island composite fiber is 10 or more. 請求項1〜6のいずれかの体液浄化カラム用素材に毒素吸着基を導入したことを特徴とする毒素吸着材。A toxin adsorbent, wherein a toxin adsorbing group is introduced into the material for a body fluid purification column according to any one of claims 1 to 6. 海島型複合繊維を芯成分を紡糸し、その後または同時に、その周りに少なくとも海成分と同一のポリマーを含む鞘成分を配置して、芯鞘型繊維として製糸することを特徴とする体液浄化カラム用繊維素材の製造方法。For a body fluid purification column, a core component is spun from a sea-island type composite fiber, and thereafter or simultaneously, a sheath component containing at least the same polymer as the sea component is arranged around the core component to produce a core-sheath type fiber. Manufacturing method of fiber material.
JP2003021544A 2003-01-30 2003-01-30 Fibrous raw material for humor purification column and production method therefor Pending JP2004229867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021544A JP2004229867A (en) 2003-01-30 2003-01-30 Fibrous raw material for humor purification column and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021544A JP2004229867A (en) 2003-01-30 2003-01-30 Fibrous raw material for humor purification column and production method therefor

Publications (1)

Publication Number Publication Date
JP2004229867A true JP2004229867A (en) 2004-08-19

Family

ID=32950847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021544A Pending JP2004229867A (en) 2003-01-30 2003-01-30 Fibrous raw material for humor purification column and production method therefor

Country Status (1)

Country Link
JP (1) JP2004229867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194014A (en) * 2010-03-19 2011-10-06 Toray Ind Inc Blood component adsorbing carrier
WO2019045031A1 (en) 2017-08-31 2019-03-07 東レ株式会社 Sea-island composite fiber, carrier for adsorption, and medical column provided with carrier for adsorption

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236539A (en) * 1987-03-26 1988-10-03 Sumitomo Bakelite Co Ltd Immunoglobulin selective adsorbent
JPH06287815A (en) * 1993-03-30 1994-10-11 Mitsubishi Rayon Co Ltd Core sheath conjugate fiber, its complex spinneret and its production
JPH08158143A (en) * 1994-11-25 1996-06-18 Teijin Ltd Production of conjugate fiber and spinneret for conjugate spinning
JPH10147518A (en) * 1996-11-19 1998-06-02 Toray Ind Inc Material for removing or disusing cytokine
JP2001011730A (en) * 1999-06-24 2001-01-16 Teijin Ltd High strength monofilament having improved surface characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236539A (en) * 1987-03-26 1988-10-03 Sumitomo Bakelite Co Ltd Immunoglobulin selective adsorbent
JPH06287815A (en) * 1993-03-30 1994-10-11 Mitsubishi Rayon Co Ltd Core sheath conjugate fiber, its complex spinneret and its production
JPH08158143A (en) * 1994-11-25 1996-06-18 Teijin Ltd Production of conjugate fiber and spinneret for conjugate spinning
JPH10147518A (en) * 1996-11-19 1998-06-02 Toray Ind Inc Material for removing or disusing cytokine
JP2001011730A (en) * 1999-06-24 2001-01-16 Teijin Ltd High strength monofilament having improved surface characteristic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194014A (en) * 2010-03-19 2011-10-06 Toray Ind Inc Blood component adsorbing carrier
WO2019045031A1 (en) 2017-08-31 2019-03-07 東レ株式会社 Sea-island composite fiber, carrier for adsorption, and medical column provided with carrier for adsorption
CN110945166A (en) * 2017-08-31 2020-03-31 东丽株式会社 Sea-island composite fiber, adsorption carrier, and medical column having the adsorption carrier
KR20200042441A (en) 2017-08-31 2020-04-23 도레이 카부시키가이샤 Sea-island composite fiber, carrier for adsorption, and medical column provided with the adsorption carrier
EP3677710A4 (en) * 2017-08-31 2021-04-14 Toray Industries, Inc. Sea-island composite fiber, carrier for adsorption, and medical column provided with carrier for adsorption
CN110945166B (en) * 2017-08-31 2022-03-18 东丽株式会社 Sea-island composite fiber, adsorption carrier, and medical column having the adsorption carrier
US11491462B2 (en) 2017-08-31 2022-11-08 Toray Industries, Inc. Sea-island composite fiber, carrier for adsorption, and medical column provided with carrier for adsorption

Similar Documents

Publication Publication Date Title
AU2020200029B2 (en) Method for removing bacteria from blood using high flow rate
CN106178161B (en) Method for removing cytokines from blood using surface immobilized polysaccharides
JP5424894B2 (en) Device for removing white blood cells from blood
JP6648009B2 (en) Blood filtration system containing mannose-coated substrate
KR101256363B1 (en) Method for the elimination of leukocytes from blood
US20090211976A1 (en) Device for removing bacterial lipopolysaccharides and/or lipoteichoic acids from protein-containing fluids and its use for the treatment of sepsis
JP2010530288A (en) Device and method for recovering blood condition
WO1999025463A1 (en) Apparatus and method for treating whole blood
JP2013518687A5 (en)
JP2004229867A (en) Fibrous raw material for humor purification column and production method therefor
JP3817808B2 (en) Liquid processing column and liquid processing method
JP2003265606A (en) Toxin adsorbent for extracorporeal circulation
JP2004230102A (en) Toxin adsorbent for humor purification column and production method therefor
EP3677710B1 (en) Sea-island composite fiber, carrier for adsorption, and medical column provided with carrier for adsorption
JP2004275251A (en) Fibrous material for body fluid purification column, and method of manufacturing the same
JP4848573B2 (en) Methods for removing or detoxifying free lipoteichoic acid from liquids
WO2004009025A2 (en) Method for removing pyrogens from plasma and blood for treatment of septic shock
JP2007260216A (en) Adsorbent carrier and column for extracorporeal circulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512