JP2004229170A - Receiver and receiving method - Google Patents

Receiver and receiving method Download PDF

Info

Publication number
JP2004229170A
JP2004229170A JP2003017093A JP2003017093A JP2004229170A JP 2004229170 A JP2004229170 A JP 2004229170A JP 2003017093 A JP2003017093 A JP 2003017093A JP 2003017093 A JP2003017093 A JP 2003017093A JP 2004229170 A JP2004229170 A JP 2004229170A
Authority
JP
Japan
Prior art keywords
frequency
station
tuner
tuning
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003017093A
Other languages
Japanese (ja)
Inventor
Shunichi Sudo
俊一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2003017093A priority Critical patent/JP2004229170A/en
Publication of JP2004229170A publication Critical patent/JP2004229170A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively attenuate an IM (Inter modulation) jamming station signal level and to suppress the drop of a receiving station signal level in this case. <P>SOLUTION: This receiver is provided with a main tuner 51 and a sub-tuner 52, detects the states of broadcast radio waves by using the sub-tuner while receiving and demodulating the broadcast radio waves by using the main tuner, and controls the receiving states in the main tuner on the basis of a detection result. A tuning frequency control part 53 detects two stations which may function as mutual modulation jamming stations to a receiving station by using the sub-tuner, separates the tuning frequency of a tuning circuit from the jamming station frequency when the difference between the frequency of a jamming station nearer to the receiving station among the two stations and the frequency of the receiving station is equal to or smaller than a first setting value and brings the tuning frequency of the tuning circuit closer to the jamming station frequency when the difference is equal to or greater than a second setting value which is larger than the first setting value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、受信機及びその受信方法に係わり、特に、メインチューナとサブチューナを備え、メインチューナで放送電波を受信して復調しながら、サブチューナで放送電波の状態を検出し、検出結果に基づいてメインチューナにおける受信状態を制御する受信機及びその受信方法に関する。
【0002】
【従来の技術】
図6は従来のシングルチューナを備えた受信機の構成図であり、アンテナATで受信された放送電波は同調部11で同調された後、高周波アンプ12に入力されて増幅される。高周波アンプ12の出力は同調部13に入力され、ここで再度同調された後、混合器14に出力される。そして、混合器14はマイコン10によりPLL制御された局部発振器16から出力される局部発振周波数信号と混合され、中間周波数信号IFとなる。中間周波数信号IFは、一方は、可変帯域フィルタ15に入力されてその帯域幅が制限された後、検波部17で検波されて低周波信号となり、もう一方は、AGC回路19に入力されて信号レベルが検出される。該信号レベルは高周波アンプ12にフィードバックされて高周波アンプ12の利得を制御し、前記低周波信号は低周波アンプ18で増幅された後、オーディオ回路を介して図示しないスピーカに入力される。
【0003】
かかる受信機では、AGC回路19により高周波アンプ12の利得を制御することで妨害信号の除去を行う。しかし、その際、AGC回路により検知されるのは妨害信号のレベルであり、受信局周波数と妨害信号周波数の周波数関係は無視されている。このため、周波数的に受信局周波数信号に対して妨害とならない周波数信号であっても、その信号レベルが高いとAGCが働いて希望信号出力レベルを低下する。
【0004】
このため、特開平6−291688号公報において、メインチューナとサブチューナを備え、メインチューナで放送電波を受信して復調しながら、サブチューナで放送電波の状態を検出し、検出結果に基づいてメインチューナにおける受信状態を制御する受信機が提案されている。すなわち、サブチューナで隣接妨害が発生しているかチェックし、発生していれば可変帯域フィルタ15の帯域を狭め、また、相互変調(IM:Inter Modulation)妨害が発生しているかチェックし、発生していればAGC電圧の抑制を行って入力レベルを抑制する。
【特許文献1】特開平6−291688号公報
【0005】
【発明が解決しようとする課題】
しかし、従来技術には相互変調妨害(IM妨害)を抑制する際、以下の問題点がある。すなわち、
(1) 従来技術では、強入力を検出すると検出電圧値により、アンテナ入力信号を減衰させ、受信局と共に妨害局を減衰させることでIM妨害の改善をおこなっている。すなわち、、妨害局を減衰させる為に自局まで減衰し、ミュート動作となり、出力音声が低下してしまう問題がある。
(2)自局の減衰によるミュート現象を回避する為、ある条件で減衰動作を止めてしまうと、対妨害特性が十分にとれない問題がある。
(3)図6のシングルチューナの場合、図7に示すように、同調回路の選択特性により、妨害局を検出できない場合があり、かかる場合、減衰動作をしない問題がある。すなわち、選択範囲SFRを越えた妨害局を検出できず、正しい相互変調妨害(IM妨害)対策ができない問題がある。
以上から本発明の目的は、IM妨害局信号レベルを効果的に減衰できるようにすることである。
本発明の別の目的は、IM妨害局信号レベルを減衰しても受信局信号レベルの低下を抑制できるようにすることである。
本発明の別の目的は、妨害局信号レベルを検出してAGC動作によりIM妨害の発生頻度を減少することである。
【0006】
【課題を解決するための手段】
上記課題は本発明によれば、メインチューナとサブチューナを備え、メインチューナで放送電波を受信して復調しながら、サブチューナで放送電波の状態を検出し、検出結果に基づいてメインチューナにおける受信状態を制御する受信機において、サブチューナを用いて、受信局に対して相互変調妨害局となる2つの局を検出し、該2つの局のうち前記受信局に近い妨害局の周波数と受信局周波数の差が第1の設定値以下の場合には同調回路の同調周波数を妨害局周波数より離し、前記差が第1の設定値より大きな第2の設定値以上の場合には同調回路の同調周波数を妨害局周波数に近づけることにより達成される。
この場合、前記受信局に対して相互変調妨害局となりうる周波数関係を備え、かつ、受信電界強度が設定値以上で、AGC電圧が設定値以上の2つの局を前記相互変調妨害局となる2つの局であると判定することにより、効果的に相互変調妨害を低減することができる。
【0007】
【発明の実施の形態】
(A)本発明の概略
図1は本発明の概略説明図であり、図1(A)において同調回路の同調特性1は中心周波数をfhとする特性を備え、中心周波数fhから周波数Aだけ離れた周波数をfa、中心周波数fhから周波数B(>A)だけ離れた周波数をfbとしている。受信局周波数をfh、相互変調妨害局となる2つの局の局周波数をf1,f2、受信局周波数fhに近い妨害局周波数をf1とすれば、次式
|f1−fh|=|f2−f1| (1)
が成立する。しかし、(1)式が成立しても相互変調妨害局の受信強度が小さければ相互変調妨害は発生しない。一方、(1)式が成立し、かつ、相互変調妨害局の受信強度が大きければ相互変調妨害が発生する。
【0008】
相互変調妨害が発生する場合、サブチューナを用いて受信局に対して相互変調妨害局となる2つの局を検出する。ついで、該2つの局のうち受信局に近い妨害局の周波数f1と受信局周波数fhの差Δf(=|f1−fh|)が第1の設定値A以上で、第2の設定値B以下であるか、換言すれば、fa<f1<fbであるか調べる。図1(A)の場合は、「YES」であるから同調回路の中心周波数を変更しない。すなわち、図1(A)の場合、妨害局周波数f1の信号レベルL1は同調特性(選択特性)により小さくいなるため何もしない。
一方、差Δf(=|f1−fh|)が第1の設定値A以下であれば、すなわちf1≦faの場合には、図1(B)に示すように、妨害局周波数f1の信号レベルL1は大きくなり、相互変調妨害がの発生頻度が大きくなる。そこで、かかる場合には、図1(B)の点線2で示すように同調回路の同調周波数fhを妨害局周波数f1より離れる方向に設定周波数Cだけシフトする。このようにすれば、妨害局周波数f1における信号レベルはL1’と小さくなり、相互変調妨害が軽減する。なお、同調周波数fhをシフトしたことにより受信局信号レベルも低下するが低下量は妨害局信号レベルに比べて格段と小さい。
【0009】
また、差Δf(=|f1−fh|)が第2の設定値B以上であれば、すなわちfb≦f1であれば、図1(C)に示すように、妨害局周波数f1は同調周波数外となる。しかし、アンプなどの非線形部分(ダイオード、トランジスタなど)で歪んで歪成分が発生し、あたかももう1波が生じたようになり、この波が受信同調周波数範囲になると相互変調妨害ノイズとなる。そこで、相互変調妨害の発生頻度が小さく、しかも、AGC制御が可能となるように、図1(C)の点線3で示すように同調回路の同調周波数fhを妨害局周波数f1に近づける方向に設定周波数Cだけシフトする。このようにすれば、妨害局周波数f1における信号レベルL1”が検出できるようになり、AGC制御が可能となり、しかも、相互変調妨害の発生頻度を小さくできる。なお、同調周波数fhをシフトしたことにより受信局信号レベルも低下するがAGC制御が可能となって相互変調妨害を低減する効果の方が大きい。
【0010】
(B)受信機の構成
図2は本発明の受信機の構成図であり、受信用チューナ(メインチューナ)51、受信状態を検出するための検出用チューナ(サブチューナ)52、サブチューナとメインチューナ間に設けられ、同調周波数制御を行うマイコン構成の同調周波数制御部53を備えている。受信用チューナ51と検出用チューナ52は、ほぼ同一の構成を備え、検出用チューナ52の内部構成のみ図示している。なお、受信用チューナ51には、図示の構成に加えて、中間周波数信号を検波して、スピーカ側に出力する検波部が設けられている。
アンテナATTで受信された放送電波は第1同調部61で同調された後、高周波アンプ62に入力されて増幅される。高周波アンプ62の出力は第2同調部63に入力され、ここで再度同調された後、混合器64に出力される。混合器64はチューナ制御部60によりPLL制御された局部発振器66から出力する局部発振周波数信号と第2同調回路出力信号を混合し、中間周波数信号IFを出力する。中間周波数増幅器65は内蔵の中間周波フィルタ、中間周波増幅器で帯域幅を制限すると共に増幅する。強電界検出部67は第2同調回路63の出力信号を減衰信号生成回路(AGC回路)68に入力すると共に、その出力信号レベルと設定レベルを比較し、出力信号レベルが設定レベル以上であれば強電界検出信号をチューナ部60に入力する。AGC回路68は第2同調回路63の出力信号に含まれる妨害レベルが大きければ、第1同調回路61と高周波増幅回路62を制御して妨害レベルが小さくなるように制御する。電界強度生成回路(Sメータ)69は中間周波数増幅器65の出力信号レベルを監視してSメータ電圧を出力する
【0011】
チューナ制御部60は、各放送局信号の受信状態を検出するために、電子チューニング制御(シーク制御)を実行する。すなわち、適宜各放送局周波数に同調するように同調電圧生成回路70に指示すると共に、局部発振器66を該放送局周波数に応じた局部発振周波数で発信するよう制御する。同調電圧生成回路70は指示された放送局周波数を中心周波数として有する同調特性となるように同調電圧を発生して第1、第2同調回路61,63に入力する。
また、チューナ制御部60は、強電界検出回路67、電界強度生成回路69より強電界検出信号とSメータ電圧を取得して、同調周波数制御部53に入力する。
【0012】
図3は本発明の同調周波数制御部53の同調周波数制御処理フローである。尚、図示しない操作部より受信局(受信局周波数fh)が同調周波数制御部53に入力され、受信用チューナ51は同調周波数制御部53の制御で指示された受信局周波数fhの放送電波信号を受信している。
同調周波数制御部53は、サブチューナ52をシーク制御して76MHz〜90MHzの各FM放送局のそれぞれについて、強電界検出回路67から出力する強電界検出信号とSメータ電圧を取得し、相互変調妨害局となりうるFM放送局を検出する(ステップ101)。Sメータ電圧(受信電界強度)が設定値(=飽和電圧の95%)以上で、かつ、第2同調回路63の出力信号が設定レベル以上(AGC量が大きい)とき、相互変調妨害局となりうるFM放送局と判定する。
相互変調妨害局となりうるFM放送局の検索が完了すれば、IM条件((1)式)を満たす2つの局が存在するかチェックする(ステップ102)。2局以上の妨害局がある場合は、全ての妨害局の組合わせで上記条件を満たす2つの局があるかチェックする。
【0013】
IM条件を満たす2つの局が存在しなければ、受信用チューナ51の第1、第2同調回路61,63の中心周波数のシフト動作を停止あるいは解除し(ステップ103)、処理を終了する。
IM条件を満たす2つの局が存在すれば、対象IM局を選択する(ステップ104)。ついで、該対象IM局より近傍に強入力局があるかチェックし(ステップ105)、存在する場合には、受信用チューナ51の第1、第2同調回路61,63の中心周波数のシフト動作を停止あるいは解除し(ステップ103)、処理を終了する。これは、近接妨害局による抑圧回避のためである。すなわち、
▲1▼|f1−fh|<Aの時に、f1とは逆側近傍に他の強入力局が存在する場合、及び▲2▼|f1−fh|>Bの時に、f1側近傍に他の強入力局が存在する場合、同調回路の中心周波数をシフトすると、fh信号が過剰に減衰される。この為ステップ105の判断を行い、対象となるIM局より近傍に強入力局がある場合には、シフト動作を行なわない様にしている。
【0014】
一方、対象IM局より近傍に強入力局が存在しなければ図1に従った方法で第1、第2同調回路61,63の中心周波数のシフト動作を行う(ステップ106)。ステップ106の詳細は以下の通りである。ただし、受信局周波数をfh、相互変調妨害局となる2つの局の局周波数をf1,f2、該2つの局のうち受信局に近い妨害局の周波数f1とする。
まず、周波数f1と受信局周波数fhの差Δf(=|f1−fh|)が第1の設定値A以上で、第2の設定値B以下であるか、換言すれば、fa<f1<fbであるか調べる。図1(A)の場合は、「YES」であるから同調回路の中心周波数を変更しない。
一方、差Δf(=|f1−fh|)が第1の設定値A以下であれば、図1(B)の点線2で示すように同調回路の同調周波数fhを妨害局周波数f1より離れる方向に設定周波数Cだけシフトする。
【0015】
また、差Δf(=|f1−fh|)が第2の設定値B以上であれば、すなわちfb≦f1の場合には、図1(C)の点線3で示すように同調周波数fhを妨害局周波数f1に近づける方向に設定周波数Cだけシフトする。
以上のように、図1(B)の場合には、妨害局周波数f1における信号レベルはL1’と小さくなり、相互変調妨害が軽減する。この場合、同調周波数fhをシフトしたことにより受信局信号レベルを低下するが低下量は妨害局信号レベルに比べて格段と小さい。図1(C)のようにすれば、妨害局周波数f1における信号レベルL1”が検出できるようになり、AGC制御が可能となり、しかも、相互変調妨害の発生頻度を小さくできる。この場合、同調周波数fhをシフトしたことにより受信局信号レベルは低下するがAGC制御が可能となって相互変調妨害を低減する効果の方が大きい。
【0016】
(C)効果
図4はf1≦faの場合に、同調周波数を遠ざけたときの効果説明図であり、横軸はΔf、縦軸は妨害局をあるレベルにした際の受信局のミュート量である。図において、aは同調周波数をシフトしない場合、bは同調周波数を妨害周波数から遠ざけた場合、cは同調周波数を妨害周波数に近づけた場合で、それぞれ、図1(B)においてA=3.5MHz,B=4.0MHz,C=1.0MHzとしている。図4より、受信局のミュート量が減少していることが判る。
【0017】
図5はfb≦f1の場合に、同調周波数を近づけたときの効果説明図であり、横軸はΔf、縦軸は一定のIM妨害が受信局に発生するときの妨害局のレベルである。図において、aは同調周波数をシフトしない場合、bは同調周波数を妨害周波数に近づけた場合で、それぞれ、図1(C)においてA=3.5MHz,B=4.0MHz,C=1.0MHzとしている。図5より、一定のIM妨害が受信局に発生するときの妨害局のレベルが大きくなっていることがわかる。すなわち、同調周波数をシフトしない場合に比べて、IM妨害が受信局に発生しにくくなっていることがわかる。
【0018】
【発明の効果】
以上本発明によれば、サブチューナを用いて受信局に対して相互変調妨害局となる2つの局を検出し、該2つの局のうち受信局に近い妨害局の周波数と受信局周波数の差が第1の設定値以下の場合には同調回路の同調周波数を妨害局周波数より離し、前記差が第1の設定値より大きな第2の設定値以上の場合には同調回路の同調周波数を妨害局周波数に近づけるようにしたから、IM妨害局信号レベルを効果的に減衰することができる。この場合、IM妨害局信号レベルを減衰しても受信局信号レベルの低下を抑制することができる。
また、本発明によれば、確実に妨害局信号レベルを検出してAGC動作によりIM妨害の発生頻度を減少することができる。
【図面の簡単な説明】
【図1】本発明の概略説明図である。
【図2】本発明の受信機の構成図である。
【図3】本発明の同調周波数制御部の同調周波数制御処理フローである。
【図4】f1≦faの場合に、同調周波数を遠ざけたときの効果説明図である。
【図5】fb≦f1の場合に、同調周波数を近づけたときの効果説明図である。
【図6】従来のシングルチューナを備えた受信機の構成図である。
【図7】同調回路の選択特性により、妨害局を検出できない場合の説明図である。
【符号の説明】
51 受信用チューナ(メインチューナ)
52 検出用チューナ(サブチューナ)
53 同調周波数制御部
60 チューナ制御部
61 第1同調部
62 高周波アンプ
63 第2同調部
64 混合器
65 中間周波数増幅器
66 局部発振器
67 強電界検出部
68 AGC回路
69 電界強度生成回路(Sメータ)
70 同調電圧生成回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a receiver and a method of receiving the same, and in particular, comprises a main tuner and a sub-tuner, while receiving and demodulating a broadcast radio wave with the main tuner, detecting the state of the broadcast radio wave with the sub-tuner, The present invention relates to a receiver that controls a reception state in a main tuner based on the reception method and a reception method thereof.
[0002]
[Prior art]
FIG. 6 is a configuration diagram of a receiver provided with a conventional single tuner. A broadcast radio wave received by an antenna AT is tuned by a tuning unit 11, and then input to a high-frequency amplifier 12 and amplified. The output of the high-frequency amplifier 12 is input to the tuning unit 13, where the output is tuned again and then output to the mixer 14. Then, the mixer 14 is mixed with a local oscillation frequency signal output from a local oscillator 16 that is PLL-controlled by the microcomputer 10 and becomes an intermediate frequency signal IF. One of the intermediate frequency signals IF is input to the variable bandpass filter 15 and the bandwidth thereof is limited, and then detected by the detection unit 17 to become a low frequency signal. The other is input to the AGC circuit 19 and Level is detected. The signal level is fed back to the high-frequency amplifier 12 to control the gain of the high-frequency amplifier 12, and the low-frequency signal is amplified by the low-frequency amplifier 18 and then input to a speaker (not shown) via an audio circuit.
[0003]
In such a receiver, the AGC circuit 19 controls the gain of the high-frequency amplifier 12 to remove the interference signal. However, at this time, what is detected by the AGC circuit is the level of the interference signal, and the frequency relationship between the receiving station frequency and the interference signal frequency is ignored. For this reason, even if the frequency signal does not disturb the frequency signal of the receiving station in terms of frequency, if the signal level is high, the AGC operates to lower the desired signal output level.
[0004]
For this reason, Japanese Patent Laid-Open Publication No. Hei 6-291688 discloses a main tuner and a sub tuner. The main tuner receives and demodulates a broadcast wave, detects the state of the broadcast wave with the sub tuner, and based on the detected result, A receiver for controlling a reception state in a tuner has been proposed. That is, the sub-tuner checks whether adjacent interference has occurred, and if so, narrows the band of the variable bandpass filter 15 and checks whether inter-modulation (IM) interference has occurred. If so, the input level is suppressed by suppressing the AGC voltage.
[Patent Document 1] Japanese Patent Application Laid-Open No. 6-291688
[Problems to be solved by the invention]
However, the related art has the following problems when suppressing intermodulation interference (IM interference). That is,
(1) In the prior art, when a strong input is detected, the antenna input signal is attenuated by the detected voltage value, and IM interference is improved by attenuating the interfering station together with the receiving station. That is, in order to attenuate the interfering station, the signal is attenuated to the own station, and a mute operation is performed.
(2) If the attenuation operation is stopped under certain conditions in order to avoid the mute phenomenon due to attenuation of the own station, there is a problem that the anti-jamming characteristics cannot be sufficiently obtained.
(3) In the case of the single tuner of FIG. 6, as shown in FIG. 7, there may be a case where an interfering station cannot be detected due to the selection characteristics of the tuning circuit. In such a case, there is a problem that the attenuation operation is not performed. That is, there is a problem that an interfering station exceeding the selection range SFR cannot be detected, and a correct measure against intermodulation interference (IM interference) cannot be taken.
Accordingly, it is an object of the present invention to effectively attenuate the IM jammer signal level.
It is another object of the present invention to suppress a decrease in the signal level of the receiving station even if the signal level of the IM interfering station is attenuated.
It is another object of the present invention to reduce the frequency of occurrence of IM interference by detecting an interference station signal level and performing AGC operation.
[0006]
[Means for Solving the Problems]
According to the present invention, a main tuner and a sub-tuner are provided. The main tuner receives and demodulates a broadcast wave, detects a state of the broadcast wave in the sub-tuner, and receives the broadcast wave in the main tuner based on the detection result. In a receiver for controlling a state, a sub-tuner is used to detect two stations serving as intermodulation interfering stations with respect to a receiving station. When the frequency difference is equal to or less than the first set value, the tuning frequency of the tuning circuit is separated from the interference station frequency, and when the difference is equal to or greater than the second set value which is larger than the first set value, the tuning circuit is tuned. This is achieved by moving the frequency closer to the jammer frequency.
In this case, two stations having a frequency relationship with respect to the receiving station that can be an intermodulation interfering station and having a received electric field strength equal to or higher than a set value and an AGC voltage equal to or higher than the set value are set as the intermod interfering stations. By determining that the number of stations is one, it is possible to effectively reduce intermodulation interference.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(A) Schematic diagram of the present invention FIG. 1 is a schematic explanatory diagram of the present invention. In FIG. 1 (A), a tuning characteristic 1 of the tuning circuit has a characteristic that the center frequency is fh, and is separated from the center frequency fh by a frequency A. The frequency deviated from the center frequency fh by a frequency B (> A) is denoted by fb. Assuming that the receiving station frequency is fh, the station frequencies of two stations serving as intermodulation interfering stations are f1 and f2, and the interfering station frequency close to the receiving station frequency fh is f1, the following equation | f1-fh | = | f2-f1 | (1)
Holds. However, even if the equation (1) is satisfied, if the reception strength of the intermodulation interfering station is small, the intermodulation interference does not occur. On the other hand, if the expression (1) is satisfied and the reception intensity of the intermodulation interfering station is high, intermodulation interference occurs.
[0008]
When intermod interference occurs, two stations which are to be intermod interference stations with respect to the receiving station are detected using the sub-tuner. Next, a difference Δf (= | f1−fh |) between the frequency f1 of the interfering station close to the receiving station and the receiving station frequency fh of the two stations is equal to or more than the first set value A and equal to or less than the second set value B , In other words, whether fa <f1 <fb. In the case of FIG. 1A, since it is “YES”, the center frequency of the tuning circuit is not changed. That is, in the case of FIG. 1A, nothing is performed because the signal level L1 of the interfering station frequency f1 becomes smaller due to the tuning characteristics (selection characteristics).
On the other hand, if the difference Δf (= | f1−fh |) is equal to or less than the first set value A, that is, if f1 ≦ fa, as shown in FIG. L1 increases, and the frequency of occurrence of intermodulation interference increases. Therefore, in such a case, the tuning frequency fh of the tuning circuit is shifted by the set frequency C in a direction away from the interfering station frequency f1 as shown by a dotted line 2 in FIG. By doing so, the signal level at the interfering station frequency f1 is reduced to L1 ', and intermodulation interference is reduced. Note that the shift of the tuning frequency fh also lowers the signal level of the receiving station, but the amount of reduction is much smaller than the signal level of the interfering station.
[0009]
If the difference Δf (= | f1−fh |) is equal to or greater than the second set value B, that is, if fb ≦ f1, as shown in FIG. 1C, the interference station frequency f1 is outside the tuning frequency. It becomes. However, distortion occurs in a non-linear portion (a diode, a transistor, or the like) of an amplifier or the like to generate a distortion component, and as if another wave is generated. When this wave enters the reception tuning frequency range, it becomes intermodulation noise. Therefore, the tuning frequency fh of the tuning circuit is set in a direction closer to the interfering station frequency f1 as shown by a dotted line 3 in FIG. 1C so that the frequency of occurrence of intermodulation interference is low and AGC control can be performed. Shift by frequency C. This makes it possible to detect the signal level L1 ″ at the interfering station frequency f1, thereby enabling AGC control and reducing the frequency of occurrence of intermodulation interference. In addition, by shifting the tuning frequency fh Although the signal level of the receiving station also decreases, the effect of reducing the intermodulation interference by enabling the AGC control is greater.
[0010]
(B) Configuration of Receiver FIG. 2 is a configuration diagram of a receiver according to the present invention, and includes a reception tuner (main tuner) 51, a detection tuner (sub tuner) 52 for detecting a reception state, a sub tuner and a main tuner. A tuning frequency control unit 53 provided between the tuners and having a microcomputer configuration for performing tuning frequency control is provided. The receiving tuner 51 and the detecting tuner 52 have substantially the same configuration, and only the internal configuration of the detecting tuner 52 is shown. Note that, in addition to the configuration shown in the drawing, the reception tuner 51 is provided with a detection unit that detects the intermediate frequency signal and outputs the signal to the speaker side.
The broadcast radio wave received by the antenna ATT is tuned by the first tuning unit 61 and then input to the high frequency amplifier 62 and amplified. The output of the high-frequency amplifier 62 is input to the second tuning unit 63, where the output is tuned again and then output to the mixer 64. The mixer 64 mixes the local oscillation frequency signal output from the local oscillator 66, which is PLL-controlled by the tuner control unit 60, with the output signal of the second tuning circuit, and outputs an intermediate frequency signal IF. The intermediate frequency amplifier 65 limits the bandwidth and amplifies it with a built-in intermediate frequency filter and intermediate frequency amplifier. The strong electric field detector 67 inputs the output signal of the second tuning circuit 63 to the attenuation signal generation circuit (AGC circuit) 68, compares the output signal level with the set level, and if the output signal level is equal to or higher than the set level. The strong electric field detection signal is input to the tuner unit 60. The AGC circuit 68 controls the first tuning circuit 61 and the high-frequency amplifier circuit 62 to reduce the interference level if the interference level included in the output signal of the second tuning circuit 63 is high. An electric field strength generation circuit (S meter) 69 monitors the output signal level of the intermediate frequency amplifier 65 and outputs an S meter voltage.
The tuner control unit 60 executes electronic tuning control (seek control) to detect the reception state of each broadcast station signal. That is, it instructs the tuning voltage generation circuit 70 to tune to each broadcast station frequency as appropriate, and controls the local oscillator 66 to emit at a local oscillation frequency corresponding to the broadcast station frequency. The tuning voltage generation circuit 70 generates a tuning voltage so as to have tuning characteristics having the designated broadcast station frequency as a center frequency, and inputs the tuning voltage to the first and second tuning circuits 61 and 63.
Further, the tuner control unit 60 acquires the strong electric field detection signal and the S meter voltage from the strong electric field detection circuit 67 and the electric field strength generation circuit 69 and inputs them to the tuning frequency control unit 53.
[0012]
FIG. 3 is a tuning frequency control processing flow of the tuning frequency control unit 53 of the present invention. The receiving station (receiving station frequency fh) is input to the tuning frequency control unit 53 from an operation unit (not shown), and the receiving tuner 51 transmits a broadcast radio signal of the receiving station frequency fh specified by the control of the tuning frequency control unit 53. Receiving.
The tuning frequency control unit 53 performs seek control of the sub-tuner 52 to acquire the strong electric field detection signal and the S meter voltage output from the strong electric field detection circuit 67 for each of the 76 MHz to 90 MHz FM broadcast stations, and to perform intermodulation interference. An FM broadcast station that can be a station is detected (step 101). When the S-meter voltage (reception electric field strength) is equal to or higher than a set value (= 95% of the saturation voltage) and the output signal of the second tuning circuit 63 is equal to or higher than the set level (the AGC amount is large), an intermodulation interference station can be obtained. It is determined to be an FM broadcast station.
When the search for the FM broadcast station that can be the intermodulation interfering station is completed, it is checked whether there are two stations that satisfy the IM condition (Equation (1)) (step 102). If there are two or more interfering stations, it is checked whether or not there are two stations satisfying the above conditions in all combinations of the interfering stations.
[0013]
If there are no two stations that satisfy the IM condition, the shift operation of the center frequency of the first and second tuning circuits 61 and 63 of the receiving tuner 51 is stopped or canceled (step 103), and the process ends.
If there are two stations satisfying the IM conditions, the target IM station is selected (step 104). Next, it is checked whether there is a strong input station near the target IM station (step 105). If there is, a shift operation of the center frequency of the first and second tuning circuits 61 and 63 of the receiving tuner 51 is performed. Stop or release (step 103) and end the process. This is for the purpose of avoiding suppression by a nearby interfering station. That is,
When (1) | f1-fh | <A, another strong input station exists near the opposite side to f1, and when (2) | f1-fh |> B, another strong input station exists near the f1 side. If a strong input station is present, shifting the center frequency of the tuning circuit will excessively attenuate the fh signal. For this reason, the determination in step 105 is performed, and if there is a strong input station near the target IM station, the shift operation is not performed.
[0014]
On the other hand, if there is no strong input station near the target IM station, the central frequency shift operation of the first and second tuning circuits 61 and 63 is performed by the method according to FIG. 1 (step 106). The details of step 106 are as follows. Here, the receiving station frequency is fh, the station frequencies of two stations that are intermodulation interfering stations are f1 and f2, and the interfering station frequency f1 of the two stations that is closer to the receiving station.
First, a difference Δf (= | f1−fh |) between the frequency f1 and the receiving station frequency fh is equal to or more than the first set value A and equal to or less than the second set value B, in other words, fa <f1 <fb. Check if it is. In the case of FIG. 1A, since it is “YES”, the center frequency of the tuning circuit is not changed.
On the other hand, if the difference Δf (= | f1−fh |) is equal to or less than the first set value A, the tuning frequency fh of the tuning circuit is separated from the interference station frequency f1 as shown by a dotted line 2 in FIG. To the set frequency C.
[0015]
If the difference Δf (= | f1−fh |) is equal to or greater than the second set value B, that is, if fb ≦ f1, the tuning frequency fh is disturbed as shown by a dotted line 3 in FIG. The frequency is shifted by the set frequency C in a direction approaching the station frequency f1.
As described above, in the case of FIG. 1B, the signal level at the interfering station frequency f1 is as low as L1 ′, and intermodulation interference is reduced. In this case, the signal level of the receiving station is reduced by shifting the tuning frequency fh, but the amount of reduction is much smaller than the signal level of the interfering station. 1C, the signal level L1 ″ at the interfering station frequency f1 can be detected, AGC control can be performed, and the frequency of occurrence of intermodulation interference can be reduced. In this case, the tuning frequency By shifting fh, the signal level of the receiving station is reduced, but the AGC control becomes possible, and the effect of reducing intermodulation interference is greater.
[0016]
(C) Effect FIG. 4 is an explanatory diagram of the effect when the tuning frequency is kept away when f1 ≦ fa, where the horizontal axis is Δf and the vertical axis is the mute amount of the receiving station when the disturbing station is at a certain level. is there. In the figure, a indicates a case where the tuning frequency is not shifted, b indicates a case where the tuning frequency is moved away from the interference frequency, and c indicates a case where the tuning frequency approaches the interference frequency. In FIG. 1B, A = 3.5 MHz. , B = 4.0 MHz and C = 1.0 MHz. FIG. 4 shows that the mute amount of the receiving station is reduced.
[0017]
FIG. 5 is an explanatory diagram of the effect when the tuning frequency is brought closer in the case of fb ≦ f1, where the horizontal axis is Δf, and the vertical axis is the level of the interfering station when a certain IM interference occurs in the receiving station. In the figure, a indicates a case where the tuning frequency is not shifted, and b indicates a case where the tuning frequency approaches the interference frequency. In FIG. 1C, A = 3.5 MHz, B = 4.0 MHz, and C = 1.0 MHz, respectively. And From FIG. 5, it can be seen that the level of the interfering station when a certain IM interference occurs at the receiving station is high. That is, it can be seen that IM interference is less likely to occur at the receiving station than when the tuning frequency is not shifted.
[0018]
【The invention's effect】
According to the present invention, the sub-tuner is used to detect two intermodulation interfering stations with respect to the receiving station, and the difference between the frequency of the interfering station near the receiving station and the frequency of the receiving station is detected. If the difference is less than the first set value, the tuning frequency of the tuning circuit is separated from the interfering station frequency, and if the difference is not less than the second set value which is larger than the first set value, the tuning frequency of the tuning circuit is disturbed. Since the frequency is set close to the station frequency, the IM interference station signal level can be effectively attenuated. In this case, even if the IM interfering station signal level is attenuated, a decrease in the receiving station signal level can be suppressed.
Further, according to the present invention, the frequency of IM interference can be reduced by the AGC operation by reliably detecting the interference station signal level.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of the present invention.
FIG. 2 is a configuration diagram of a receiver according to the present invention.
FIG. 3 is a tuning frequency control processing flow of a tuning frequency control unit of the present invention.
FIG. 4 is an explanatory diagram of an effect when a tuning frequency is kept away when f1 ≦ fa.
FIG. 5 is an explanatory diagram of an effect when the tuning frequency is approximated when fb ≦ f1.
FIG. 6 is a configuration diagram of a receiver including a conventional single tuner.
FIG. 7 is an explanatory diagram in a case where an interfering station cannot be detected due to a selection characteristic of a tuning circuit.
[Explanation of symbols]
51 Tuner for reception (main tuner)
52 Tuner for detection (sub tuner)
53 Tuning frequency control unit 60 Tuner control unit 61 First tuning unit 62 High frequency amplifier 63 Second tuning unit 64 Mixer 65 Intermediate frequency amplifier 66 Local oscillator 67 Strong electric field detection unit 68 AGC circuit 69 Electric field intensity generation circuit (S meter)
70 Tuning voltage generation circuit

Claims (3)

メインチューナとサブチューナを備え、メインチューナで放送電波を受信して復調しながら、サブチューナで放送電波の状態を検出し、検出結果に基づいてメインチューナにおける受信状態を制御する受信機において、サブチューナを用いて、受信局に対して相互変調妨害局となる2つの局を検出し、該2つの局のうち前記受信局に近い妨害局の周波数と受信局周波数の差が第1の設定値以下の場合には同調回路の同調周波数を妨害局周波数より離し、前記差が第1の設定値より大きな第2の設定値以上の場合には同調回路の同調周波数を妨害局周波数に近づける同調周波数制御部、
を備えたことを特徴とする受信機。
A receiver that includes a main tuner and a sub tuner, detects the state of the broadcast wave with the sub tuner while receiving and demodulating the broadcast wave with the main tuner, and controls the reception state of the main tuner based on the detection result. A tuner is used to detect two stations that are intermodulation interfering stations for the receiving station, and the difference between the frequency of the interfering station that is closer to the receiving station and the receiving station frequency is the first set value. In the following cases, the tuning frequency of the tuning circuit is separated from the interfering station frequency, and when the difference is equal to or greater than a second set value larger than the first set value, the tuning frequency of the tuning circuit approaches the interfering station frequency. Control unit,
A receiver comprising:
受信電界強度を検出する受信電界強度検出部、
AGC電圧を検出するAGC検出部、
を備え、前記同調周波数制御部は、前記受信局に対して相互変調妨害局となりうる周波数関係を備え、かつ、受信電界強度が設定値以上で、AGC電圧が設定値以上の2つの局を前記相互変調妨害局となる2つの局であると判定する、
ことを特徴とする請求項1記載の受信機。
A reception field strength detection unit for detecting a reception field strength,
An AGC detector for detecting an AGC voltage,
The tuning frequency control unit has a frequency relationship that can be an intermodulation interfering station with respect to the receiving station, and the received electric field strength is equal to or higher than a set value and the AGC voltage is equal to or higher than the set value. Determine that the two stations are intermodulation jamming stations,
The receiver according to claim 1, wherein:
メインチューナとサブチューナを備え、メインチューナで放送電波を受信して復調しながら、サブチューナで放送電波の状態を検出し、検出結果に基づいてメインチューナにおける受信状態を制御する受信機の受信方法において、
サブチューナを用いて、受信局に対して相互変調妨害局となる2つの局を検出し、
該2つの局のうち前記受信局に近い妨害局の周波数と受信局周波数の差が第1の設定値以下の場合には同調回路の同調周波数を妨害局周波数より離し、
前記差が第1の設定値より大きな第2の設定値以上の場合には同調回路の同調周波数を妨害局周波数に近づける、
ことを特徴とする受信機の受信方法。
A receiving method comprising a main tuner and a sub-tuner, wherein the main tuner receives and demodulates a broadcast wave, detects a state of the broadcast wave with the sub-tuner, and controls a reception state in the main tuner based on the detection result. At
The sub-tuner is used to detect two inter-modulation interfering stations with respect to the receiving station,
When the difference between the frequency of the interfering station close to the receiving station and the receiving station frequency of the two stations is equal to or less than a first set value, the tuning frequency of the tuning circuit is separated from the interfering station frequency;
When the difference is equal to or greater than a second set value larger than the first set value, the tuning frequency of the tuning circuit is brought closer to the interference station frequency;
A receiving method of a receiver, characterized in that:
JP2003017093A 2003-01-27 2003-01-27 Receiver and receiving method Withdrawn JP2004229170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017093A JP2004229170A (en) 2003-01-27 2003-01-27 Receiver and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017093A JP2004229170A (en) 2003-01-27 2003-01-27 Receiver and receiving method

Publications (1)

Publication Number Publication Date
JP2004229170A true JP2004229170A (en) 2004-08-12

Family

ID=32904337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017093A Withdrawn JP2004229170A (en) 2003-01-27 2003-01-27 Receiver and receiving method

Country Status (1)

Country Link
JP (1) JP2004229170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296069A (en) * 2008-06-02 2009-12-17 Mitsumi Electric Co Ltd Terminal unit and signal receiving method by the terminal unit
US7672654B2 (en) 2005-07-08 2010-03-02 Casio Computer Co., Ltd. Broadcasting receiver and method of receiving a broadcasting wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672654B2 (en) 2005-07-08 2010-03-02 Casio Computer Co., Ltd. Broadcasting receiver and method of receiving a broadcasting wave
JP2009296069A (en) * 2008-06-02 2009-12-17 Mitsumi Electric Co Ltd Terminal unit and signal receiving method by the terminal unit
JP4636124B2 (en) * 2008-06-02 2011-02-23 ミツミ電機株式会社 Terminal apparatus and signal receiving method using the terminal apparatus

Similar Documents

Publication Publication Date Title
JP3906792B2 (en) High frequency signal receiving apparatus and manufacturing method thereof
US7580690B2 (en) High-frequency receiver having a gain switch controller
US7890075B2 (en) Mechanism for controlling amplifier gain in a radio receiver
US7885628B2 (en) FM tuner
US6389272B1 (en) Receiver with auto gain control circuit of RF signal
JP2009081839A (en) Fm tuner
US8315584B2 (en) Semiconductor integrated circuit and broadcast receiver
JPH08307288A (en) Radio receiver
KR101008056B1 (en) High frequency signal receiver
JP4135746B2 (en) High frequency signal receiver
JP2004229170A (en) Receiver and receiving method
JPH06291688A (en) Receiver
US20030156661A1 (en) Receiver and receiving method
JP4409423B2 (en) AM receiver
US8934634B2 (en) Stereo signal processing circuit
JPH057784Y2 (en)
US7663431B2 (en) Tuner and demodulating unit thereof
KR20130063953A (en) Tuner module
JP4775740B2 (en) Receiver circuit
US20090124228A1 (en) Intermodulation disturbance detecting unit
JP3586060B2 (en) Intermediate frequency circuit
JPH0879145A (en) Automatic frequency control system for radio communication equipment
JPH10313432A (en) Television tuner
JPH1169245A (en) Intermediate frequency circuit for television signal
JP3929764B2 (en) Radio receiver

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404