JP2004228151A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2004228151A
JP2004228151A JP2003011325A JP2003011325A JP2004228151A JP 2004228151 A JP2004228151 A JP 2004228151A JP 2003011325 A JP2003011325 A JP 2003011325A JP 2003011325 A JP2003011325 A JP 2003011325A JP 2004228151 A JP2004228151 A JP 2004228151A
Authority
JP
Japan
Prior art keywords
solder
layer
recognition mark
resist layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011325A
Other languages
Japanese (ja)
Inventor
Kiminori Tada
公則 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003011325A priority Critical patent/JP2004228151A/en
Publication of JP2004228151A publication Critical patent/JP2004228151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board in which a recognition mark shows no change in the color, and an electrode of an electronic component and a solder junction pad are connected accurately via the solder through accurate recognition of the recognition mark with an image recognizing apparatus. <P>SOLUTION: A solder layer 11 has the composition identical to that of a solder bump 7, is lower in the height than a solder resist layer 9, and is welded on the surface of the recognition mark 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するために用いられる配線基板に関する。
【0002】
【従来の技術】
従来、半導体素子等の電子部品を搭載するために用いられる配線基板は、例えばガラス−エポキシ板等から成る絶縁板やエポキシ樹脂等から成る絶縁層を複数層積層して成る絶縁基板の内部および表面に銅箔や銅めっき膜等の導体層から成る配線導体を設けて成る。このような配線基板においては、絶縁基板表面の配線導体の一部が半導体素子等の電子部品の電極を半田バンプを介して接続するための電子部品接続用の半田接合パッドや外部電気回路基板に半田バンプを介して接続される外部接続用の半田接合パッドを形成しており、これらの半田接合パッドが形成された絶縁基板の表面には各半田接合パッドの中央部を露出させるソルダーレジスト層が被着形成されている。さらに、ソルダーレジスト層から露出した半田接合パッド上には半田バンプが予め接合されており、それにより半田接合パッドと電子部品の電極や外部電気回路基板との半田バンプを介した接続を容易なものとしている。
【0003】
なお、このような配線基板において半田接合パッドに半田バンプを接合するには、銅箔や銅めっき膜等の導体層から成る半田接合パッドの露出表面に厚みが0.01〜0.8μm程度の金めっき層を被着させておくとともに、その上に半田バンプを溶融させて付着させる方法が採用されている。このとき、金めっき層は溶融した半田バンプ内に拡散吸収されて消滅する。
【0004】
そして、この配線基板は、電子部品接続用の半田接合パッドに電子部品の電極をその半田接合パッドに接合された半田バンプを介して接続して電子部品を搭載することにより電子装置となり、この電子装置は外部接続用の半田接合パッドを外部電気回路基板の配線導体にその半田接合パッドに接合された半田バンプを介して接続することにより外部電気回路基板に実装される。
【0005】
ところで、このような配線基板において、電子部品の電極を電子部品接続用の半田接合パッドに接合するには、一般的に画像認識装置を備えた自動機が用いられており、絶縁基板の上面に電子部品を位置合わせするための基準となる電子部品位置合わせ用の認識マークを設けておくとともに、この認識マークを自動機の画像認識装置で認識し、その情報を基にして自動で位置合わせして接合する方法が採用されている。なお、画像認識装置により電子部品の搭載位置を認識するための認識マークは、絶縁基板の表面に半田接合パッドと同じ導体層で形成されており、その表面には一般的に半田接合パッド同様の金めっき層が被着されている。
【特許文献1】
特開平10−215060号公報
【0006】
【発明が解決しようとする課題】
しかしながら、近年、環境への配慮から、電子部品の電極と配線基板の半田接合パッドとを接続する半田バンプとして鉛を含まない鉛フリー半田が使用されるようになってきている。このような鉛フリー半田は、従来の鉛を含んだ半田よりもその融点が一般的に10〜20℃程度高く、そのためこの鉛フリー半田を配線基板の半田接合パッドに予め接合させる際に、従来よりも10〜20℃程度高い温度で半田を溶融させる必要がある。そして、このように高い温度を配線基板に印加すると、銅箔や銅めっき膜等の導体層から成る認識マークはその被着させた金めっき層の厚みが0.01〜0.8μm程度と薄いことから酸化されて変色し、そのため認識マークとその周囲とのコントラストが低くなり、画像認識装置で認識マークを正確に認識することができずに、電子部品の電極と半田接合パッドとを半田バンプを介して正常に接続することができないという問題点を誘発した。
【0007】
本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、認識マークに変色が発生することがなく、それにより認識マークを画像認識装置で正確に認識して電子部品の電極と半田接合パッドとを半田バンプを介して正常に接続することが可能な配線基板を提供することにある。
【0008】
【課題を解決するための手段】
本発明の配線基板は、複数の絶縁層を積層して成る絶縁基板と、該絶縁基板の内部および/または表面に配設された配線導体と、前記絶縁基板の表面に被着された導体層から形成されており、前記配線導体に電気的に接続された電子部品接続用の複数の半田接合パッドと、該半田接合パッドと同じ導体層から形成された電子部品位置決め用の認識マークと、前記絶縁基板の表面に被着されており、前記半田接合パッドおよび前記認識マークの中央部を露出させる開口部を有するソルダーレジスト層と、該ソルダーレジスト層から露出する前記半田接合パッドに溶着された半田バンプとを具備して成る配線基板であって、前記認識マークの表面に前記半田バンプと同じ組成で前記ソルダーレジスト層よりも高さの低い半田層が溶着されていることを特徴とするものである。
【0009】
本発明の配線基板によれば、認識マークの表面に半田バンプと同じ組成の半田層が溶着されているため、融点が高い鉛フリー半田を使用しても、半田バンプを半田接合パッドに予め接合させる際に印加される熱で認識マークが変色することがなく、認識マーク上の半田層により認識マークとその周囲とのコントラストが良好に保たれる。また、認識マークに溶着された半田層はソルダーレジスト層よりも高さが低いことから、認識マークに半田層が溶着されていても半田層が認識マークの認識を阻害することはなく、そのため画像認識装置で認識マークを正確に認識することができ、電子部品の電極と半田接合パッドとを半田を介して正常に接続することができる。
【0010】
【発明の実施の形態】
つぎに、本発明の配線基板を添付の図面に基づき詳細に説明する。
図1は、本発明を半導体素子を搭載するための配線基板に適用した場合の実施の形態の一例を示す断面図である。図1において1は絶縁基板、2は配線導体、2a,2bは半田接合パッド、7,8は半田バンプ、9はソルダーレジスト層、10は認識マーク、11は半田層であり、主としてこれらで電子部品としての半導体素子3を搭載するための本発明の配線基板が構成される。
【0011】
絶縁基板1は、例えばガラス繊維を縦横に織り込んだガラス織物にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成る板状の芯体1aの上下面にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る絶縁層1bをそれぞれ複数層ずつ積層して成り、その上面から下面にかけて銅箔や銅めっき膜等の導体層から成る複数の配線導体2が形成されている。
【0012】
絶縁基板1を構成する芯体1aは、厚みが0.3〜1.5mm程度であり、その上面から下面にかけて直径が0.2〜1.0mm程度の複数の貫通孔4を有している。そして、その上下面および各貫通孔4の内面には配線導体2の一部が被着されており、上下面の配線導体2が貫通孔4の内部を介して電気的に接続されている。
【0013】
このような芯体1aは、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートを熱硬化させた後、これに上面から下面にかけてドリル加工を施すことにより製作される。なお、芯体1a上下面の配線導体2は、芯体1a用のシートの上下全面に厚みが5〜50μm程度の銅箔を貼着しておくとともにこの銅箔をシートの硬化後にエッチング加工することにより所定のパターンに形成される。また、貫通孔4内面の配線導体2は、芯体1aに貫通孔4を設けた後に、この貫通孔4内面に無電解めっき法および電解めっき法により厚みが5〜50μm程度の銅めっき膜を析出させることにより形成される。
【0014】
さらに、芯体1aは、その貫通孔4の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る樹脂柱5が充填されている。樹脂柱5は、貫通孔4を塞ぐことにより貫通孔4の直上および直下に絶縁層1bを形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を貫通孔4内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。そして、この樹脂柱5を含む芯体1aの上下面に絶縁層1bが積層されている。
【0015】
芯体1aの上下面に積層された絶縁層1bは、それぞれの厚みが20〜50μm程度であり、各層の上面から下面にかけて直径が30〜100μm程度の複数のビア孔6を有している。これらの絶縁層1bは、配線導体2を高密度に配線するための絶縁間隔を提供するためのものであり、絶縁層1bにはその表面およびビア孔6内に配線導体2の一部が被着されている。そして、上層の配線導体2と下層の配線導体2とをビア孔6の内部を介して電気的に接続することにより高密度配線を立体的に形成可能としている。
【0016】
このような絶縁層1bは、厚みが20〜50μm程度の未硬化の熱硬化性樹脂のフィルムを芯体1aの上下面に貼着し、これを熱硬化させるとともにレーザ加工によりビア孔6を穿孔し、さらにその上に同様にして次の絶縁層1bを順次積み重ねることによって形成される。なお、各絶縁層1b表面およびビア孔6内に被着された配線導体2は、各絶縁層1bを形成する毎に各絶縁層1bの表面およびビア孔6内に5〜50μm程度の厚みの銅膜を公知のセミアディティブ法やサブトラクティブ法等のパターン形成法により所定のパターンに被着させることによって形成される。
【0017】
さらに、最表層の絶縁層1b上にはソルダーレジスト層9が被着されている。ソルダーレジスト層9は、例えばアクリル変性エポキシ樹脂にシリカやタルク等の無機物粉末フィラーを30〜70質量%程度分散させた絶縁材料から成り、表層の配線導体2同士の電気的絶縁信頼性を高めるとともに、後述する半田接合パッド2a・2bおよび認識マーク10の絶縁基板1への接合強度を大きなものとする作用をなす。
【0018】
このようなソルダーレジスト層9は、その厚みが10〜50μm程度であり、感光性を有するソルダーレジスト層9用の未硬化樹脂ペーストをロールコーター法やスクリーン印刷法を採用して最表層の絶縁層1b上に塗布し、これを乾燥させた後、露光および現像処理を行なって半田接合パッド2a・2bおよび認識マーク10の中央部を露出させる開口部を形成した後、これを熱硬化させることによって形成される。あるいは、ソルダーレジスト層9用の未硬化の樹脂フィルムを最上層の絶縁層1b上に貼着した後、これを熱硬化させ、しかる後、半田接合パッド2a・2bおよび認識マーク10に対応する位置にレーザ光を照射し、硬化した樹脂フィルムを部分的に除去することによって半田接合パッド2a・2bおよび認識マーク10の中央部を露出させる開口部を有するように形成される。
【0019】
絶縁基板1の上面から下面にかけて形成された配線導体2は、半導体素子3の各電極を外部電気回路基板に接続するための導電路として機能し、絶縁基板1の上面に露出している部位が半導体素子3の各電極に錫−銀−銅合金から成る半田バンプ7を介して接続される電子部品接続用の半田接合パッド2aを、絶縁基体1の下面に露出した部位が外部電気回路基板に錫−銀−銅合金から成る半田バンプ8を介して接続される外部接続用の半田接合パッド2bを形成している。
【0020】
また、半田接合パッド2a、2bには、半田バンプ7、8が予め接合されており、それにより半導体素子3の各電極と半田接合パッド2aとの半田バンプ7を介した接合や半田接合パッド2bと外部電気回路基板との半田バンプ8を介した接合が容易なものとなっている。
【0021】
このように、半田接合パッド2a、2bに半田バンプ7、8を予め接合させるには、半田接合パッド2a、2bの表面に厚みが0.01〜0.8μmの金めっき層を被着させておき、この金めっき層が被着された半田接合パッド2a、2bの上に錫−銀−銅合金から成る半田とフラックスとを含有する半田ペーストを従来周知のスクリーン印刷法を採用して印刷塗布し、それを220〜260℃の温度で加熱して半田を溶融させることにより接合する方法が採用される。
【0022】
そして、この配線基板においては、半導体素子3を搭載するとともに電子部品接続用の半田接合パッド2aに半導体素子3の各電極を半田バンプ7を介して接続することによって電子装置となり、この電子装置における外部接続用の半田接合パッド2bを外部電気回路基板の配線導体に半田バンプ8を介して接続することにより電子装置が外部電気回路基板に実装されることとなる。
【0023】
また、本発明の配線基板においては、絶縁基板1の上面に半田接合パッド2aを構成する導体層と同じ導体層から成る電子部品位置合わせ用の認識マーク10が設けられている。この認識マーク10は、半導体素子3を搭載する際に半導体素子3の電極と半田接合パッド2aとを位置合わせするための基準となるものであり、例えば上面視で十字型や鉤型、円形をしており、その外周縁がソルダーレジスト層9により15〜50μm程度の幅で被覆されている。このような認識マーク10は、絶縁基板1の上面に半田接合パッド2aを形成する際にそれと同様の方法、即ち、セミアディティブ法やサブトラクティブ法により同時に形成される。
【0024】
さらに、認識マーク10の表面には半田バンプ7と同一組成の半田層11がソルダーレジスト層9よりも低い高さに溶着されている。この半田層11は、認識マーク10の酸化を防止するとともに認識マーク10とその周囲とのコントラストを大きなものとする作用をなし、半田接合パッド2aに半田バンプ7を接合させる際にそれと同様の方法、即ち、認識マーク10の表面に厚みが0.01〜0.8μmの金めっき層を被着させておき、この金めっき層が被着された認識マーク10の上に錫−銀−銅合金から成る半田とフラックスとを含有する半田ペーストを従来周知のスクリーン印刷法を採用して印刷塗布し、それを220〜260℃の温度で加熱して半田を溶融させることにより同時に溶着される。なお、塗布する半田ペースト量は半田層11がソルダーレジスト層9よりも高さの低くなる量とし、認識マーク10の外周縁をソルダーレジスト層9により被覆しておくことにより、認識マーク10の表面に半田層11が良好に濡れ拡がり、認識マーク10をソルダーレジスト層9よりも高さの低い半田層11で良好に被覆することができる。
【0025】
このとき、認識マーク10には半田接合パッド2aに半田バンプ7を被着させるのと同時に半田層11が溶着されることから認識マーク10は酸化することなく半田層11により良好に保護されるとともに認識マーク10上の半田層11とその周囲のソルダーレジスト層9との間に大きなコントラストの差が形成される。
【0026】
そして、この半田層11が被着された認識マーク10を画像認識装置により認識し、その情報を基にして半導体素子3の電極と半田接合パッド2aとを自動機により位置合わせをした後、半田接合パッド2a上の半田バンプ7を加熱溶融させることにより半導体素子3の電極と半田接合パッド2aとが半田バンプ7を介して接合される。
【0027】
このとき、本発明の配線基板によれば、半田層11の高さがソルダーレジスト層9の高さよりも低くいことから、半田層11が立体的になりすぎたり、ソルダーレジスト層9上にはみ出したりすることがなく、その結果、半田層11が被覆された認識マーク10を画像認識装置により良好に認識することができ、半導体素子3の電極と半田接合パッド2aとを自動機により正確に位置合わせして正常に接続することができる。さらに、半田層11の高さがソルダーレジスト層9の高さよりも低いことから、半導体素子3を搭載する際に半田層11が半導体素子3に接触することがなく、半導体素子3への不要な汚染を防止することもできる。
【0028】
なお、認識マーク10に被着させた半田層11は、その厚みが1μm未満であると、認識マーク10を良好に被覆することができなくなり、認識マークに変色をきたす危険性がある。したがって、認識マーク10に被着させた半田層11の厚みは1μm以上であることが好ましい。
【0029】
かくして本発明の配線基板によれば、半田11が被着された認識マーク10を画像認識装置で認識するとともにその情報を基にして半導体素子3を自動機で搭載し、半導体素子3の電極と半田接合パッド2aとを半田7を介して接合することにより製品としての電子装置が完成する。
【0030】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば上述の実施の形態の一例では、絶縁基板はガラス織物に熱硬化性樹脂を含浸させた材料および熱硬化性樹脂から形成されていたが、絶縁基板は、セラミックス材料等の他の絶縁材料から形成されていてもよい。
【0031】
【発明の効果】
本発明の配線基板によれば、認識マークの表面に半田バンプと同じ組成の半田層が溶着されているため、融点が高い鉛フリー半田を使用しても、半田バンプを半田接合パッドに予め接合させる際に印加される熱で認識マークが変色することがなく、認識マーク上の半田により認識マークとその周囲とのコントラストが良好に保たれる。また、認識マークに溶着された半田層はソルダーレジスト層よりも高さが低いことから、半田層が認識マークの認識を阻害することはなく、そのため画像認識装置で認識マークを正確に認識することができ、電子部品の電極と半田接合パッドとを半田を介して正常に接続することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施形態の一例を示す断面図である。
【符号の説明】
1・・・・・・・・・・絶縁基板
2・・・・・・・・・・配線導体
2a,2b・・・・・・半田接合パッド
3・・・・・・・・・・電子部品としての半導体素子
7,8・・・・・・・・半田バンプ
10・・・・・・・・・認識マーク
11・・・・・・・・・半田層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board used for mounting an electronic component such as a semiconductor element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a wiring board used for mounting an electronic component such as a semiconductor element includes, for example, an insulating board formed of a glass-epoxy plate or the like and an insulating board formed by stacking a plurality of insulating layers formed of an epoxy resin or the like. And a wiring conductor formed of a conductor layer such as a copper foil or a copper plating film. In such a wiring board, some of the wiring conductors on the surface of the insulating substrate are connected to solder bonding pads for connecting electronic components for connecting electrodes of electronic components such as semiconductor elements via solder bumps or external electric circuit boards. Solder bonding pads for external connection connected via solder bumps are formed, and a solder resist layer that exposes the center of each solder bonding pad is formed on the surface of the insulating substrate on which these solder bonding pads are formed. It is adhered and formed. Furthermore, solder bumps are pre-bonded on the solder bonding pads exposed from the solder resist layer, thereby facilitating connection between the solder bonding pads and the electrodes of electronic components or external electric circuit boards via the solder bumps. And
[0003]
In order to bond a solder bump to a solder bonding pad in such a wiring board, a thickness of about 0.01 to 0.8 μm is applied to an exposed surface of the solder bonding pad formed of a conductor layer such as a copper foil or a copper plating film. A method is employed in which a gold plating layer is adhered, and a solder bump is melted and adhered thereon. At this time, the gold plating layer is diffused and absorbed in the melted solder bump and disappears.
[0004]
The wiring board is connected to a solder bonding pad for connecting the electronic component via an electrode connected to the electrode of the electronic component via a solder bump bonded to the solder bonding pad to mount the electronic component. The device is mounted on an external electric circuit board by connecting a solder connection pad for external connection to a wiring conductor of the external electric circuit board via a solder bump bonded to the solder connection pad.
[0005]
By the way, in such a wiring board, in order to bond the electrodes of the electronic component to the solder bonding pads for connecting the electronic component, an automatic machine equipped with an image recognition device is generally used. A recognition mark for electronic component alignment, which serves as a reference for aligning electronic components, is provided.The recognition mark is recognized by an image recognition device of an automatic machine, and the automatic alignment is performed based on the information. The joining method is adopted. The recognition mark for recognizing the mounting position of the electronic component by the image recognition device is formed on the surface of the insulating substrate with the same conductive layer as the solder bonding pad, and the surface thereof is generally similar to the solder bonding pad. A gold plating layer is applied.
[Patent Document 1]
JP-A-10-215060
[Problems to be solved by the invention]
However, in recent years, lead-free solder containing no lead has been used as a solder bump for connecting an electrode of an electronic component to a solder joint pad of a wiring board from consideration of the environment. Such a lead-free solder generally has a melting point higher than that of a conventional lead-containing solder by about 10 to 20 ° C. Therefore, when this lead-free solder is previously joined to a solder joint pad of a wiring board, the conventional It is necessary to melt the solder at a temperature about 10 to 20 ° C. higher than that. When such a high temperature is applied to the wiring board, the recognition mark made of a conductor layer such as a copper foil or a copper plating film has a thickness of the applied gold plating layer as thin as about 0.01 to 0.8 μm. As a result, it is oxidized and discolored, so that the contrast between the recognition mark and the surrounding area is low, and the recognition mark cannot be accurately recognized by the image recognition device. Caused a problem that can not be connected normally via.
[0007]
The present invention has been devised in view of such a conventional problem, and an object of the present invention is to prevent a color change from occurring in a recognition mark, thereby accurately recognizing the recognition mark by an image recognition device and an electronic component. It is an object of the present invention to provide a wiring board that can normally connect the electrodes and the solder bonding pads via the solder bumps.
[0008]
[Means for Solving the Problems]
A wiring substrate according to the present invention includes an insulating substrate formed by laminating a plurality of insulating layers, a wiring conductor disposed inside and / or on the surface of the insulating substrate, and a conductor layer adhered to the surface of the insulating substrate. A plurality of solder bonding pads for electronic component connection electrically connected to the wiring conductor, a recognition mark for electronic component positioning formed from the same conductor layer as the solder bonding pad, A solder resist layer attached to a surface of an insulating substrate and having an opening exposing a central portion of the solder bonding pad and the recognition mark; and a solder welded to the solder bonding pad exposed from the solder resist layer. And a solder layer having the same composition as the solder bump and having a lower height than the solder resist layer is welded to the surface of the recognition mark. The one in which the features.
[0009]
According to the wiring board of the present invention, since the solder layer having the same composition as the solder bump is welded to the surface of the recognition mark, the solder bump is bonded to the solder bonding pad in advance even when a lead-free solder having a high melting point is used. The recognition mark does not change its color due to the heat applied at the time of the application, and the contrast between the recognition mark and its surroundings is kept good by the solder layer on the recognition mark. Also, since the solder layer welded to the recognition mark is lower than the solder resist layer, the solder layer does not hinder the recognition of the recognition mark even if the solder layer is welded to the recognition mark. The recognition mark can be accurately recognized by the recognition device, and the electrode of the electronic component and the solder bonding pad can be normally connected via the solder.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an example of an embodiment in which the present invention is applied to a wiring board for mounting a semiconductor element. In FIG. 1, 1 is an insulating substrate, 2 is a wiring conductor, 2a and 2b are solder bonding pads, 7 and 8 are solder bumps, 9 is a solder resist layer, 10 is a recognition mark, and 11 is a solder layer. The wiring board of the present invention for mounting the semiconductor element 3 as a component is configured.
[0011]
The insulating substrate 1 is formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a glass fabric in which glass fibers are woven vertically and horizontally. A plurality of insulating layers 1b made of a thermosetting resin such as a resin are laminated, and a plurality of wiring conductors 2 made of a conductor layer such as a copper foil or a copper plating film are formed from the upper surface to the lower surface.
[0012]
The core 1a constituting the insulating substrate 1 has a thickness of about 0.3 to 1.5 mm, and has a plurality of through holes 4 with a diameter of about 0.2 to 1.0 mm from the upper surface to the lower surface. . A part of the wiring conductor 2 is attached to the upper and lower surfaces and the inner surface of each through hole 4, and the wiring conductors 2 on the upper and lower surfaces are electrically connected through the inside of the through hole 4.
[0013]
Such a core 1a is manufactured by thermally curing a sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then performing drilling from the upper surface to the lower surface. The wiring conductors 2 on the upper and lower surfaces of the core 1a are formed by attaching a copper foil having a thickness of about 5 to 50 μm to the entire upper and lower surfaces of the sheet for the core 1a and etching the copper foil after the sheet is cured. Thus, a predetermined pattern is formed. Further, the wiring conductor 2 on the inner surface of the through hole 4 is provided with a through hole 4 in the core body 1a, and then a copper plating film having a thickness of about 5 to 50 μm is formed on the inner surface of the through hole 4 by an electroless plating method and an electrolytic plating method. It is formed by precipitation.
[0014]
Further, the core 1a is filled with a resin column 5 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin inside the through hole 4. The resin pillar 5 is for enabling the insulating layer 1b to be formed directly above and directly below the through-hole 4 by closing the through-hole 4, and the uncured paste-like thermosetting resin is placed in the through-hole 4. It is formed by filling by a screen printing method, thermally curing the material, and then polishing the upper and lower surfaces thereof to be substantially flat. An insulating layer 1b is laminated on the upper and lower surfaces of the core 1a including the resin columns 5.
[0015]
The insulating layer 1b laminated on the upper and lower surfaces of the core 1a has a thickness of about 20 to 50 μm, and has a plurality of via holes 6 with a diameter of about 30 to 100 μm from the upper surface to the lower surface of each layer. These insulating layers 1b are provided to provide an insulating interval for wiring the wiring conductors 2 at a high density, and a part of the wiring conductors 2 is covered on the surface of the insulating layer 1b and in the via holes 6. Is being worn. By electrically connecting the upper layer wiring conductor 2 and the lower layer wiring conductor 2 via the inside of the via hole 6, high-density wiring can be formed three-dimensionally.
[0016]
Such an insulating layer 1b is formed by attaching an uncured thermosetting resin film having a thickness of about 20 to 50 μm to the upper and lower surfaces of the core body 1a, thermally curing the same, and forming the via holes 6 by laser processing. Then, the next insulating layer 1b is formed by successively stacking on the insulating layer 1b. The wiring conductor 2 applied on the surface of each insulating layer 1b and in the via hole 6 has a thickness of about 5 to 50 μm on the surface of each insulating layer 1b and in the via hole 6 every time the insulating layer 1b is formed. It is formed by depositing a copper film in a predetermined pattern by a known pattern forming method such as a semi-additive method or a subtractive method.
[0017]
Further, a solder resist layer 9 is provided on the outermost insulating layer 1b. The solder resist layer 9 is made of, for example, an insulating material in which an inorganic powder filler such as silica or talc is dispersed in an acrylic-modified epoxy resin in an amount of about 30 to 70% by mass, and improves the electrical insulation reliability between the wiring conductors 2 on the surface layer. This has the effect of increasing the bonding strength of the solder bonding pads 2a and 2b and the recognition mark 10 to be described later to the insulating substrate 1.
[0018]
Such a solder resist layer 9 has a thickness of about 10 to 50 μm, and the uncured resin paste for the solder resist layer 9 having photosensitivity is formed by a roll coater method or a screen printing method. 1b, dried and then exposed and developed to form openings for exposing the central portions of the solder bonding pads 2a and 2b and the recognition mark 10, and then thermally cured. It is formed. Alternatively, after an uncured resin film for the solder resist layer 9 is adhered on the uppermost insulating layer 1b, it is thermally cured, and then the position corresponding to the solder bonding pads 2a and 2b and the recognition mark 10 is set. Is irradiated with a laser beam, and the cured resin film is partially removed to form an opening for exposing the central portions of the solder bonding pads 2a and 2b and the recognition mark 10.
[0019]
The wiring conductor 2 formed from the upper surface to the lower surface of the insulating substrate 1 functions as a conductive path for connecting each electrode of the semiconductor element 3 to an external electric circuit board, and a portion exposed on the upper surface of the insulating substrate 1 is provided. A solder joint pad 2a for connecting electronic components, which is connected to each electrode of the semiconductor element 3 via a solder bump 7 made of a tin-silver-copper alloy, has a portion exposed on the lower surface of the insulating base 1 on an external electric circuit board. An external connection solder joint pad 2b connected via a solder bump 8 made of a tin-silver-copper alloy is formed.
[0020]
Further, solder bumps 7 and 8 are previously bonded to the solder bonding pads 2a and 2b, so that the respective electrodes of the semiconductor element 3 and the solder bonding pads 2a are bonded via the solder bumps 7 and the solder bonding pads 2b. And the external electric circuit board via the solder bumps 8 are easily joined.
[0021]
As described above, in order to previously bond the solder bumps 7 and 8 to the solder bonding pads 2a and 2b, a gold plating layer having a thickness of 0.01 to 0.8 μm is applied to the surfaces of the solder bonding pads 2a and 2b. A solder paste containing a solder made of a tin-silver-copper alloy and a flux is printed on the solder bonding pads 2a and 2b to which the gold plating layer is applied by using a conventionally known screen printing method. Then, a method is adopted in which the solder is heated at a temperature of 220 to 260 ° C. to melt the solder and join the solder.
[0022]
In this wiring board, the semiconductor element 3 is mounted, and the respective electrodes of the semiconductor element 3 are connected to the solder bonding pads 2a for connecting electronic components via the solder bumps 7, thereby forming an electronic device. By connecting the solder connection pad 2b for external connection to the wiring conductor of the external electric circuit board via the solder bump 8, the electronic device is mounted on the external electric circuit board.
[0023]
Further, in the wiring board of the present invention, an identification mark 10 for positioning an electronic component is provided on the upper surface of the insulating substrate 1 and is made of the same conductive layer as the conductive layer forming the solder bonding pad 2a. The recognition mark 10 serves as a reference for aligning the electrode of the semiconductor element 3 with the solder bonding pad 2a when the semiconductor element 3 is mounted. The outer peripheral edge is covered with a solder resist layer 9 with a width of about 15 to 50 μm. Such a recognition mark 10 is formed at the same time when the solder bonding pad 2a is formed on the upper surface of the insulating substrate 1 by a similar method, that is, a semi-additive method or a subtractive method.
[0024]
Further, a solder layer 11 having the same composition as the solder bump 7 is welded to the surface of the recognition mark 10 at a lower height than the solder resist layer 9. The solder layer 11 serves to prevent the recognition mark 10 from being oxidized and to increase the contrast between the recognition mark 10 and its surroundings. The same method is used to bond the solder bump 7 to the solder bonding pad 2a. That is, a gold plating layer having a thickness of 0.01 to 0.8 μm is deposited on the surface of the recognition mark 10 and a tin-silver-copper alloy is placed on the recognition mark 10 on which the gold plating layer is deposited. A solder paste containing a solder and a flux is printed and applied by using a conventionally known screen printing method, and the solder paste is heated at a temperature of 220 to 260 ° C. to melt the solder, thereby simultaneously welding. The amount of the solder paste to be applied is such that the solder layer 11 is lower in height than the solder resist layer 9, and the outer periphery of the recognition mark 10 is covered with the solder resist layer 9, so that the surface of the recognition mark 10 Thus, the solder layer 11 can be spread well and the recognition mark 10 can be satisfactorily covered with the solder layer 11 having a lower height than the solder resist layer 9.
[0025]
At this time, since the solder layer 11 is welded to the recognition mark 10 at the same time that the solder bump 7 is applied to the solder bonding pad 2a, the recognition mark 10 is well protected by the solder layer 11 without being oxidized. A large contrast difference is formed between the solder layer 11 on the recognition mark 10 and the surrounding solder resist layer 9.
[0026]
Then, the recognition mark 10 on which the solder layer 11 is attached is recognized by an image recognition device, and based on the information, the electrodes of the semiconductor element 3 and the solder bonding pads 2a are aligned by an automatic machine. By heating and melting the solder bumps 7 on the bonding pads 2a, the electrodes of the semiconductor element 3 and the solder bonding pads 2a are bonded via the solder bumps 7.
[0027]
At this time, according to the wiring board of the present invention, since the height of the solder layer 11 is lower than the height of the solder resist layer 9, the solder layer 11 becomes too three-dimensional or protrudes onto the solder resist layer 9. As a result, the recognition mark 10 covered with the solder layer 11 can be satisfactorily recognized by the image recognition device, and the electrodes of the semiconductor element 3 and the solder bonding pads 2a can be accurately positioned by an automatic machine. The connection can be made normally. Furthermore, since the height of the solder layer 11 is lower than the height of the solder resist layer 9, the solder layer 11 does not come into contact with the semiconductor element 3 when the semiconductor element 3 is mounted. Pollution can also be prevented.
[0028]
If the thickness of the solder layer 11 attached to the recognition mark 10 is less than 1 μm, the recognition mark 10 cannot be satisfactorily covered, and there is a risk that the recognition mark will be discolored. Therefore, it is preferable that the thickness of the solder layer 11 applied to the recognition mark 10 be 1 μm or more.
[0029]
Thus, according to the wiring board of the present invention, the recognition mark 10 on which the solder 11 is applied is recognized by the image recognition device, and the semiconductor element 3 is mounted on the automatic machine based on the information, and the electrode of the semiconductor element 3 is connected to the electrode. An electronic device as a product is completed by joining the solder joint pad 2a with the solder 7 therebetween.
[0030]
It should be noted that the present invention is not limited to the example of the above-described embodiment, and various modifications are possible without departing from the gist of the present invention. For example, in the example of the above-described embodiment, Although the insulating substrate has been formed from a material obtained by impregnating a glass fabric with a thermosetting resin and a thermosetting resin, the insulating substrate may be formed from another insulating material such as a ceramic material.
[0031]
【The invention's effect】
According to the wiring board of the present invention, since the solder layer having the same composition as the solder bump is welded to the surface of the recognition mark, the solder bump is bonded to the solder bonding pad in advance even when a lead-free solder having a high melting point is used. The recognition mark does not change its color due to the heat applied at the time of the application, and the contrast between the recognition mark and the surrounding area is kept good by the solder on the recognition mark. In addition, since the solder layer welded to the recognition mark is lower than the solder resist layer, the solder layer does not hinder the recognition of the recognition mark, so that the recognition mark can be accurately recognized by the image recognition device. Thus, the electrodes of the electronic component and the solder bonding pads can be normally connected via the solder.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
[Explanation of symbols]
1 Insulating substrate 2 Wiring conductors 2a and 2b Solder bonding pad 3 Electronics Semiconductor elements 7 and 8 as components Solder bump 10 Recognition mark 11 Solder layer

Claims (1)

複数の絶縁層を積層して成る絶縁基板と、該絶縁基板の内部および/または表面に配設された配線導体と、前記絶縁基板の表面に被着された導体層から形成されており、前記配線導体に電気的に接続された電子部品接続用の複数の半田接合パッドと、該半田接合パッドと同じ導体層から形成された電子部品位置決め用の認識マークと、前記絶縁基板の表面に被着されており、前記半田接合パッドおよび前記認識マークの中央部を露出させる開口部を有するソルダーレジスト層と、該ソルダーレジスト層から露出する前記半田接合パッドに溶着された半田バンプとを具備して成る配線基板であって、前記認識マークの表面に前記半田バンプと同じ組成で前記ソルダーレジスト層よりも高さの低い半田層が溶着されていることを特徴とする配線基板。An insulating substrate formed by stacking a plurality of insulating layers, a wiring conductor disposed inside and / or on the surface of the insulating substrate, and a conductor layer adhered to the surface of the insulating substrate; A plurality of solder joint pads for electronic component connection electrically connected to the wiring conductor; an identification mark for electronic component positioning formed from the same conductor layer as the solder joint pads; A solder resist layer having an opening exposing a central portion of the solder joint pad and the recognition mark, and a solder bump welded to the solder joint pad exposed from the solder resist layer. A wiring substrate, wherein a solder layer having the same composition as the solder bumps and having a lower height than the solder resist layer is welded to the surface of the recognition mark. .
JP2003011325A 2003-01-20 2003-01-20 Wiring board Pending JP2004228151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011325A JP2004228151A (en) 2003-01-20 2003-01-20 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011325A JP2004228151A (en) 2003-01-20 2003-01-20 Wiring board

Publications (1)

Publication Number Publication Date
JP2004228151A true JP2004228151A (en) 2004-08-12

Family

ID=32900263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011325A Pending JP2004228151A (en) 2003-01-20 2003-01-20 Wiring board

Country Status (1)

Country Link
JP (1) JP2004228151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727502A (en) * 2018-02-15 2020-09-29 株式会社村田制作所 High frequency module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727502A (en) * 2018-02-15 2020-09-29 株式会社村田制作所 High frequency module

Similar Documents

Publication Publication Date Title
US6395993B1 (en) Multilayer flexible wiring boards
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP2009212160A (en) Wiring board and manufacturing method therefor
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2004228151A (en) Wiring board
JP5311656B2 (en) Wiring board
JP4434702B2 (en) Wiring board manufacturing method
JP2011009624A (en) Wiring board
JP3967989B2 (en) Manufacturing method of wiring board with solder bump
JP2009123757A (en) Wiring board and manufacturing method thereof
JP2012114381A (en) Wiring board and method for manufacturing the same
JP2010157628A (en) Wiring substrate and method of manufacturing the same
JP2004165328A (en) Wiring board having solder bump and its manufacturing method
JP2005086096A (en) Wiring board
JP2004327741A (en) Wiring board with solder bump and its producing process
JP2000294675A (en) Chip carrier, semiconductor device and manufacture of chip carrier
JP2005086097A (en) Wiring board
JP2004327742A (en) Process for producing wiring board with solder bump
JP3940655B2 (en) Wiring board with solder bump, electronic device, and method for manufacturing wiring board with solder bump
JP2003243816A (en) Wiring board and its manufacturing method
JP2004055958A (en) Wiring board with pin, and electronic device using same
JP5389748B2 (en) Electronic component surface mounting method and printed circuit board manufactured using the method
JP2005209847A (en) Method of manufacturing wiring board
JP2005191124A (en) Method of manufacturing wiring board
JP2004119544A (en) Wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Effective date: 20071005

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A02