JP2004228099A - Wiring board incorporating capacitive element - Google Patents

Wiring board incorporating capacitive element Download PDF

Info

Publication number
JP2004228099A
JP2004228099A JP2002370844A JP2002370844A JP2004228099A JP 2004228099 A JP2004228099 A JP 2004228099A JP 2002370844 A JP2002370844 A JP 2002370844A JP 2002370844 A JP2002370844 A JP 2002370844A JP 2004228099 A JP2004228099 A JP 2004228099A
Authority
JP
Japan
Prior art keywords
dielectric
layer
insulating layer
capacitive element
ceramic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002370844A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsudera
拓 松寺
Takuya Ouchi
卓也 大内
Masataka Hiromori
雅孝 廣森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002370844A priority Critical patent/JP2004228099A/en
Publication of JP2004228099A publication Critical patent/JP2004228099A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem that reduction in size, especially reduction in profile of a wiring board incorporating a capacitive element is difficult because a dielectric layer is required to be formed at least on the outermost layer or between layers of a multilayer insulating layer forming the capacitive element. <P>SOLUTION: A plurality of ceramic insulating layers 1 each provided with a wiring conductor layer 4 are laid in layers, a plurality of through holes are formed in at least one ceramic insulating layer 1 and filled with a dielectric 3 having a dielectric constant higher than that of the ceramic insulating layer 1, capacitive element electrode layers 2 facing each other while sandwiching the dielectric 3 are formed at the opposite end parts of the through hole and a plurality of capacitive element electrode layers 2 arranged on the same major surface of the ceramic insulating layer 1 are connected electrically through the wiring conductor layer 4. Since the capacitance is adjusted by the dielectric 3 and the plurality of capacitive element electrode layers 2 are connected through the wiring conductor layer 4, a capacitive element having a large capacitance can be formed in one ceramic insulating layer 1 and reduction in size and profile can be dealt with readily. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として発振回路やフィルタ回路等を形成するための配線基板として使用される容量素子内蔵配線基板に関するものである。
【0002】
【従来の技術】
発振回路やフィルタ回路等を形成するための基板として使用される配線基板として、複数の絶縁層および配線導体層を積層するとともに、この絶縁層の積層体の最表層および層間の少なくとも一方に誘電体層を追加し、その誘電体層の一部を挟んで対向する容量素子電極層が形成されて成る容量素子内蔵配線基板が知られている。
【0003】
この容量素子内蔵配線基板において、一般に、絶縁層および誘電体層は、ガラスセラミックス焼結体・酸化アルミニウム質焼結体等のセラミック材料や、エポキシ樹脂をガラスクロスに含浸させた有機系材料や、セラミックフィラーを有機樹脂中に分散させた複合材料等の電気絶縁材料や高誘電率材料により形成される。また、配線導体層および容量素子電極層は、銅・銀・タングステン等の金属粉末メタライズや銅箔・銅めっき層等の金属材料により形成される。
【0004】
また、このような容量素子内蔵配線基板は、例えば、絶縁層および誘電体層がガラスセラミックス焼結体から成る場合であれば、ホウ珪酸ガラス等のガラス粉末と酸化アルミニウム等のセラミック粉末とを有機溶剤・バインダとともにシート状に成形して成る複数のグリーンシートの表面に、銅・銀等の金属ペーストを所定の配線導体層および容量素子電極層のパターンに印刷塗布し、容量素子電極層となる金属ペーストが誘電体層となるグリーンシートを挟んで対向するようにしてグリーンシートを積層し、焼成することにより製作される。
【0005】
そして、配線導体層の露出表面を外部電気回路基板の回路配線に半田等を介して接続することにより、容量素子内蔵配線基板が、外部電気回路において発振回路やフィルタ回路として作動することとなる。
【0006】
【特許文献1】
実開平6−62570号公報
【0007】
【発明が解決しようとする課題】
しかしながら、近年、容量素子内蔵配線基板においては小型化、特に低背化が強く要求されるようになってきているため、容量素子を形成するために絶縁層の積層体の最表層および層間の少なくとも一方に誘電体層を積層することにより容量素子を形成し内蔵させるようにすると、容量素子を形成する部分以外においても絶縁層のほぼ全面に誘電体層を形成する必要があることから、容量素子内蔵配線基板全体の厚みが増大してしまうため、上記のような容量素子内蔵配線基板の小型化、特に低背化が難しいという問題点があった。
【0008】
本発明は、この従来の技術における問題点を解決すべく案出されたものであり、その目的は、特に近年の著しい小型化・低背化の要求に対して、この小型化・低背化が容易である容量素子内蔵配線基板を提供することにある。
【0009】
【課題を解決するための手段】
本発明の容量素子内蔵配線基板は、配線導体層が形成された複数のセラミック絶縁層を積層して成り、前記セラミック絶縁層の少なくとも1つに複数の貫通孔を形成してこの貫通孔内に前記セラミック絶縁層より比誘電率の高い誘電体を充填し、前記貫通孔の両端部に前記誘電体を挟んで対向する容量素子電極層を形成するとともに前記セラミック絶縁層の同じ主面に配置された複数の該容量素子電極層間を前記配線導体層で電気的に接続することによって容量素子を形成したことを特徴とするものである。
【0010】
また、本発明の容量素子内蔵配線基板は、上記構成において、前記誘電体の長さは前記貫通孔の長さよりも短く、前記容量素子電極層は前記貫通孔の前記両端部の少なくとも一方に侵入して前記誘電体を挟んでいることを特徴とするものである。
【0011】
本発明の容量素子内蔵配線基板によれば、配線導体層が形成された複数のセラミック絶縁層を積層して成り、これらセラミック絶縁層の少なくとも1つに複数の貫通孔を形成してこれら貫通孔内にセラミック絶縁層より比誘電率の高い誘電体を充填し、この貫通孔の両端部に誘電体を挟んで対向する容量素子電極層を形成するとともにセラミック絶縁層の同じ主面に配置されたこれら複数の容量素子電極層間を配線導体層で電気的に接続することによって容量素子を形成したことから、容量素子全体の静電容量を複数の誘電体の寸法や個数・比誘電率等で調整することができ、かつセラミック絶縁層の同じ主面に配置されたこれら複数の容量素子の容量素子電極層を配線導体層で連結することで、1つのセラミック絶縁層内に大きな静電容量の容量素子を形成することができる。また、誘電体を充填する貫通孔の形状や配置、および配線導体層の引き回しが任意に行なえ、自由度が高いので、従来の構造のように、セラミック絶縁層のほぼ全面に形成された誘電体層を挟んで形成される容量素子電極層との短絡を避けて配線導体層を引き回すために絶縁層の積層数を増やしたり、誘電体層を隔てて存在する配線導体層間において浮遊容量が発生することを防止するために絶縁層の平面面積を増やしたりするような必要がなく、また、個々の容量素子をセラミック絶縁層のうち配線導体層間の隙間が大きい部分等に分散して配置することができるので、高密度な容量素子の内蔵が可能となり、小型化・低背化への対応が容易な容量素子内蔵配線基板を提供することができる。
【0012】
また、本発明の容量素子内蔵配線基板において、誘電体の長さが貫通孔の長さよりも短く、容量素子電極層が貫通孔の両端部の少なくとも一方に侵入して誘電体を挟んでいるようにした場合には、容量素子電極層で両端部を挟んでいる誘電体の厚みは、貫通孔を形成しているセラミック絶縁層の厚みに関係なく必要な静電容量を得るための厚みまで薄くすることができるので、高容量の容量素子を内蔵した容量素子内蔵配線基板を得ることができる。
【0013】
【発明の実施の形態】
次に、本発明の容量素子内蔵配線基板を添付の図面に基づき詳細に説明する。
【0014】
図1は、本発明の容量素子内蔵配線基板の実施の形態の一例を示す要部断面図である。図1において、1はセラミック絶縁層、2は容量素子電極層、3は誘電体、4は配線導体層であり、これらの絶縁層1・容量素子電極層2・誘電体3および配線導体層4により容量素子内蔵配線基板5が形成される。
【0015】
セラミック絶縁層1は、ガラスセラミックス焼結体・酸化アルミニウム質焼結体等のセラミック材料や、セラミックフィラーを有機樹脂中に分散させたセラミック複合材料等により形成される。
【0016】
セラミック絶縁層1は、例えばガラスセラミックス焼結体から成る場合であれば、ホウ珪酸ガラス等のガラス粉末と酸化アルミニウム等のセラミック粉末とを有機溶剤・バインダとともにシート状に成形し複数枚のグリーンシートを得て、これに適当な孔あけ加工を施すとともに上下に積層し、約1000℃で焼成することにより製作される。
【0017】
このセラミック絶縁層1には複数の貫通孔が設けられ、この貫通孔には、セラミック絶縁層1よりも比誘電率の高い誘電体3が充填されている。
【0018】
また、この貫通孔に充填された誘電体3の両端部には誘電体3を挟んで対向する容量素子電極層2が形成されている。
【0019】
これらの誘電体3および容量素子電極層2は、図2に本発明の容量素子内蔵配線基板の実施の形態の一例の要部平面図で示すように各々の容量素子電極層2の間を配線導体層4で接続することにより、本発明の容量素子内蔵配線基板5の内蔵容量素子が形成される。
【0020】
容量素子電極層2は、内蔵容量素子を形成するための対向電極として機能し、銅・銀・タングステン等の金属粉末メタライズや、銅箔・銅めっき層等の金属材料により形成される。
【0021】
また、誘電体3は、両端の容量素子電極層2の間に介在して静電容量を生じさせる誘電体として機能し、ガラスセラミックス焼結体・酸化アルミニウム質焼結体等のセラミック材料や、エポキシ樹脂をガラスクロスに含浸させた有機系材料や、セラミックフィラーを有機樹脂中に分散させた複合材料等により形成される。
【0022】
誘電体3の比誘電率は、セラミック絶縁層1と同程度以下であると、内蔵する容量素子を十分に高容量とすることができない。したがって、誘電体3は、セラミック絶縁層1より比誘電率を高くする必要がある。
【0023】
このように誘電体3の比誘電率をセラミック絶縁層1の比誘電率より高くする手段としては、例えば、酸化物粉末を含有するセラミックス焼結体により誘電体3を形成したり、誘電体3を基本的にはセラミック絶縁層1と同様の材料で形成するとともに、誘電体3中に高比誘電率材料の粉末を添加したりする等の手段を用いることができる。
【0024】
なお、誘電体3の比誘電率は、高静電容量を得る上では高ければ高いほど良いが、例えば、セラミック絶縁層1がガラスセラミックス焼結体等の焼結体で形成されているような場合には、比誘電率を高めることによって材料の組成が大きく異なるものとなって焼成時の焼成収縮等が大きく異なると、セラミック絶縁層1と誘電体3との接合強度が低くなったり、セラミック絶縁層1や誘電体3にクラック等の不具合を誘発させたりするおそれがある。したがって、誘電体3は、セラミック絶縁層1がガラスセラミックス焼結体等の焼結体で形成されているような場合であれば、その比誘電率はセラミック絶縁層1の比誘電率に対して、1.2倍〜1.5倍程度の範囲としておくことが好ましい。
【0025】
内蔵容量素子を形成するこれらの容量素子電極層2および誘電体3は、例えば、セラミック絶縁層1がガラスセラミックス焼結体から成る場合であれば、セラミック絶縁層1となるグリーンシートの表面に、まず貫通孔を設け、この貫通孔内にセラミック絶縁層1となるグリーンシートより比誘電率の高い誘電体3となるセラミックペーストを充填し、次にこのセラミックペーストが充填された貫通孔の両端部に、銅・銀等の金属粉末に有機溶剤・バインダを添加して得た金属ペーストを容量素子電極層2のパターンに印刷することにより形成される。
【0026】
本発明の容量素子内蔵配線基板5においては、このようにセラミック絶縁層1に複数の貫通孔を形成し、これらの貫通孔内にセラミック絶縁層1より比誘電率の高い誘電体3を充填するとともに、この貫通孔の両端部に誘電体3を挟んで対向する容量素子電極層2を形成し、かつセラミック絶縁層1の同じ主面に配置された複数の容量素子電極層2間を配線導体層4で連結することによって、容量素子を形成し内蔵させることが重要である。
【0027】
このような構造とすることにより、内層した容量素子の静電容量を誘電体3で調整して1つのセラミック絶縁層1内に大きな静電容量の容量素子を形成することができる。また、誘電体を充填する貫通孔の形状や配置、および配線導体層の引き回しが任意に行なえ、自由度が高いので、従来の構造のように、絶縁層(セラミック絶縁層1)のほぼ全面に形成された誘電体層を挟んで形成される容量素子電極層2との短絡を避けて配線導体層4を引き回すために絶縁層(セラミック絶縁層1)の積層数を増やしたり、誘電体層を隔てて存在する配線導体層4間において浮遊容量が発生することを防止するために絶縁層(セラミック絶縁層1)の平面面積を増やしたりするような必要がなく、また、個々の容量素子をセラミック絶縁層1のうち配線導体層4間の隙間が大きい部分等に分散して配置することができるので、高密度な容量素子の内蔵が可能となり、小型化・低背化への対応が容易な容量素子内蔵配線基板5を提供することができる。
【0028】
また、誘電体3の個数や寸法・比誘電率等を適宜調整することにより、所望の静電容量を有する容量素子を内蔵させることもできる。
【0029】
例えば、高周波伝送線路と高容量の容量素子とが混在する場合において、本発明の容量素子内蔵配線基板における容量素子を分散して配置することで、高周波伝送線路の高周波伝送特性に悪影響を与えることなく所望の静電容量を得ることができる。またその他に、高精度な静電容量を得るために、主容量素子とは別に、静電容量調整用に本発明の容量素子内蔵配線基板における容量素子を複数個設け、主容量素子と個々に並列で接続しておき、焼成後に、個々の容量素子への並列配線を所望の静電容量値に合わせて切断することで、静電容量のばらつきの無い容量素子を内蔵した容量素子内蔵配線基板を得ることができる。
【0030】
また、本発明の容量素子内蔵配線基板においては、図3に図1と同様の要部断面図で示すように、誘電体3の長さは貫通孔の長さよりも短く、容量素子電極層2は貫通孔の両端部の少なくとも一方に侵入して誘電体3を挟んでいることが好ましい。
【0031】
容量素子電極層2および誘電体3をこのような構造としておくと、容量素子電極層2で両端部を挟んでいる誘電体3の厚みは、貫通孔を形成しているセラミック絶縁層1の厚みに関係なく必要な静電容量を得るための厚みまで薄くすることができる。これにより、内蔵する容量素子をより一層容易に高容量のものとすることができる。
【0032】
例えば、容量素子電極層2を上下に設けているセラミック絶縁層1の厚みが100μm程度の厚みを有していた場合であれば、互いの容量素子電極層2間の距離が大きな静電容量を得るには離れすぎているため、所望の静電容量をこの容量素子電極層2間で発生させるには、容量素子電極層2の面積を大きくする必要がある。そこで、互いの容量素子電極層2間の距離を短くするために、誘電体3の長さを貫通孔の長さよりも短くし、例えば50μm程度とした誘電体3を貫通孔に充填し、貫通孔の残りの領域には容量素子電極層2を侵入させるように充填することにより、互いの容量素子電極層2間の距離を短くし、所望の大きい静電容量を得ることができるものとなる。
【0033】
なお、複数の誘電体3は、その全部を同じ寸法・比誘電率で形成する必要はなく、例えば、セラミック絶縁層1との間で焼成時の収縮率の違い等に応じて生じるストレスを緩和するために、セラミック絶縁層1の外周部分で寸法を小さくし、中央部に近づくにつれて寸法が大きくなるようにして形成してもよい。
【0034】
配線導体層4は、内蔵した複数の容量素子の容量素子電極層2間を接続して1つの容量素子として機能させるための接続導体として機能するとともに、この容量素子を外部に導出・接続する導電路としても機能する。このような配線導体層4は、通常、容量素子電極層2と同様の材料から成り、例えば、銅・銀・タングステン等の金属粉末メタライズや、銅箔・銅めっき層等の金属材料により形成され、例えば、銅・銀等の金属粉末に有機溶剤・バインダを添加して得た金属ペーストをセラミック絶縁層1となるグリーンシートの表面に所定の回路状パターンに印刷塗布しておくことにより形成される。
【0035】
なお、これらの容量素子電極層2および配線導体層4は、その露出する表面にニッケル・金等の耐食性の良好な金属から成るめっき層を、例えば、厚みが1μm〜10μm程度のニッケルめっき層/厚みが0.03μm〜3μm程度の金めっき層の順に被着させておくことが好ましい。
【0036】
以上により本発明の容量素子内蔵配線基板5が形成され、配線導体層4の露出表面の一部に半導体素子等の電子部品を接続するとともに他の一部を外部電気回路に半田等を介して接続することによって、内蔵した容量素子と外部電気回路とが電気的に接続され、容量素子内蔵配線基板5が外部電気回路とともに発振回路やフィルタ回路として作動することとなる。
【0037】
なお、本発明の容量素子内蔵配線基板は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々に変形することができる。
【0038】
例えば、複数の容量素子電極層2は、それら全部が積層されたセラミック絶縁層1の層間に位置するようにして形成される必要はなく、セラミック絶縁層1の同じ主面であれば、積層されたセラミック絶縁層1の外表面に容量素子電極層2を形成するようにしてもよい。
【0039】
【発明の効果】
本発明の容量素子内蔵配線基板によれば、配線導体層が形成された複数のセラミック絶縁層を積層して成り、これらセラミック絶縁層の少なくとも1つに複数の貫通孔を形成してこれら貫通孔内にセラミック絶縁層より比誘電率の高い誘電体を充填し、この貫通孔の両端部に誘電体を挟んで対向する容量素子電極層を形成するとともにセラミック絶縁層の同じ主面に配置されたこれら複数の容量素子電極層間を配線導体層で電気的に接続することによって容量素子を形成したことから、容量素子全体の静電容量を複数の誘電体の寸法や個数・比誘電率等で調整することができ、かつセラミック絶縁層の同じ主面に配置されたこれら複数の容量素子の容量素子電極層を配線導体層で連結することで、1つのセラミック絶縁層内に大きな静電容量の容量素子を形成することができる。また、誘電体を充填する貫通孔の形状や配置、および配線導体層の引き回しが任意に行なえ、自由度が高いので、従来の構造のように、セラミック絶縁層のほぼ全面に形成された誘電体層を挟んで形成される容量素子電極層との短絡を避けて配線導体層を引き回すために絶縁層の積層数を増やしたり、誘電体層を隔てて存在する配線導体層間において浮遊容量が発生することを防止するために絶縁層の平面面積を増やしたりするような必要がなく、また、個々の容量素子をセラミック絶縁層のうち配線導体層間の隙間が大きい部分等に分散して配置することができるので、高密度な容量素子の内蔵が可能となり、小型化・低背化への対応が容易な容量素子内蔵配線基板を提供することができる。
【0040】
また、本発明の容量素子内蔵配線基板によれば、誘電体の長さが貫通孔の長さよりも短く、容量素子電極層が貫通孔の両端部の少なくとも一方に侵入して誘電体を挟んでいるようにした場合には、容量素子電極層で両端部を挟んでいる誘電体層の厚みは、貫通孔を形成している絶縁層の厚みに関係なく必要な静電容量を得るための厚みまで薄くすることができるので、高容量の容量素子を内蔵した容量素子内蔵配線基板を得ることができる。
【図面の簡単な説明】
【図1】本発明の容量素子内蔵配線基板の実施の形態の一例を示す要部断面図である。
【図2】本発明の容量素子内蔵配線基板の実施の形態の一例を示す要部平面図である。
【図3】本発明の容量素子内蔵配線基板の実施の形態の他の例を示す要部断面図である。
【符号の説明】
1・・・セラミック絶縁層
2・・・容量素子電極層
3・・・誘電体
4・・・配線導体層
5・・・容量素子内蔵配線基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board with a built-in capacitive element, which is mainly used as a wiring board for forming an oscillation circuit, a filter circuit, and the like.
[0002]
[Prior art]
As a wiring substrate used as a substrate for forming an oscillation circuit, a filter circuit, and the like, a plurality of insulating layers and a wiring conductor layer are laminated, and a dielectric is provided on at least one of the outermost layer and the interlayer of the laminated body of the insulating layers. 2. Description of the Related Art A wiring board with a built-in capacitive element is known in which a capacitive element electrode layer is formed by adding a layer and opposing each other with a part of the dielectric layer interposed therebetween.
[0003]
In this wiring board with a built-in capacitor, the insulating layer and the dielectric layer are generally made of a ceramic material such as a glass ceramic sintered body or an aluminum oxide sintered body, or an organic material obtained by impregnating a glass cloth with an epoxy resin. It is formed of an electrical insulating material such as a composite material in which a ceramic filler is dispersed in an organic resin or a high dielectric constant material. Further, the wiring conductor layer and the capacitor element electrode layer are formed of a metal material such as metal powder of copper, silver, tungsten or the like, or a metal material such as copper foil or copper plating layer.
[0004]
Further, such a wiring board with a built-in capacitance element, for example, when the insulating layer and the dielectric layer are made of a glass-ceramic sintered body, a glass powder such as borosilicate glass and a ceramic powder such as aluminum oxide are organically mixed. On a surface of a plurality of green sheets formed in a sheet shape together with a solvent and a binder, a metal paste such as copper or silver is printed and applied to a predetermined wiring conductor layer and a pattern of a capacitor element electrode layer, thereby forming a capacitor element electrode layer. It is manufactured by stacking and firing green sheets so that the metal paste is opposed to the green sheets serving as dielectric layers with the green sheets interposed therebetween.
[0005]
Then, by connecting the exposed surface of the wiring conductor layer to the circuit wiring of the external electric circuit board via solder or the like, the wiring board with a built-in capacitance element operates as an oscillation circuit or a filter circuit in the external electric circuit.
[0006]
[Patent Document 1]
Published Japanese Utility Model Application No. Hei 6-62570
[Problems to be solved by the invention]
However, in recent years, there has been a strong demand for miniaturization, particularly reduction in height, of a wiring board with a built-in capacitive element. Therefore, in order to form a capacitive element, at least the outermost layer and at least the interlayer between layers of an insulating layer have to be formed. On the other hand, if a capacitor is formed and built-in by laminating a dielectric layer on the other side, it is necessary to form the dielectric layer on almost the entire surface of the insulating layer other than the portion where the capacitor is formed. Since the thickness of the entire built-in wiring board is increased, there is a problem that it is difficult to reduce the size of the built-in wiring board with a built-in capacitive element, especially to reduce the height.
[0008]
The present invention has been devised to solve the problems in the conventional technology, and the object thereof is to meet the recent demand for remarkable miniaturization and reduction in height. It is an object of the present invention to provide a wiring board with a built-in capacitive element, which is easy to perform.
[0009]
[Means for Solving the Problems]
The wiring board with a built-in capacitor of the present invention is formed by laminating a plurality of ceramic insulating layers on which a wiring conductor layer is formed, and forming a plurality of through holes in at least one of the ceramic insulating layers, and forming a plurality of through holes in the through holes. A dielectric material having a higher relative dielectric constant than the ceramic insulating layer is filled, and at both ends of the through hole, a capacitor element electrode layer facing the dielectric material is formed, and is disposed on the same main surface of the ceramic insulating layer. The capacitor element is formed by electrically connecting the plurality of capacitor element electrode layers with the wiring conductor layer.
[0010]
Further, in the wiring board with a built-in capacitive element according to the present invention, in the above structure, the length of the dielectric is shorter than the length of the through hole, and the capacitive element electrode layer intrudes into at least one of the both ends of the through hole. And the dielectric is interposed therebetween.
[0011]
According to the wiring board with a built-in capacitor of the present invention, a plurality of ceramic insulating layers each having a wiring conductor layer formed thereon are laminated, and a plurality of through holes are formed in at least one of the ceramic insulating layers. Is filled with a dielectric having a higher relative dielectric constant than the ceramic insulating layer, and at both ends of the through hole, opposed capacitor element layers are formed with the dielectric interposed therebetween, and are disposed on the same main surface of the ceramic insulating layer. Since the capacitance element was formed by electrically connecting the plurality of capacitance element electrode layers with the wiring conductor layer, the capacitance of the entire capacitance element was adjusted by the dimensions, the number, and the relative permittivity of the plurality of dielectrics. And connecting the capacitance element electrode layers of the plurality of capacitance elements arranged on the same main surface of the ceramic insulation layer with a wiring conductor layer, thereby providing a large capacitance in one ceramic insulation layer. It is possible to form the capacitive element. In addition, since the shape and arrangement of the through-holes for filling the dielectric and the wiring conductor layer can be arbitrarily set and the degree of freedom is high, the dielectric formed over almost the entire surface of the ceramic insulating layer as in the conventional structure is used. In order to route the wiring conductor layer while avoiding a short circuit with the capacitor element electrode layer formed between the layers, the number of laminated insulating layers is increased, or stray capacitance is generated between the wiring conductor layers existing with the dielectric layer therebetween. It is not necessary to increase the planar area of the insulating layer in order to prevent this, and it is also possible to dispose the individual capacitive elements in a portion where the gap between the wiring conductor layers is large in the ceramic insulating layer. Therefore, a high-density capacitive element can be built in, and a wiring board with a built-in capacitive element that can easily be reduced in size and height can be provided.
[0012]
In the wiring board with a built-in capacitive element of the present invention, the length of the dielectric is shorter than the length of the through-hole, and the capacitive element electrode layer penetrates at least one of both ends of the through-hole and sandwiches the dielectric. In this case, the thickness of the dielectric sandwiching both ends between the capacitor electrode layers is reduced to a thickness for obtaining the required capacitance regardless of the thickness of the ceramic insulating layer forming the through hole. Therefore, it is possible to obtain a wiring board with a built-in capacitive element having a built-in high-capacitance capacitive element.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a wiring board with a built-in capacitor according to the present invention will be described in detail with reference to the accompanying drawings.
[0014]
FIG. 1 is a cross-sectional view of a main part showing an example of an embodiment of a wiring board with a built-in capacitance element of the present invention. In FIG. 1, 1 is a ceramic insulating layer, 2 is a capacitor element electrode layer, 3 is a dielectric, and 4 is a wiring conductor layer. These insulating layer 1, capacitor element electrode 2, dielectric 3, and wiring conductor layer 4 Thereby, the wiring board 5 with a built-in capacitance element is formed.
[0015]
The ceramic insulating layer 1 is formed of a ceramic material such as a glass ceramic sintered body or an aluminum oxide sintered body, or a ceramic composite material in which a ceramic filler is dispersed in an organic resin.
[0016]
When the ceramic insulating layer 1 is made of, for example, a glass ceramic sintered body, a plurality of green sheets are formed by molding a glass powder such as borosilicate glass and a ceramic powder such as aluminum oxide together with an organic solvent and a binder. It is manufactured by subjecting it to appropriate drilling, laminating vertically, and firing at about 1000 ° C.
[0017]
The ceramic insulating layer 1 is provided with a plurality of through holes, and the through holes are filled with a dielectric 3 having a higher relative dielectric constant than the ceramic insulating layer 1.
[0018]
Capacitor element electrode layers 2 are formed at both ends of the dielectric 3 filled in the through-holes, with the dielectric 3 interposed therebetween.
[0019]
These dielectrics 3 and capacitance element electrode layers 2 are arranged between the respective capacitance element electrode layers 2 as shown in a plan view of a main part of an example of an embodiment of the capacitance element built-in wiring board of the present invention in FIG. The connection with the conductor layer 4 forms the built-in capacitance element of the wiring board 5 with a built-in capacitance element of the present invention.
[0020]
The capacitance element electrode layer 2 functions as a counter electrode for forming a built-in capacitance element, and is formed of a metal powder such as copper, silver, or tungsten, or a metal material such as a copper foil or a copper plating layer.
[0021]
The dielectric material 3 functions as a dielectric material that generates capacitance by being interposed between the capacitor element electrode layers 2 at both ends, and a ceramic material such as a glass ceramic sintered body and an aluminum oxide sintered body; It is formed of an organic material in which an epoxy resin is impregnated in a glass cloth, a composite material in which a ceramic filler is dispersed in an organic resin, or the like.
[0022]
If the dielectric constant of the dielectric 3 is less than or equal to that of the ceramic insulating layer 1, the built-in capacitance element cannot have a sufficiently high capacitance. Therefore, the dielectric 3 needs to have a higher relative dielectric constant than the ceramic insulating layer 1.
[0023]
As means for making the relative dielectric constant of the dielectric 3 higher than the relative dielectric constant of the ceramic insulating layer 1 as described above, for example, the dielectric 3 may be formed from a ceramic sintered body containing an oxide powder, Can be basically formed of the same material as that of the ceramic insulating layer 1 and a means such as adding a powder of a high dielectric constant material into the dielectric 3 can be used.
[0024]
The relative permittivity of the dielectric 3 is preferably as high as possible in order to obtain a high capacitance. For example, the relative dielectric constant of the dielectric 3 may be such that the ceramic insulating layer 1 is formed of a sintered body such as a glass ceramic sintered body. In this case, when the relative dielectric constant is increased, the composition of the material is greatly different, and when the firing shrinkage during firing is greatly different, the bonding strength between the ceramic insulating layer 1 and the dielectric 3 becomes lower, There is a possibility that defects such as cracks may be induced in the insulating layer 1 and the dielectric 3. Therefore, when the ceramic insulating layer 1 is formed of a sintered body such as a glass ceramic sintered body, the relative dielectric constant of the dielectric 3 is higher than the relative dielectric constant of the ceramic insulating layer 1. , 1.2 times to 1.5 times.
[0025]
For example, when the ceramic insulating layer 1 is made of a glass-ceramic sintered body, the capacitive element electrode layer 2 and the dielectric 3 forming the built-in capacitive element are formed on the surface of a green sheet to be the ceramic insulating layer 1. First, a through hole is provided, and a ceramic paste serving as a dielectric 3 having a higher relative dielectric constant than the green sheet serving as the ceramic insulating layer 1 is filled in the through hole. Next, both ends of the through hole filled with the ceramic paste are provided. Then, a metal paste obtained by adding an organic solvent and a binder to a metal powder such as copper or silver is printed on the pattern of the capacitor element electrode layer 2.
[0026]
In the wiring board 5 with a built-in capacitive element of the present invention, a plurality of through holes are formed in the ceramic insulating layer 1 as described above, and the dielectric 3 having a higher dielectric constant than the ceramic insulating layer 1 is filled in these through holes. Capacitor element electrode layers 2 are formed at both ends of the through-holes with a dielectric 3 interposed therebetween, and a plurality of capacitor element electrode layers 2 arranged on the same main surface of the ceramic insulating layer 1 are connected by a wiring conductor. It is important to form and incorporate a capacitive element by connecting with the layer 4.
[0027]
With such a structure, the capacitance of the capacitance element in the inner layer can be adjusted by the dielectric 3 to form a capacitance element with a large capacitance in one ceramic insulating layer 1. In addition, since the shape and arrangement of the through holes for filling the dielectric and the wiring conductor layers can be arbitrarily set and the degree of freedom is high, almost the entire surface of the insulating layer (ceramic insulating layer 1) is formed as in the conventional structure. In order to route the wiring conductor layer 4 while avoiding a short circuit with the capacitor element electrode layer 2 formed with the formed dielectric layer interposed therebetween, the number of laminated insulating layers (ceramic insulating layer 1) is increased, There is no need to increase the planar area of the insulating layer (ceramic insulating layer 1) in order to prevent the generation of stray capacitance between the wiring conductor layers 4 that are separated from each other. Since it is possible to disperse and arrange the insulating layer 1 in a portion where the gap between the wiring conductor layers 4 is large, it is possible to incorporate a high-density capacitive element, and it is easy to cope with miniaturization and reduction in height. Wiring board with built-in capacitive element It is possible to provide a.
[0028]
In addition, by appropriately adjusting the number, size, relative permittivity, and the like of the dielectrics 3, a capacitance element having a desired capacitance can be incorporated.
[0029]
For example, in a case where a high-frequency transmission line and a high-capacity capacitive element are mixed, disposing the capacitive elements in the wiring board with a built-in capacitive element of the present invention adversely affects the high-frequency transmission characteristics of the high-frequency transmission line. And a desired capacitance can be obtained without the need. In addition, in order to obtain a high-precision capacitance, a plurality of capacitance elements in the wiring board with a built-in capacitance element of the present invention are provided separately from the main capacitance element for adjusting the capacitance, and individually with the main capacitance element. Capacitor built-in wiring board with built-in capacitors with no variation in capacitance by connecting in parallel and cutting the parallel wiring to each capacitor according to the desired capacitance after firing Can be obtained.
[0030]
In the wiring board with a built-in capacitive element of the present invention, the length of the dielectric 3 is shorter than the length of the through hole, as shown in FIG. Preferably penetrates at least one of both ends of the through hole and sandwiches the dielectric 3.
[0031]
When the capacitor element electrode layer 2 and the dielectric 3 have such a structure, the thickness of the dielectric 3 sandwiching both ends between the capacitor element electrode layers 2 is equal to the thickness of the ceramic insulating layer 1 forming the through hole. Irrespective of the above, the thickness can be reduced to a thickness for obtaining the required capacitance. This makes it possible to more easily increase the capacity of the built-in capacitive element.
[0032]
For example, when the thickness of the ceramic insulating layer 1 on which the capacitor element electrode layer 2 is provided above and below has a thickness of about 100 μm, the capacitance between the two capacitor element electrode layers 2 is large. Since they are too far apart to be obtained, it is necessary to increase the area of the capacitance element electrode layer 2 in order to generate a desired capacitance between the capacitance element electrode layers 2. Therefore, in order to shorten the distance between the capacitor element electrode layers 2, the length of the dielectric 3 is made shorter than the length of the through-hole. By filling the remaining area of the hole so that the capacitive element electrode layer 2 penetrates, the distance between the capacitive element electrode layers 2 can be shortened, and a desired large capacitance can be obtained. .
[0033]
It is not necessary that all of the plurality of dielectrics 3 be formed with the same dimensions and relative permittivity. For example, stress generated due to a difference in shrinkage ratio during firing between the dielectric 3 and the ceramic insulating layer 1 can be reduced. For this purpose, the ceramic insulating layer 1 may be formed such that the size is reduced at the outer peripheral portion and the size is increased as approaching the central portion.
[0034]
The wiring conductor layer 4 functions as a connection conductor for connecting the capacitance element electrode layers 2 of a plurality of built-in capacitance elements to function as one capacitance element, and also conducts and leads the capacitance elements to the outside. It also functions as a road. Such a wiring conductor layer 4 is usually made of the same material as the capacitor element electrode layer 2 and is formed of, for example, a metal powder metallization such as copper, silver, and tungsten, or a metal material such as a copper foil and a copper plating layer. For example, it is formed by printing and applying a metal paste obtained by adding an organic solvent and a binder to a metal powder such as copper and silver on a surface of a green sheet to be a ceramic insulating layer 1 in a predetermined circuit pattern. You.
[0035]
The capacitor element electrode layer 2 and the wiring conductor layer 4 are each provided on its exposed surface with a plating layer made of a metal having good corrosion resistance such as nickel or gold, for example, a nickel plating layer having a thickness of about 1 μm to 10 μm. It is preferable to apply the gold plating layer having a thickness of about 0.03 μm to 3 μm in this order.
[0036]
As described above, the wiring board 5 with a built-in capacitance element of the present invention is formed, an electronic part such as a semiconductor element is connected to a part of the exposed surface of the wiring conductor layer 4, and the other part is connected to an external electric circuit via solder or the like. By the connection, the built-in capacitance element and the external electric circuit are electrically connected, and the wiring board 5 with the built-in capacitance element operates as an oscillation circuit and a filter circuit together with the external electric circuit.
[0037]
The wiring board with a built-in capacitive element of the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.
[0038]
For example, the plurality of capacitor element electrode layers 2 need not be formed so as to be located between the layers of the ceramic insulating layer 1 in which all of them are stacked. The capacitive element electrode layer 2 may be formed on the outer surface of the ceramic insulating layer 1.
[0039]
【The invention's effect】
According to the wiring board with a built-in capacitor of the present invention, a plurality of ceramic insulating layers each having a wiring conductor layer formed thereon are laminated, and a plurality of through holes are formed in at least one of the ceramic insulating layers. Is filled with a dielectric having a higher relative dielectric constant than the ceramic insulating layer, and at both ends of the through hole, opposed capacitor element layers are formed with the dielectric interposed therebetween, and are disposed on the same main surface of the ceramic insulating layer. Since the capacitance element was formed by electrically connecting the plurality of capacitance element electrode layers with the wiring conductor layer, the capacitance of the entire capacitance element was adjusted by the dimensions, the number, and the relative permittivity of the plurality of dielectrics. And connecting the capacitance element electrode layers of the plurality of capacitance elements arranged on the same main surface of the ceramic insulation layer with a wiring conductor layer, thereby providing a large capacitance in one ceramic insulation layer. It is possible to form the capacitive element. In addition, since the shape and arrangement of the through-holes for filling the dielectric and the wiring conductor layer can be arbitrarily set and the degree of freedom is high, the dielectric formed over almost the entire surface of the ceramic insulating layer as in the conventional structure is used. In order to route the wiring conductor layer while avoiding a short circuit with the capacitor element electrode layer formed between the layers, the number of laminated insulating layers is increased, or stray capacitance is generated between the wiring conductor layers existing with the dielectric layer therebetween. It is not necessary to increase the planar area of the insulating layer in order to prevent this, and it is also possible to dispose the individual capacitive elements in a portion where the gap between the wiring conductor layers is large in the ceramic insulating layer. Therefore, a high-density capacitive element can be built in, and a wiring board with a built-in capacitive element that can easily be reduced in size and height can be provided.
[0040]
Further, according to the wiring board with a built-in capacitive element of the present invention, the length of the dielectric is shorter than the length of the through-hole, and the capacitive element electrode layer penetrates at least one of both ends of the through-hole and sandwiches the dielectric. In this case, the thickness of the dielectric layer sandwiching both ends between the capacitor element electrode layers is the thickness for obtaining the necessary capacitance regardless of the thickness of the insulating layer forming the through hole. As a result, a wiring board with a built-in capacitive element having a high-capacitance capacitive element can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a principal part showing an example of an embodiment of a wiring board with a built-in capacitance element of the present invention.
FIG. 2 is a plan view of a main part showing an example of an embodiment of a wiring board with a built-in capacitive element of the present invention.
FIG. 3 is a cross-sectional view of a main part showing another example of the embodiment of the wiring board with a built-in capacitive element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ceramic insulating layer 2 ... Capacitance element electrode layer 3 ... Dielectric 4 ... Wiring conductor layer 5 ... Capacitance element built-in wiring board

Claims (2)

配線導体層が形成された複数のセラミック絶縁層を積層して成り、前記セラミック絶縁層の少なくとも1つに複数の貫通孔を形成して該貫通孔内に前記セラミック絶縁層より比誘電率の高い誘電体を充填し、前記貫通孔の両端部に前記誘電体を挟んで対向する容量素子電極層を形成するとともに前記セラミック絶縁層の同じ主面に配置された複数の該容量素子電極層間を前記配線導体層で電気的に接続することによって容量素子を形成したことを特徴とする容量素子内蔵配線基板。A plurality of ceramic insulating layers each having a wiring conductor layer formed thereon are laminated, and a plurality of through holes are formed in at least one of the ceramic insulating layers, and a dielectric constant higher than the ceramic insulating layer in the through holes is formed in the through holes. A dielectric material is filled, and at both ends of the through hole, a capacitor element electrode layer facing each other across the dielectric material is formed, and a plurality of the capacitor element electrode layers arranged on the same main surface of the ceramic insulating layer are formed. A wiring board with a built-in capacitance element, wherein the capacitance element is formed by electrically connecting the wiring element with a wiring conductor layer. 前記誘電体の長さは前記貫通孔の長さよりも短く、前記容量素子電極層は前記貫通孔の前記両端部の少なくとも一方に侵入して前記誘電体を挟んでいることを特徴とする請求項1記載の容量素子内蔵配線基板。The length of the dielectric is shorter than the length of the through hole, and the capacitor electrode layer enters at least one of the both ends of the through hole and sandwiches the dielectric. 2. The wiring board with a built-in capacitance element according to 1.
JP2002370844A 2002-11-28 2002-12-20 Wiring board incorporating capacitive element Pending JP2004228099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370844A JP2004228099A (en) 2002-11-28 2002-12-20 Wiring board incorporating capacitive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002346367 2002-11-28
JP2002370844A JP2004228099A (en) 2002-11-28 2002-12-20 Wiring board incorporating capacitive element

Publications (1)

Publication Number Publication Date
JP2004228099A true JP2004228099A (en) 2004-08-12

Family

ID=32910923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370844A Pending JP2004228099A (en) 2002-11-28 2002-12-20 Wiring board incorporating capacitive element

Country Status (1)

Country Link
JP (1) JP2004228099A (en)

Similar Documents

Publication Publication Date Title
US6872893B2 (en) Wiring board provided with passive element and cone shaped bumps
JP4953988B2 (en) Multilayer capacitor and capacitor mounting board
JP5404312B2 (en) Electronic equipment
US7430107B2 (en) Monolithic capacitor, circuit board, and circuit module
KR101499715B1 (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
US7649252B2 (en) Ceramic multilayer substrate
JP2014123707A (en) Substrate-embedded multilayer ceramic electronic component, method of manufacturing the same, and printed board including substrate-embedded multilayer ceramic electronic component
JP3956851B2 (en) Passive element embedded substrate and manufacturing method thereof
WO2008050657A1 (en) Laminate capacitor
KR20150051421A (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
KR20090050664A (en) Manufactuirng method of multi-layer ceramic condenser
JP2004119483A (en) Board having built-in element
US9324500B2 (en) Multilayer ceramic electronic component to be embedded in board and printed circuit board having multilayer ceramic electronic component embedded therein
JP2000340955A (en) Passive component-incorporated composite multilayered wiring board and manufacture thereof
JP2004228099A (en) Wiring board incorporating capacitive element
CN112133561A (en) Lead-bondable multilayer capacitor and manufacturing method
JP3540941B2 (en) Laminate and manufacturing method thereof
JP4515477B2 (en) Method for manufacturing wiring board with passive element
US20090021887A1 (en) Multi-layer capacitor and wiring board having a built-in capacitor
KR20150024039A (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
WO2007010705A1 (en) Capacitor, method for manufacturing capacitor, substrate with built-in capacitor, and method for manufacturing substrate with built-in capacitor
KR20170034712A (en) Printed circuit board and method of manufacturing the same
JP4623988B2 (en) Capacitor and its mounting structure
JP2023143583A (en) Multilayer capacitor and board having the same embedded therein
JP2005026406A (en) Wiring board holding capacitor electrode and its producing process