JP2004228288A - Thermoelectric material and its producing process - Google Patents

Thermoelectric material and its producing process Download PDF

Info

Publication number
JP2004228288A
JP2004228288A JP2003013393A JP2003013393A JP2004228288A JP 2004228288 A JP2004228288 A JP 2004228288A JP 2003013393 A JP2003013393 A JP 2003013393A JP 2003013393 A JP2003013393 A JP 2003013393A JP 2004228288 A JP2004228288 A JP 2004228288A
Authority
JP
Japan
Prior art keywords
thermoelectric material
thermoelectric
crystal grains
merit
plasma sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003013393A
Other languages
Japanese (ja)
Inventor
Yasufumi Shibata
靖文 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003013393A priority Critical patent/JP2004228288A/en
Publication of JP2004228288A publication Critical patent/JP2004228288A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric material in which performance factor is enhanced by enhancing thermal conductivity without sacrificing the Seebeck coefficient and electrical conductivity of the thermoelectric material. <P>SOLUTION: Crystal grains of the thermoelectric material having a mean grain size of 5-10 μm are subjected to discharge plasma sintering and sintered and only the surface of crystal grains is rendered amorphous selectively. The thermoelectric material has an enhanced figure of merit Z=α<SP>2</SP>σ/κ (in the formula, α is Seebeck coefficient, σ is electrical conductivity and κ is thermal conductivity). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱電材料とその製造方法に係り、より詳しくは、熱電材料を焼結する際に粒径を制御して微粒子表面だけをアモルファス化して熱伝導性を低下させて性能指数を向上させた熱電材料とその製造方法に関する。
【0002】
【従来の技術】
熱電材料は熱エネルギーを直接に電気エネルギーに変換できる(ゼーベック効果)ので、理想的な発電方法、エネルギー回収方法として期待されるものであるが、公知の熱電材料では変換効率が低いのでゼーベック効果を利用した装置は実用化されるにはいたっていない。そのほか、電流を流すと吸熱及び発熱が生ずるペルチェ効果を利用するにしても、熱電材料の性能指数を向上させることが望まれている。
【0003】
そこで、熱電材料の性能指数を向上させることを目的として、特許文献1では、原料を液体急冷法により薄膜又は粉末状とし、これを更に粉砕し、これによって得られる粉末を結晶粒が粗大化しない条件で放電プラズマ焼結する方法が開示されている。
【0004】
また、特許文献2では、2種以上の異種組成の導電性酸化物の粉末を2層以上重ねて放電プラズマ焼結する、p型とn型半導体材料を接合した多結晶焼結体の接合型酸化物熱電素子材料の製造方法が開示されている。
【0005】
【特許文献1】
特開平10−41554号公報
【特許文献2】
特開2002−118300号公報
【0006】
【発明が解決しようとする課題】
特許文献1の方法は、液体急冷法により結晶粒の微細な材料、アモルファス材料又は非平衡相のような構造的歪みが導入された材料を得るものであり、熱伝導性は低下するが、導電性も低下する。
【0007】
また、特許文献2は熱電素子の製造方法であり、熱電材料そのものの性能指数を高めるものではない。
【0008】
そこで、本発明は、特許文献1,2とは異なる方法で、熱電材料の性能指数を向上させる方法と、得られる性能指数が向上した熱電材料を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために検討した結果、下記により上記目的を達成するものである。
【0010】
(1)平均粒径5〜10μmの熱電材料結晶粒を放電プラズマ焼結して、熱電材料結晶粒を焼結するとともに結晶粒子の表面だけを選択的にアモルファス化させることを特徴とする熱電材料の製造方法。
【0011】
(2)放電プラズマ焼結を650〜700Kの温度、25〜35MPaの圧力、20〜40分間の条件で行う上記(1)の熱電材料の製造方法。
【0012】
(3)平均粒径5〜10μmの熱電材料結晶粒を放電プラズマ焼結して成り、焼結した結晶粒子の表面だけが選択的にアモルファス化されていることを特徴とする熱電材料。
【0013】
(4)同一の熱電材料結晶粒に基づいて計算される性能指数Z=ασ/κ(式中、αはゼーベック係数(熱電能)、σは電気伝導度、κは熱伝導度を表す。)より高い性能指数を有する上記(3)の熱電材料。
【0014】
【発明の実施の形態】
本発明を適用できる熱電材料には特に制限はないが、例えば、(Bi,Sb)―(Te,Se)系材料、ZnSb系材料、FeSi,MnSi系材料、スクッテルダイト(CoSb系)、クラスレート系(BaSi系)など挙げることができる。
【0015】
熱電材料の性能指数は下記式で表されることが知られている。
【0016】
Z=ασ/κ
(式中、αは熱電能(ゼーベック係数)、σは電気伝導度、κは熱伝導度を表す。)
従って、熱電材料の性能は材料のもつ熱電能とともに、電気伝導度及び熱伝導度によっても影響されるものであり、電気伝導度が高いほど、また熱伝導度が低いほど、熱電性能が高くなるものである。
【0017】
そこで、本発明は、熱電材料のゼーベック係数と電気伝導度を実質的に損なうことなく維持したままで、熱伝導度を実質的に低下させることで、熱電材料の性能係数を実質的に向上させることができるのではないかとの考えから、熱電材料の結晶粒子を焼結して得られる焼結体の粒子表面だけを選択的にアモルファス化し、かつ結晶粒子とアモルファス部分の割合を最適化して、それが実際に可能であることを見出したものである。
【0018】
即ち、本発明によれば、用いる熱電材料の結晶粒子の平均粒径を5〜10μmとし、かつ熱電材料の結晶粒子を放電プラズマ焼結法で焼結することで、放電プラズマ焼結法で焼結される際に粒子表面にアモルファス層を形成しかつその厚みと内部結晶粒子本体との割合を最適化することができ、得られる焼結体はゼーベック係数と導電性を低下することなく熱伝導度が向上し、ひいて、熱電材料の性能係数が実質的に向上することができることが見出された。
【0019】
熱電材料の原料粒子は結晶粒子でなければ高い導電性を得ることができない。
【0020】
原料熱電材料の結晶粒子の平均粒径は5〜10μmの範囲内が好適である。結晶粒子の平均粒径が5μmより小さい場合、放電プラズマ焼結すると焼結体が結晶化してしまいアモルファス化が難しく熱伝導度が低下する効果が得られない。また、結晶粒子の平均粒径が10μmより大きいと、放電プラズマ焼結の際に粒子表面をアモルファス化してもアモルファス化できる割合が内部の結晶部分と比べて少ないので、焼結体の熱伝導度が増加する効果が得られないし、またゼーベック係数も低下する傾向がある。
【0021】
熱電材料は、原料となる金属粉末を目的の化合物の組成比率に調合後、不活性ガス雰囲気中で焼結して目的化合物を得てから、これをボールミルなどで粉砕し、その粉末原料を放電プラズマ焼結装置で焼結及び成形することで製造される。
【0022】
放電プラズマ焼結装置は、単に加熱するだけではなく、加圧しながら大電流を流して粒子表面付近に放電プラズマを生成させ、難焼結材料をも焼結できることを特徴とする焼結装置である。放電プラズマ焼結については先の特許文献1,2や、例えば「放電プラズマ焼結(SPS)技術の現状」(『素形材』2000年9月号8〜13頁)が参照される。この放電プラズマ焼結装置によれば、温度、圧力、時間を制御することで、粒子表面のみを選択的に溶かして粒子の形状を維持した状態で焼結できる。限定するわけではないが、一般的に、平均粒径5〜10μmの結晶粒子を用い、温度650〜700K、圧力25〜35MPa、時間20〜40分間の条件で、放電プラズマ焼結を行うと好適に焼結粒子の表面層だけを選択的にアモルファス化することができる。
【0023】
本発明に従い、放電プラズマ焼結で好適に焼結粒子の表面層だけを選択的にアモルファス化された焼結体は、結晶粒子をアモルファス化することなく焼結した焼結体について理論的に計算される熱電材料の性能係数と比較して、向上した性能係数を有することができる。
【0024】
【実施例】
Bi,Sb,Teを調合及び焼結してBi0.5Sb1.5Te2.8を合成した。ボールミルを用いて粉砕し、その際、30分間、5分間及び2分間粉砕して、平均粒径がそれぞれ約1μm、約7μm及び約100μmの結晶粉末を得た。
【0025】
各粉末サンプルを放電プラズマ装置で温度673K,圧力7kN、時間30分にて焼結し、得られた焼結体のゼーベック係数、電気導電度及び熱伝導度を室温で測定した。またサンプルをXRDで分析したところ、平均粒径約1μmの粉末の焼結体は完全に結晶化していたが、約7μm及び約100μmの粉末の焼結体は粒子表面だけがアモルファス化していることが確認された。
【0026】
平均粒径約1μmの粉末の焼結体は、ゼーベック係数250μV/K,電気導電度5×10S/m、熱伝導度1.5W/mKであり、性能係数Zは0.63であった。
【0027】
平均粒径約7μmの粉末の焼結体は、ゼーベック係数251μV/K,電気導電度4.95×10S/m、熱伝導度1.2W/mKであり、性能係数Zは0.78であった。
【0028】
平均粒径約100μmの粉末の焼結体は、ゼーベック係数240μV/K,電気導電度4.7×10S/m、熱伝導度1.48W/mKであり、性能係数Zは0.55であった。
【0029】
【発明の効果】
本発明によれば、熱電材料を粒径を制御して放電プラズマ焼結することにより、ゼーベック係数及び電気導電度を損なうことなく、熱伝導度を向上させて、熱電材料の性能係数を向上させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric material and a method for manufacturing the same, and more particularly, to improve the figure of merit by controlling the particle size when sintering the thermoelectric material, making only the fine particle surface amorphous, lowering the thermal conductivity, and improving the performance index. The present invention relates to a thermoelectric material and a manufacturing method thereof.
[0002]
[Prior art]
Thermoelectric materials can be directly converted from heat energy to electric energy (Seebeck effect), so they are expected as ideal power generation methods and energy recovery methods. However, the conversion efficiency of known thermoelectric materials is low, so the Seebeck effect is low. The equipment used has not been put to practical use. In addition, it is desired to improve the figure of merit of the thermoelectric material even when utilizing the Peltier effect that causes heat absorption and heat generation when a current is applied.
[0003]
Therefore, in order to improve the figure of merit of the thermoelectric material, in Patent Document 1, the raw material is formed into a thin film or powder by a liquid quenching method, and this is further pulverized, and the powder obtained thereby does not coarsen the crystal grains. A method for spark plasma sintering under conditions is disclosed.
[0004]
Further, in Patent Document 2, two or more layers of conductive oxide powders having different compositions are stacked and subjected to discharge plasma sintering, and a bonded type of a polycrystalline sintered body in which a p-type and an n-type semiconductor material are bonded. A method for manufacturing an oxide thermoelectric element material is disclosed.
[0005]
[Patent Document 1]
JP-A-10-41554 [Patent Document 2]
JP-A-2002-118300
[Problems to be solved by the invention]
The method disclosed in Patent Literature 1 is to obtain a material in which structural distortion such as a fine crystal grain material, an amorphous material, or a non-equilibrium phase is introduced by a liquid quenching method. The property also decreases.
[0007]
Patent Document 2 discloses a method for manufacturing a thermoelectric element and does not increase the figure of merit of the thermoelectric material itself.
[0008]
Therefore, an object of the present invention is to provide a method of improving the figure of merit of a thermoelectric material by a method different from Patent Documents 1 and 2, and a thermoelectric material with an improved figure of merit obtained.
[0009]
[Means for Solving the Problems]
The present invention has been studied to achieve the above object, and as a result, the following object has been achieved.
[0010]
(1) A thermoelectric material characterized in that the thermoelectric material crystal grains having an average particle size of 5 to 10 μm are subjected to discharge plasma sintering to sinter the thermoelectric material crystal grains and selectively amorphize only the surface of the crystal grains. Manufacturing method.
[0011]
(2) The method for producing a thermoelectric material according to the above (1), wherein spark plasma sintering is performed at a temperature of 650 to 700K, a pressure of 25 to 35 MPa, and a condition of 20 to 40 minutes.
[0012]
(3) A thermoelectric material characterized by being formed by subjecting thermoelectric material crystal grains having an average particle size of 5 to 10 μm to discharge plasma sintering, and wherein only the surfaces of the sintered crystal grains are selectively made amorphous.
[0013]
(4) The figure of merit Z = α 2 σ / κ calculated based on the same thermoelectric material crystal grains (where α is the Seebeck coefficient (thermoelectric power), σ is the electrical conductivity, and κ is the thermal conductivity) .) The thermoelectric material according to the above (3) having a higher figure of merit.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermoelectric material to which the present invention can be applied is not particularly limited. For example, (Bi, Sb)-(Te, Se) -based material, ZnSb-based material, FeSi, MnSi-based material, skutterudite (CoSb-based), class Rate-based (BaSi-based) and the like.
[0015]
It is known that the figure of merit of a thermoelectric material is represented by the following equation.
[0016]
Z = α 2 σ / κ
(In the formula, α represents thermoelectric power (Seebeck coefficient), σ represents electrical conductivity, and κ represents thermal conductivity.)
Therefore, the performance of a thermoelectric material is affected not only by the thermoelectric power of the material but also by the electrical conductivity and thermal conductivity. The higher the electrical conductivity and the lower the thermal conductivity, the higher the thermoelectric performance Things.
[0017]
Therefore, the present invention substantially improves the coefficient of performance of the thermoelectric material by substantially lowering the heat conductivity while maintaining the Seebeck coefficient and the electric conductivity of the thermoelectric material without substantially impairing them. From the thought that it may be possible, only the particle surface of the sintered body obtained by sintering the crystal particles of the thermoelectric material is selectively made amorphous, and the ratio of the crystal particles to the amorphous portion is optimized, It has been found that it is actually possible.
[0018]
That is, according to the present invention, the average particle diameter of the crystal particles of the thermoelectric material to be used is set to 5 to 10 μm, and the crystal particles of the thermoelectric material are sintered by the discharge plasma sintering method. When sintering, an amorphous layer is formed on the particle surface and the thickness and the ratio of the internal crystal particle body can be optimized, and the resulting sintered body can conduct heat without lowering the Seebeck coefficient and conductivity. It has been found that the degree of performance can be improved and thus the coefficient of performance of the thermoelectric material can be substantially improved.
[0019]
Unless the raw material particles of the thermoelectric material are crystalline particles, high conductivity cannot be obtained.
[0020]
The average particle size of the crystal particles of the raw material thermoelectric material is preferably in the range of 5 to 10 μm. When the average particle size of the crystal particles is smaller than 5 μm, the sintered body is crystallized by discharge plasma sintering, and it is difficult to make the sintered body amorphous and the effect of lowering the thermal conductivity cannot be obtained. Further, when the average particle size of the crystal particles is larger than 10 μm, the ratio of the particles that can be made amorphous even when the surface of the particles is made amorphous during discharge plasma sintering is smaller than that of the inner crystal part. Cannot be obtained, and the Seebeck coefficient tends to decrease.
[0021]
The thermoelectric material is prepared by mixing the metal powder as the raw material to the composition ratio of the target compound, sintering in an inert gas atmosphere to obtain the target compound, pulverizing it with a ball mill, etc., and discharging the powder raw material. It is manufactured by sintering and molding with a plasma sintering device.
[0022]
The discharge plasma sintering apparatus is characterized by not only heating but also generating a discharge plasma near the particle surface by applying a large current while applying pressure, thereby sintering difficult-to-sinter materials. . Regarding the spark plasma sintering, refer to the above-mentioned Patent Documents 1 and 2 and, for example, “Current Status of Spark Plasma Sintering (SPS) Technology” (“Materials”, September 2000, pp. 8-13). According to the spark plasma sintering apparatus, by controlling the temperature, pressure, and time, it is possible to selectively melt only the particle surface and sinter while maintaining the shape of the particle. Although not limited, generally, it is preferable to perform discharge plasma sintering under the conditions of temperature of 650 to 700 K, pressure of 25 to 35 MPa and time of 20 to 40 minutes using crystal particles having an average particle size of 5 to 10 μm. Only the surface layer of the sintered particles can be selectively made amorphous.
[0023]
According to the present invention, the sintered body in which only the surface layer of the sintered particles is selectively made amorphous by spark plasma sintering is theoretically calculated for the sintered body obtained by sintering the crystal particles without being made amorphous. Can have an improved coefficient of performance as compared to the coefficient of performance of the thermoelectric material used.
[0024]
【Example】
Bi, Sb, was synthesized Bi 0.5 Sb 1.5 Te 2.8 formulated and sintered Te. Pulverization was performed using a ball mill, and in this case, pulverization was performed for 30 minutes, 5 minutes, and 2 minutes to obtain crystal powders having average particle diameters of about 1 μm, about 7 μm, and about 100 μm, respectively.
[0025]
Each powder sample was sintered at a temperature of 673 K, a pressure of 7 kN, and a time of 30 minutes using a discharge plasma device, and the Seebeck coefficient, electric conductivity, and thermal conductivity of the obtained sintered body were measured at room temperature. When the sample was analyzed by XRD, the sintered body of the powder having an average particle diameter of about 1 μm was completely crystallized, but the sintered bodies of the powders of about 7 μm and about 100 μm had only the particle surface amorphous. Was confirmed.
[0026]
The powder sintered body having an average particle size of about 1 μm had a Seebeck coefficient of 250 μV / K, an electric conductivity of 5 × 10 4 S / m, a thermal conductivity of 1.5 W / mK, and a coefficient of performance Z of 0.63. Was.
[0027]
The powder sintered body having an average particle size of about 7 μm has a Seebeck coefficient of 251 μV / K, an electric conductivity of 4.95 × 10 4 S / m, a thermal conductivity of 1.2 W / mK, and a performance coefficient Z of 0.78. Met.
[0028]
A powder sintered body having an average particle size of about 100 μm has a Seebeck coefficient of 240 μV / K, an electric conductivity of 4.7 × 10 4 S / m, a thermal conductivity of 1.48 W / mK, and a performance coefficient Z of 0.55. Met.
[0029]
【The invention's effect】
According to the present invention, by controlling the particle diameter of the thermoelectric material and performing discharge plasma sintering, without impairing the Seebeck coefficient and the electric conductivity, the heat conductivity is improved, and the performance coefficient of the thermoelectric material is improved. be able to.

Claims (4)

平均粒径5〜10μmの熱電材料結晶粒を放電プラズマ焼結して、熱電材料結晶粒を焼結するとともに結晶粒子の表面だけを選択的にアモルファス化させることを特徴とする熱電材料の製造方法。A method for producing a thermoelectric material, comprising: sintering a thermoelectric material crystal grain having an average particle size of 5 to 10 μm by discharge plasma to sinter the thermoelectric material crystal grain and selectively amorphizing only the surface of the crystal particle. . 放電プラズマ焼結を650〜700Kの温度、25〜35MPaの圧力、20〜40分間の条件で行う請求項1記載の熱電材料の製造方法。The method for producing a thermoelectric material according to claim 1, wherein the spark plasma sintering is performed at a temperature of 650 to 700K, a pressure of 25 to 35 MPa, and a condition of 20 to 40 minutes. 平均粒径5〜10μmの熱電材料結晶粒を放電プラズマ焼結して成り、焼結した結晶粒子の表面だけが選択的にアモルファス化されていることを特徴とする熱電材料。A thermoelectric material characterized by being formed by subjecting thermoelectric material crystal grains having an average particle size of 5 to 10 [mu] m to discharge plasma sintering, wherein only the surfaces of the sintered crystal grains are selectively made amorphous. 同一の熱電材料結晶粒に基づいて計算される性能指数Z=ασ/κ(式中、αはゼーベック係数、σは電気伝導度、κは熱伝導度を表す。)より高い性能指数を有する請求項3記載の熱電材料。A figure of merit that is higher than the figure of merit Z = α 2 σ / κ (where α is the Seebeck coefficient, σ is the electrical conductivity, and κ is the thermal conductivity) calculated based on the same thermoelectric material crystal grains. 4. The thermoelectric material according to claim 3, comprising:
JP2003013393A 2003-01-22 2003-01-22 Thermoelectric material and its producing process Pending JP2004228288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013393A JP2004228288A (en) 2003-01-22 2003-01-22 Thermoelectric material and its producing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013393A JP2004228288A (en) 2003-01-22 2003-01-22 Thermoelectric material and its producing process

Publications (1)

Publication Number Publication Date
JP2004228288A true JP2004228288A (en) 2004-08-12

Family

ID=32901734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013393A Pending JP2004228288A (en) 2003-01-22 2003-01-22 Thermoelectric material and its producing process

Country Status (1)

Country Link
JP (1) JP2004228288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111220A1 (en) * 2007-03-15 2008-09-18 Ibiden Co., Ltd. Process for manufacturing thermoelectric converter
JP2017084987A (en) * 2015-10-29 2017-05-18 住友電気工業株式会社 Thermoelectric conversion material and thermoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111220A1 (en) * 2007-03-15 2008-09-18 Ibiden Co., Ltd. Process for manufacturing thermoelectric converter
JP2017084987A (en) * 2015-10-29 2017-05-18 住友電気工業株式会社 Thermoelectric conversion material and thermoelectric conversion element

Similar Documents

Publication Publication Date Title
KR101902925B1 (en) Thermoelectric material, thermoelectric element, and thermoelectric module
CN107408618B (en) Compound semiconductor thermoelectric material and method for producing same
KR20070004950A (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
TW200933940A (en) Extrusion process for preparing improved thermoelectric materials
Jung et al. Effect of phase transition on the thermoelectric properties of Ag2Te
KR20120001776A (en) Self-organising thermoelectric materials
US9461226B2 (en) Thermoelectric material and method of preparing the same
CN102694116A (en) Method for preparing thermoelectric material with P-type nano-structure and bismuth telluride matrix
Mikami et al. Development of a thermoelectric module using the heusler alloy Fe 2 VAl
JPH077186A (en) Production of thermoelectric conversion material
Choi et al. Thermoelectric properties of higher manganese silicide consolidated by flash spark plasma sintering technique
KR20170067457A (en) Bi-Sb-Te based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
KR102399079B1 (en) Half-heusler type thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
KR102198210B1 (en) Thermoelectric material and a method of manufacturing the zinc oxide is mixed
KR101851736B1 (en) The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
KR20170074013A (en) Bi-Te-Se based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
WO2022054577A1 (en) Thermoelectric material, method for proudcing same, and thermoelectric power generation element
JP2004228288A (en) Thermoelectric material and its producing process
KR102046142B1 (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
US10283690B2 (en) Formation of P-type filled skutterudite by ball-milling and thermo-mechanical processing
KR20120035793A (en) Magnesium silicide based thermoelectric material and manufacturing method for the same
JP2011134988A (en) Method for manufacturing thermoelectric conversion element
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2019218592A (en) Silicide alloy material and element including the same
WO2017038715A1 (en) Alloy material