JP2004228339A - Temperature detecting structure for electronic circuit component - Google Patents

Temperature detecting structure for electronic circuit component Download PDF

Info

Publication number
JP2004228339A
JP2004228339A JP2003014356A JP2003014356A JP2004228339A JP 2004228339 A JP2004228339 A JP 2004228339A JP 2003014356 A JP2003014356 A JP 2003014356A JP 2003014356 A JP2003014356 A JP 2003014356A JP 2004228339 A JP2004228339 A JP 2004228339A
Authority
JP
Japan
Prior art keywords
electronic circuit
groove
temperature
pedestal
temperature detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014356A
Other languages
Japanese (ja)
Inventor
Iwao Tsurubuchi
巌 鶴渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2003014356A priority Critical patent/JP2004228339A/en
Publication of JP2004228339A publication Critical patent/JP2004228339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of a temperature detecting structure for electronic circuit component by reducing the number of temperature detecting elements without lowering the temperature detection accuracy of electronic circuit components. <P>SOLUTION: FETs (field effect transisters) 1a-1f are placed on a pedestal 2 and a bottomed groove 5 is formed on the upper surface 2a of the pedestal 2 between the FETs 1a and 1b. In addition, a thermistor 6 is disposed on the bottom face 5a of the groove 5. The heat generated from the FETs 1a and 1b is transferred along the side faces 5b of the groove 5 due to the difference in thermal conductivity between the pedestal 2 (made of aluminum) and the inside (air) of the groove 5, and reaches the bottom face 5a. The bottom of the groove 5 becomes a heat sink, and the heat reserved in the heat sink is detected by means of a thermistor 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子回路部品の温度検出装置に関し、特に、FET等の発熱量の多い回路素子の温度検出に適用して有効な技術に関する。
【0002】
【従来の技術】
FETのようなパワー系の回路素子は、制御系の素子に比して発熱量が多く、その保護に際しては、発熱部の温度をいかに正確に検知できるかポイントとなる。ところが、FETなどはチップを合成樹脂等によってパッケージした構成となっているため、チップの温度を直接測定することができない。そこで、素子上面や近傍にサーミスタ等の温度検出素子を配し、パッケージ内のチップ温度を推定する方式が一般に用いられている。
【0003】
図5は、このような従来の温度検出方式を示す説明図である。図5に示すように、チップ51を内装したFET52はアルミダイカスト製の台座53に載置される。台座53はヒートシンクを兼ねており、チップ51にて発生した熱は破線のように約30〜45度の放射角にて台座53内に伝導する。チップ51の温度を測定するサーミスタ54は、一点鎖線にて示したように、各FET52の上面に直接ねじ止めされたり、台座53上面のFET52の間に載置される。
【0004】
【特許文献1】特開平11−146507号公報
【0005】
【発明が解決しようとする課題】
しかしながら、図5のようにサーミスタ54を配置した場合、各FET52の上面に取り付けると、サーミスタ54がFET52と同じ数だけ必要となる。例えば、3相のブラシレスモータにてFETを6個用いる場合には、サーミスタもそのまま6個必要となる。このため、センサ数が増大し、コストが嵩むという問題があった。この際、FETの一部を選んでサーミスタを取り付け、センサ数の削減を方法も採り得るが、温度検出が不正確となりFETの温度保護が不十分になる恐れがある。
【0006】
一方、FET52の間にサーミスタ54を設ける場合には、サーミスタ54はFET52の半分の個数で済む。ところが、図5に示したように、台座53における熱の伝導は平面的ではないため、サーミスタ54の部分には熱が余り伝わらない。従って、チップ51の温度を正確に把握することが難しく、温度検出精度が低いという問題がある。
【0007】
本発明の目的は、電子回路部品の温度検出精度を低下させることなく、温度検出素子の個数を削減してコストダウンを図ることにある。
【0008】
【課題を解決するための手段】
本発明の電子回路部品の温度検出構造は、台座上に載置された電子回路部品の温度を温度検出素子を用いて測定する電子回路部品の温度検出構造であって、前記台座の前記電子回路部品近傍に、前記温度検出素子を収容する凹部を形成したことを特徴とする。
【0009】
本発明にあっては、電子回路部品近傍に設けた凹部が熱溜まり部となり、そこに電子回路部品から発生した熱が集約される。従って、この凹部に温度検出素子を配置することにより、より正確に電子回路部品の温度を把握でき、過熱による電子回路部品の故障を未然に防止できる。また、熱溜まりとなる凹部にて効率良く温度を行えるので、各電子回路部品毎に温度検出素子を配置する必要がなく、センサ数を削減でき、製品のコストダウンを図ることが可能となる。
【0010】
前記温度検出構造において、前記凹部は、複数個の前記電子回路部品の間に形成された有底溝であっても良い。また、前記温度検出構造において、前記凹部は、複数個の前記電子回路部品の間に形成された有底孔であっても良い。
【0011】
【発明の実施の形態】
(実施の形態1)
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明の実施の形態1である温度検出構造の構成を示す平面図、図2は図1のY−Y線に沿った断面図、図3は図1の温度検出構造における熱伝導経路を示す説明図である。本実施の形態では、車載モータの制御に使用されるFETの温度検出に本発明による構造を適用したものについて説明する。
【0012】
図1に示すように、ここでは6個のFET(電子回路部品)1a〜1fがアルミダイカスト製の台座2に載置されている。FET1a〜1fは、電動パワーステアリングやエンジンスタータ、エンジン動力補助装置等に使用される3相ブラシレスモータの制御に用いられる。FET1a〜1fは、チップ3の周囲を合成樹脂製のパッケージ4にて覆った形となっており、台座2上に20mm程度のピッチで配置されている。
【0013】
台座2のFET1a,1b間には、図1において縦方向に沿って有底溝5(凹部;以下、溝5と略記する)が凹設されている。溝5はFET1a,1bの中央に形成されており、図2に示すように、幅が約8.5mm、深さがFET1a〜1fを載置した台座上面2aから約2mmに形成されている。溝5内にはサーミスタ(温度検出素子)6が収容されている。サーミスタ6は、溝5の底面5a上に直接載置されている。なお、6個のFET1a〜1fの間の部位A〜Gのうち、予め行った実験にて最も温度が高くなる部位に設置されている。
【0014】
このような構成では、チップ3にて発生した熱はFET1a,1bの下面から台座2に伝わる。台座2に伝わった熱は、図3に示すように、下方に約30〜45度の放射角にて広がる。ところが、溝5側に伝わった熱は、台座2(アルミニウム製)と溝5内(空気)の熱伝導性の違いにより、台座2から溝5内にはほとんど伝わらない。すなわち、台座2と溝5内との間は熱抵抗が大きく、溝5側の熱は溝側面5bに沿って下方に伝わって行く。
【0015】
溝側面5bに沿って伝わった熱はやがて溝底部に至る。溝底部では、底面5aに沿って熱が伝わり、そこでは溝5の両側のFET1a,1bからの熱が合流する。FET1a,1bの熱は溝5の底面5aに誘導され、そこが一種の熱溜まりの形となる。そして、この熱をサーミスタ6によって検知する。すなわち、熱の放射パターンを利用して高温となる熱溜まり部を台座2に形成し、そこの温度を検出する。従って、当該構造では、台座表面にサーミスタ6を配置するのと異なり、熱を溝5に集約して温度を検知するので、温度検出精度が大幅に向上する。
発明者らの実験によれば、台座表面(図1においてFET1aの右横部位X)が89°Cのとき、部位Aの溝底面5aは94°Cであり、集熱効果が確認された。
【0016】
このように、本発明による温度検出構造では、熱溜まり部にて温度測定を行ってFETの温度保護を行うので、より正確にチップ3の温度を把握でき、過熱による素子の故障を未然に防止できる。また、熱溜まり部にて効率良く温度を行えるので、各FET毎にサーミスタ6を配置する必要がなく、センサ数を削減でき、製品のコストダウンを図ることが可能となる。
【0017】
なお、前述の実施の形態では、部位Aのみにサーミスタ6を配置した構成を示したが、他の部位にさらにサーミスタ6を配置し、複数ポイントで温度測定を行うことも可能である。また、図1に破線にて示したように、溝5を図1において横方向に形成して、部位Eなどにサーミスタ6を配置することも可能である。
【0018】
(実施の形態2)
次に、本発明の実施の形態2として、溝5に代えて、有底孔7(凹部;以下、孔7と略記する)を設けたものについて説明する。図4は、本発明の実施の形態2である温度検出構造の構成を示す平面図である。なお、実施の形態1と同様の部材、部分については同一の符号を付しその説明は省略する。
【0019】
本実施の形態では、図4に示すように、サーミスタ6は小判型の孔7に収容されている。実施の形態1ではサーミスタ6を溝5に収容したが、サーミスタ収容部分以外は凹部である必要はない。一方、台座2は熱容量をできる限り大きくしたいと言う要請もある。そこで、台座2の切除部分を最小限に抑え、熱容量を稼ぎつつ、温度検出精度の向上とセンサ数の削減を図ったものが本実施の形態である。
【0020】
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、前述の実施の形態におけるFETの個数や配置ピッチ、溝5の幅・深さ・個数はあくまでも一例であり、前述の数値には限定されない。また、モータの種類も前述の例には限定されず、5相など3相以外のブラシレスモータや、SRモータなどにも適用可能である。さらに、モータの用途も車載用には限定されず、家電製品用やIT機器用など広く電子回路一般に適用可能である。
【0021】
【発明の効果】
本発明の電子回路部品の温度検出構造によれば、台座上に載置された電子回路部品の温度を温度検出素子を用いて測定する電子回路部品の温度検出構造にて、台座の電子回路部品近傍に温度検出素子を収容する凹部を形成したので、この凹部が熱溜まり部となり、そこに電子回路部品から発生した熱が集約される。従って、この凹部に温度検出素子を配置することにより、より正確に電子回路部品の温度を把握でき、過熱による電子回路部品の故障を未然に防止できる。また、熱溜まりとなる凹部にて効率良く温度を行えるので、各電子回路部品毎に温度検出素子を配置する必要がなく、センサ数を削減でき、製品のコストダウンを図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1である温度検出構造の構成を示す平面図である。
【図2】図1のY−Y線に沿った断面図である。
【図3】図1の温度検出構造における熱伝導経路を示す説明図である。
【図4】本発明の実施の形態2である温度検出構造の構成を示す平面図である。
【図5】従来の温度検出方式を示す説明図である。
【符号の説明】
1a〜1f FET(電子回路部品)
2 台座
2a 台座上面
3 チップ
4 パッケージ
5 有底溝(凹部)
5a 底面
5b 溝側面
6 サーミスタ(温度検出素子)
7 有底孔(凹部)
51 チップ
52 FET
53 台座
54 サーミスタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature detecting device for electronic circuit components, and more particularly to a technology effective when applied to temperature detection of a circuit element having a large amount of heat generation such as an FET.
[0002]
[Prior art]
Power-system circuit elements such as FETs generate a large amount of heat compared to control-system elements, and the point of protection is how to accurately detect the temperature of the heat-generating portion. However, since the FET or the like has a configuration in which the chip is packaged with a synthetic resin or the like, the temperature of the chip cannot be directly measured. Therefore, a method of arranging a temperature detecting element such as a thermistor on the upper surface or in the vicinity of the element and estimating a chip temperature in the package is generally used.
[0003]
FIG. 5 is an explanatory diagram showing such a conventional temperature detection method. As shown in FIG. 5, the FET 52 containing the chip 51 is mounted on a base 53 made of aluminum die-cast. The pedestal 53 also serves as a heat sink, and heat generated by the chip 51 is conducted into the pedestal 53 at a radiation angle of about 30 to 45 degrees as shown by a broken line. The thermistor 54 for measuring the temperature of the chip 51 is screwed directly to the upper surface of each FET 52 or mounted between the FETs 52 on the upper surface of the pedestal 53, as shown by a dashed line.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. H11-146507
[Problems to be solved by the invention]
However, when the thermistors 54 are arranged as shown in FIG. 5, when the thermistors 54 are mounted on the upper surfaces of the respective FETs 52, the same number of thermistors 54 as the number of the FETs 52 are required. For example, when six FETs are used in a three-phase brushless motor, six thermistors are required as they are. Therefore, there is a problem that the number of sensors increases and the cost increases. At this time, a method of selecting a part of the FET and attaching a thermistor to reduce the number of sensors may be adopted, but the temperature detection may be inaccurate and the temperature protection of the FET may be insufficient.
[0006]
On the other hand, when the thermistor 54 is provided between the FETs 52, the number of the thermistors 54 is half the number of the FETs 52. However, as shown in FIG. 5, heat conduction in the pedestal 53 is not planar, so that little heat is transmitted to the thermistor 54. Therefore, it is difficult to accurately grasp the temperature of the chip 51, and there is a problem that the temperature detection accuracy is low.
[0007]
An object of the present invention is to reduce the number of temperature detecting elements and reduce costs without reducing the temperature detection accuracy of electronic circuit components.
[0008]
[Means for Solving the Problems]
The temperature detection structure of an electronic circuit component of the present invention is a temperature detection structure of an electronic circuit component that measures a temperature of an electronic circuit component mounted on a pedestal using a temperature detection element, and the electronic circuit of the pedestal. A recess for accommodating the temperature detecting element is formed near the component.
[0009]
In the present invention, the concave portion provided in the vicinity of the electronic circuit component serves as a heat reservoir, in which heat generated from the electronic circuit component is concentrated. Therefore, by arranging the temperature detecting element in the concave portion, the temperature of the electronic circuit component can be more accurately grasped, and the failure of the electronic circuit component due to overheating can be prevented. In addition, since the temperature can be efficiently controlled in the concave portion serving as a heat reservoir, it is not necessary to arrange a temperature detecting element for each electronic circuit component, the number of sensors can be reduced, and the cost of the product can be reduced.
[0010]
In the temperature detection structure, the recess may be a bottomed groove formed between a plurality of the electronic circuit components. In the temperature detection structure, the recess may be a bottomed hole formed between a plurality of the electronic circuit components.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a configuration of a temperature detecting structure according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line YY of FIG. 1, and FIG. It is explanatory drawing which shows a route. In the present embodiment, a case will be described in which the structure according to the present invention is applied to temperature detection of an FET used for controlling a vehicle-mounted motor.
[0012]
As shown in FIG. 1, here, six FETs (electronic circuit components) 1a to 1f are mounted on a base 2 made of aluminum die-cast. The FETs 1a to 1f are used for controlling a three-phase brushless motor used for an electric power steering, an engine starter, an engine power assist device, and the like. The FETs 1a to 1f have a shape in which the periphery of the chip 3 is covered with a package 4 made of synthetic resin, and are arranged on the pedestal 2 at a pitch of about 20 mm.
[0013]
Between the FETs 1a and 1b of the pedestal 2, a bottomed groove 5 (concave portion; hereinafter, abbreviated as groove 5) is formed along the longitudinal direction in FIG. The groove 5 is formed in the center of the FETs 1a and 1b, and has a width of about 8.5 mm and a depth of about 2 mm from the pedestal upper surface 2a on which the FETs 1a to 1f are mounted, as shown in FIG. A thermistor (temperature detecting element) 6 is accommodated in the groove 5. The thermistor 6 is directly mounted on the bottom surface 5 a of the groove 5. It should be noted that among the portions A to G between the six FETs 1a to 1f, they are installed at the portions where the temperature is highest in an experiment conducted in advance.
[0014]
In such a configuration, heat generated in the chip 3 is transmitted to the base 2 from the lower surfaces of the FETs 1a and 1b. The heat transmitted to the pedestal 2 spreads downward at a radiation angle of about 30 to 45 degrees as shown in FIG. However, heat transmitted to the groove 5 side is hardly transmitted from the pedestal 2 into the groove 5 due to a difference in thermal conductivity between the pedestal 2 (made of aluminum) and the inside of the groove 5 (air). That is, the thermal resistance between the pedestal 2 and the inside of the groove 5 is large, and the heat on the groove 5 side is transmitted downward along the groove side surface 5b.
[0015]
The heat transmitted along the groove side surface 5b eventually reaches the groove bottom. At the bottom of the groove, heat is transmitted along the bottom surface 5a, where heat from the FETs 1a and 1b on both sides of the groove 5 merge. The heat of the FETs 1a and 1b is guided to the bottom surface 5a of the groove 5, which forms a kind of heat pool. Then, this heat is detected by the thermistor 6. That is, a heat reservoir that becomes high in temperature is formed on the pedestal 2 using the heat radiation pattern, and the temperature there is detected. Therefore, in the structure, unlike the case where the thermistor 6 is arranged on the pedestal surface, the temperature is detected by collecting the heat in the groove 5, so that the temperature detection accuracy is greatly improved.
According to the experiments by the inventors, when the pedestal surface (the right side portion X of the FET 1a in FIG. 1) is 89 ° C., the groove bottom surface 5a of the portion A is 94 ° C., and the heat collecting effect is confirmed.
[0016]
As described above, in the temperature detection structure according to the present invention, the temperature of the FET 3 is protected by measuring the temperature in the heat reservoir, so that the temperature of the chip 3 can be grasped more accurately and the failure of the element due to overheating can be prevented beforehand. it can. In addition, since the temperature can be efficiently controlled in the heat reservoir, there is no need to arrange the thermistor 6 for each FET, so that the number of sensors can be reduced and the cost of the product can be reduced.
[0017]
In the above-described embodiment, the configuration is shown in which the thermistor 6 is arranged only at the site A. However, it is also possible to arrange the thermistor 6 at another site to measure the temperature at a plurality of points. Further, as shown by a broken line in FIG. 1, it is possible to form the groove 5 in the lateral direction in FIG.
[0018]
(Embodiment 2)
Next, a second embodiment of the present invention will be described in which a groove 7 is provided with a bottomed hole 7 (recess; hereinafter abbreviated as hole 7) instead of the groove 5. FIG. 4 is a plan view showing the configuration of the temperature detecting structure according to the second embodiment of the present invention. The same members and portions as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0019]
In the present embodiment, as shown in FIG. 4, the thermistor 6 is accommodated in an oval-shaped hole 7. In the first embodiment, the thermistor 6 is housed in the groove 5, but it is not necessary that the recess besides the thermistor housing portion. On the other hand, there is a demand that the pedestal 2 has as large a heat capacity as possible. Therefore, the present embodiment is intended to improve the temperature detection accuracy and reduce the number of sensors while increasing the heat capacity while minimizing the cut portion of the pedestal 2.
[0020]
The present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the scope of the invention.
For example, the number and arrangement pitch of the FETs and the width, depth, and number of the grooves 5 in the above-described embodiment are merely examples, and are not limited to the above numerical values. Also, the type of motor is not limited to the above-described example, and the present invention is also applicable to brushless motors other than three-phase such as five-phase, SR motors, and the like. Further, the use of the motor is not limited to the use for the vehicle, but can be widely applied to general electronic circuits such as for home appliances and IT devices.
[0021]
【The invention's effect】
According to the temperature detecting structure for an electronic circuit component of the present invention, the temperature of the electronic circuit component mounted on the pedestal is measured using a temperature detecting element. Since the concave portion for accommodating the temperature detecting element is formed in the vicinity, the concave portion serves as a heat reservoir, and heat generated from the electronic circuit components is concentrated there. Therefore, by arranging the temperature detecting element in the concave portion, the temperature of the electronic circuit component can be more accurately grasped, and the failure of the electronic circuit component due to overheating can be prevented. In addition, since the temperature can be efficiently controlled in the concave portion serving as a heat reservoir, it is not necessary to arrange a temperature detecting element for each electronic circuit component, the number of sensors can be reduced, and the cost of the product can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view showing a configuration of a temperature detecting structure according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line YY of FIG.
FIG. 3 is an explanatory diagram showing a heat conduction path in the temperature detection structure of FIG.
FIG. 4 is a plan view showing a configuration of a temperature detection structure according to a second embodiment of the present invention.
FIG. 5 is an explanatory diagram showing a conventional temperature detection method.
[Explanation of symbols]
1a-1f FET (electronic circuit parts)
2 Pedestal 2a Pedestal upper surface 3 Chip 4 Package 5 Bottom groove (recess)
5a bottom surface 5b groove side surface 6 thermistor (temperature detecting element)
7 Bottom hole (recess)
51 Chip 52 FET
53 Base 54 Thermistor

Claims (3)

台座上に載置された電子回路部品の温度を温度検出素子を用いて測定する電子回路部品の温度検出構造であって、
前記台座の前記電子回路部品近傍に、前記温度検出素子を収容する凹部を形成したことを特徴とする電子回路部品の温度検出構造。
A temperature detection structure of an electronic circuit component for measuring the temperature of the electronic circuit component mounted on the pedestal using a temperature detection element,
A temperature detecting structure for an electronic circuit component, wherein a recess for accommodating the temperature detecting element is formed near the electronic circuit component on the pedestal.
請求項1記載の電子回路部品の温度検出構造において、前記凹部は、複数個の前記電子回路部品の間に形成された有底溝であることを特徴とする電子回路部品の温度検出構造。2. The temperature detecting structure for an electronic circuit component according to claim 1, wherein said concave portion is a groove with a bottom formed between a plurality of said electronic circuit components. 請求項1記載の電子回路部品の温度検出構造において、前記凹部は、複数個の前記電子回路部品の間に形成された有底孔であることを特徴とする電子回路部品の温度検出構造。2. The temperature detecting structure for an electronic circuit component according to claim 1, wherein said concave portion is a bottomed hole formed between a plurality of said electronic circuit components.
JP2003014356A 2003-01-23 2003-01-23 Temperature detecting structure for electronic circuit component Pending JP2004228339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014356A JP2004228339A (en) 2003-01-23 2003-01-23 Temperature detecting structure for electronic circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014356A JP2004228339A (en) 2003-01-23 2003-01-23 Temperature detecting structure for electronic circuit component

Publications (1)

Publication Number Publication Date
JP2004228339A true JP2004228339A (en) 2004-08-12

Family

ID=32902434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014356A Pending JP2004228339A (en) 2003-01-23 2003-01-23 Temperature detecting structure for electronic circuit component

Country Status (1)

Country Link
JP (1) JP2004228339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227353A (en) * 2007-03-15 2008-09-25 Daikin Ind Ltd Heat sink
JP2019057658A (en) * 2017-09-22 2019-04-11 ダイヤモンド電機株式会社 Power supply board
CN114256734A (en) * 2021-12-13 2022-03-29 武汉光迅科技股份有限公司 Coaxial packaging super-radiation light emitting diode and implementation method thereof
CN115101510A (en) * 2022-08-26 2022-09-23 智新半导体有限公司 Chip structure with built-in thermosensitive device and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227353A (en) * 2007-03-15 2008-09-25 Daikin Ind Ltd Heat sink
JP2019057658A (en) * 2017-09-22 2019-04-11 ダイヤモンド電機株式会社 Power supply board
CN114256734A (en) * 2021-12-13 2022-03-29 武汉光迅科技股份有限公司 Coaxial packaging super-radiation light emitting diode and implementation method thereof
CN114256734B (en) * 2021-12-13 2023-09-22 武汉光迅科技股份有限公司 Coaxially packaged superradiation light-emitting diode and implementation method thereof
CN115101510A (en) * 2022-08-26 2022-09-23 智新半导体有限公司 Chip structure with built-in thermosensitive device and manufacturing method
CN115101510B (en) * 2022-08-26 2022-11-11 智新半导体有限公司 Chip structure with built-in thermosensitive device and manufacturing method

Similar Documents

Publication Publication Date Title
JP5725055B2 (en) Electronic control unit
CN104754919B (en) Electronic device with detector unit
US20110170258A1 (en) Electronic Module
US20140084834A1 (en) Electronic Control Device
JP2013099213A (en) Inverter device
JP6299368B2 (en) Semiconductor device temperature estimation device
JP6277114B2 (en) Power converter
US7775708B2 (en) Device for thermal coupling
JP6339022B2 (en) Semiconductor devices, automobiles
JP6769040B2 (en) How to inspect electronic devices
JP3889562B2 (en) Semiconductor device
JP2004228339A (en) Temperature detecting structure for electronic circuit component
JP2010239811A (en) Inverter device
JP5710995B2 (en) Semiconductor device
CN113873749A (en) Electronic control unit for electric power steering
JP2017183530A (en) Semiconductor device
JP6776605B2 (en) Mounting structure of temperature sensor
JP6064559B2 (en) Air-cooled inverter for motor drive
CN109874383A (en) Control device of electric motor and the electric power steering apparatus for being equipped with the control device of electric motor
RU2636415C1 (en) Device with power circuit module for electrical voltage supply for electrical load of household device, household device and method of manufacture of such device
JP7077717B2 (en) Power converter
JP2014239616A (en) Power conversion device for vehicle
JP4366269B2 (en) Semiconductor element temperature detection method and power conversion device
JPH11262241A (en) Power electronic circuit device
JP2001206232A (en) Electric power steering control device