JP2004227860A - Sodium-sulfur cell and small laminated cell thereof - Google Patents

Sodium-sulfur cell and small laminated cell thereof Download PDF

Info

Publication number
JP2004227860A
JP2004227860A JP2003012524A JP2003012524A JP2004227860A JP 2004227860 A JP2004227860 A JP 2004227860A JP 2003012524 A JP2003012524 A JP 2003012524A JP 2003012524 A JP2003012524 A JP 2003012524A JP 2004227860 A JP2004227860 A JP 2004227860A
Authority
JP
Japan
Prior art keywords
sodium
solid electrolyte
sulfur battery
positive electrode
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012524A
Other languages
Japanese (ja)
Inventor
Rikiya Abe
力也 阿部
Tadashi Shirakata
正 白方
Sakae Washida
栄 鷲田
Hirosuke Ohata
博資 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2003012524A priority Critical patent/JP2004227860A/en
Publication of JP2004227860A publication Critical patent/JP2004227860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sodium-sulfur cell, along with a small laminated cell thereof which is safely and easily manufactured, for reduced positive electrode resistance at charging/discharging, capable of modularization for space-saving. <P>SOLUTION: The sodium-sulfur cell has a positive-electrode chamber and a negative-electrode chamber, arranged on both sides of a solid electrolytic plate which sodium ions penetrate, and conductive flat plates are arranged, to face each other on both surfaces of the solid electrolytic plate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ナトリウム−硫黄電池及びその小型積層電池に関するものであり、より詳細には、二次電池として電力貯蔵、非常用電源、無停電電源、電気自動車などに利用されるナトリウム−硫黄電池及びその小型積層電池に関するものである。
【0002】
【従来の技術】
最近、昼夜間電力平準化または夜間電力の利用を目的に、また非常用ないし無停電用としての、活物質利用率と充放電効率が高いナトリウム−硫黄電池の開発が盛んに行われている。
ナトリウム−硫黄電池は、一方に負極活物質である溶融金属ナトリウム、他方には正極活物質である溶融硫黄を配し、両者をナトリウムイオンに対して選択的な透過性を有するβ”アルミナ固体電解質で隔離し、290〜350℃で作動させる高温二次電池である。
【0003】
従来のナトリウム−硫黄電池は図3に示すように、一般に、筒状(チューブ或いは深掘コップ)に形成した正極集電体容器76と固体電解質管71との間に硫黄及び/又は多硫化ナトリウムを含浸した導電性材73が配されている。また固体電解質管71と導電性材73との間に、耐硫黄及び多硫化ナトリウムに優れ導電性の比較的低い物質層77を介在させて放充電サイクル特性を高めるナトリウム−硫黄電池も提案されている(例えば、特許文献1を参照)。
【0004】
また、固体電解質管71の内側の負極内には、負極活物質である溶融金属ナトリウム(Na)が収容されるが、図示しないが固体電解質管71の破損時に硫黄と反応するナトリウムの急激な反応を防止するため、安全管等を介して収容される場合がある(例えば、特許文献2を参照)。溶融ナトリウムを収容する有底円筒状の安全管は固体電解質管と略1mm以下の隙間を持っように配置され、固体電解質管72と安全管との隙間にナトリウムが進入できるように安全管の底部に径1mm程度の孔が設けられる。
このような従来のナトリウム−硫黄電池にあっては、固体電解質管は上述したβ”アルミナ等から成形され、正極集電筒及び安全管にあってはステンレスのみならず、アルミニウム等から成形されている。
【0005】
ナトリウム−硫黄電池は、放電時にナトリウムと硫黄が反応して正極室内に多硫化ナトリウムを生成し、充電時には正極室内の多硫化ナトリウムから可逆的にナトリウム及び硫黄が生成するか、或いは硫黄リッチな多硫化ナトリウムが多くなる。
即ち、負極活物質であるナトリウム(Na)がナトリウムイオン(Na+)と電子(e−)とに分かれ、ナトリウムイオン(Na+)は固体電解質壁を透過して正極活物質中に侵入し、電子(e−)は負極集電体等から外部回路に流れる。正極における放電反応は、正極活物質中に侵入したナトリウムイオン(Na+)が硫黄(S)と反応して、多硫化ナトリウム(Na)を生成する。
一方、ナトリウム−硫黄電池の充電時には、放電反応と逆の反応が起こり、ナトリウム(Na)および硫黄(S)が生成する。通常は、多硫化ナトリウム(Na)の一部が残留する程度まで充電する。
【0006】
ところで、従来のナトリウム−硫黄電池にあっては、その製造面、安全面、及び放電時或いは充電時における正極抵抗の低減化、更にはこれを単位セルとしたモジュール化において従来から以下の課題が残されている。
第一に、上記円筒型電池或いは単位セルであれば、モジュール化する際に、隣接するセル間に空隙が生じるためモジュールとしてのエネルギー密度が低下する。
第二に、上記円筒型構造であれば電池の単位セルの集電を正極容器及び負極安全管から行なっており、正極容器長手方向(縦軸方向)の抵抗、負極安全管長手方向(縦軸方向)の抵抗及び電池の単位セル間の接続端子の抵抗により電圧損失を招いており、単位セルのエネルギー密度を低下させている。
第三に、上記円筒型構造であれば、単位セルを構成する固体電解質板及び安全管を有底状に形成すること、及び正極室内の導電性材の湾曲成形が必要とされ、製造上工程を簡素化することができない。
第四に、安全管は通常SUS等で構成され、固体電解質板の破損時に硫黄とナトリウムとが急激に反応することを防止しているが、縦方向の膨張変化が大きいため出入り口でのクリアランスを正確にとることができない。
【0007】
第五に、充電時において正極容器側の導電材中で生成したナトリウムイオンは、固体電解質壁側まで移動する。導電体内においては固体電解質壁の近傍で反応が起こり易くなる。この結果、その近傍ではナトリウム比率の少ない硫黄リッチな生成物が滞留する。このため、その近傍は導電率が低下するため内部抵抗の増加を引き起こし、更なる外側の導電体内に生成したナトリウムイオンの移動を妨げ、その結果、内部抵抗の増加は、充放電効率の低下に繋がる。
【0008】
従来、このような充放電率の低下を防止するため導電体の改良が提案されている。例えば、カーボン繊維織布が積層されるとともに、ニードルパンチが施されて形成され、カーボン繊維織布の繊維径が固体電解質壁から外側に向かうに従って次第に細くなるように構成した導電体等を使用したナトリウム−硫黄電池が提案されている(例えば、特許文献3参照。)。また、導電体としてのカーボン繊維織布を、厚さの異なる複数の織布で構成し、厚さの厚い織布を外側に組み込んだもの、更に、複数のカーボン繊維織布の厚さ方向に配向する繊維の割合を、外側ほど高くなるように設定したものも提案されている。
【0009】
また、耐硫黄及び多硫化ナトリウムに優れ、電子伝導性の低い物質層を固体電解質と電子導電体の間に接着して配置されたものが提案されている(例えば、特許文献1参照。)。
これらの従来の導電体を使用したナトリウム−硫黄電池では、その導電体の製造も煩雑であり、また正極自体の抵抗増加の抑制をするものではなく、充放電効率を十分に高めることができない。また活物質利用率が制限されるため、エネルギー密度を高めることもできない。
【0010】
第六に、従来のナトリウム−硫黄電池の安全性を高めるために上述したように、負極室内に有底状かつ円筒状の安全管が固体電極管と1mm以下の隙間を持つように配されている。また、安全管の底部に径1mm程度の孔を施している。
しかしながら、安全管は、温度290〜350℃の作動温度に昇温の際、固体電解質管と安全管の伸び差による固体電解質管破損を引き起こさないように、固体電解質管と安全管の軸心を合わせて加工する。このため製造上極めて困難を強いられる。また、固体電解質材を有底状に成形すること、及び正極室内の導電材の湾曲成形することと相まって、安全管を有底状に成形することが必要であり、製造工程が簡素化できない状態にある。
【0011】
【特許文献1】
特開平9−35741号公報(第2頁コラム2)
【特許文献2】
特開2001−266937号公報(図1及び第1頁)
【特許文献3】
特開平8−31451号公報(第1頁)
【0012】
【発明が解決しようとする課題】
本発明は、上記課題を解決するためになされものであり、安全且つ簡単に製造することのでき、充放電時の正極抵抗を低減すると共に、省スペースのモジュール化ができるナトリウム−硫黄電池及びその小型積層電池を提供することにある。
【0013】
【課題を解決するための手段】
本発明者等は、固体電解質面及び集電面を互いに対向する平板とし、その平板の最大径或いは長さを比較的短くして、小型の平板型のナトリウム−硫黄電池とする場合、両平板における線膨張係数の差を一定範囲に抑え、且つ固体電解質板の接合にアルミニウム合金ベース、或いはガラスペースト等を用いて組み立てると、安全性が高く、簡単に製造でき、またこれらの電池セルのモジュール化が省スペースとなることを見出し、本発明に至ったものである。
更に、本発明者等は、充電処理が進むと同時に、ナトリウムリッチで硫黄プアーな正極導電体の外側付近に存在する多硫化ナトリウムが、比重差を利用すればその導電体の内側、即ち固体電解質壁側に移動して正極抵抗を低減できることを見出し、本発明に至ったものである。
【0014】
即ち、本発明に係るナトリウム−硫黄電池、及びその小型積層電池は以下の構成及び特徴を有するものである。
【0015】
(1) ナトリウムイオンを透過する固体電解質板の両側に正極チャンバーと負極チャンバーが配せられるナトリウム−硫黄電池であって、上記固体電解質板の両面に、導電性平板が対向して配されることを特徴とするナトリウム−硫黄電池。
【0016】
(2) 上記導電性平板は、上記固体電解質板との線膨張係数の差が、±16(×10−6[K−1])の範囲に収まることを特徴とする上記(1)記載のナトリウム−硫黄電池。
【0017】
(3) 上記導電性平板における最長径或いは最長幅が200mm以下であることを特徴とする上記(1)又は(2)に記載のナトリウム−硫黄電池。
【0018】
(4) 上記導電性平板は、体積固有抵抗(Ω・cm)が20×10−5(Ω・cm)以下であることを特徴とする上記(1)記載のナトリウム−硫黄電池。
【0019】
(5) 上記固体電解質板はβ”アルミナであることを特徴とする上記(1)記載のナトリウム−硫黄電池。
【0020】
(6) 上記正極チャンバー及び/又は負極チャンバーは側周壁が絶縁性セラミックスからなる枠材(又はスペーサ)で形成され、該絶縁性セラミックスと上記固体電解質板及び/又は導電性平板とはアルミニウム合金ベースの緩衝材を介した熱圧接合、或いはガラスペーストを溶融させて接合したものであることを特徴とする上記(1)記載のナトリウム−硫黄電池。
【0021】
(7) 上記負極チャンバー内に負極活物質が収容された安全箱が設けられ、該安全箱は上記固体電解質板面及び/又は導電性平板面に略平行に対向する外壁面を有し、該外壁面には突起部が形成されていることを特徴とする上記(1)記載のナトリウム−硫黄電池。
【0022】
(8) 上記(1)乃至(7)のいずれかに記載のナトリウム−硫黄電池を上記正極チャンバーと負極チャンバーとを交互に複数個積層させてそれぞれ接合してなる小型積層電池。
【0023】
(9) 上記正極チャンバー内に正極活物質を含浸させた導電体が上記固体電解質板と共に立設して配せられ、該導電体は固体電解質板面から所定の厚み幅を有すると共に、固体電解質板と接する側から厚み幅方向に向けて孔を有し、該孔は上記固体電解質板から離れるに従って上向きに傾斜させて形成されていることを特徴とする上記(8)記載の小型積層電池。
【0024】
(10) 上記正極チャンバーと負極チャンバーとを形成する枠材は矩形枠材、三角形枠材、或いは六角形枠材であることを特徴とする上記(8)又は(9)記載の小型積層電池。
【0025】
【発明の実施の形態】
以下、本発明に係るナトリウム−硫黄電池の好ましい実施の形態を詳述する。尚、本発明に係るナトリウム−硫黄電池は以下の実施形態及び実施例に限るものではない。
図1は、本発明に係るナトリウム−硫黄電池及びそれ単位セルとした小型積層電池の断面図である。図2(a)乃至(f)は、図1のナトリウム−硫黄電池に使用される部材の斜視図である。
【0026】
本発明に係るナトリウム−硫黄電池あっては、例えば、図1に示すようにナトリウムを選択的に透過する平板からなる固体電解質板1の両側に正極チャンバー22と負極チャンバー23とを形成し、かかるチャンバー22、23を介して、導電性平板2が蓋材兼集電体として対向して配されるものである。固体電解質板1及び導電性平板2の形状は円形、楕円形、長方形、四角形、六角形、多角形などの平板であり、本発明において特に限定されないが固体電解質1と導電性平板2は略同形状の平板であることが好ましい。また、後述するように小型積層電池とする場合には矩形形状、三角形状、六角形状のように、併設される互いの小型積層電池同士の間に隙間が生じない形状であることが望ましい。
【0027】
固体電解質板1はナトリウムを選択的に透過させるものである限り、特に制限はないが、通常β”アルミナ板が使用される。
また、正極チャンバー22及び負極チャンバー23は、固体電解質板1及び導電性平板2のそれぞれの周縁面に密接に接合する絶縁性枠体(スペーサ)3によって形成されていることが望ましい。導電性平板2がセラミックスであれば絶縁性枠体3(セラミックス製)とガラス接合できるが、SUS等の金属であればアルミニウム合金をベースとした緩衝材或いは緩衝材となり得る接合材を介した熱圧接合が好ましい。絶縁性枠体3は、絶縁性材である限り、本発明においての使用は可能である。絶縁性枠体3としては好ましくは絶縁性セラミックスであり、例えば、αアルミナ等が好ましい。
固体電解質板1及び絶縁性枠体3がβ”及びαアルミナ等のセラミックスであれば、後述するようにガラスペースト或いはアルミニウム合金ベースの緩衝材を介した熱接合が容易であり、また接合部の信頼性が高まる。
【0028】
本発明に係るナトリウム−硫黄電池にあっては、上記固体電解質板1及び導電性平板2の大きさが、これらの平板の最大径或いは最大長さが200mm以下、特に、100mm以下に抑えられることが好ましい。
即ち、温度290〜350℃の作動温度に昇温の際、固体電解質板1と絶縁性枠3、特に絶縁性枠と導電性平板2、及び固体電解質板1と導電性平板2との熱伸長差による応力が接合部位を破損させる恐れがある。しかし、導電性平板2及び固体電解質板1の最大径或いは最大長さが上記範囲内にあれば、作動温度での応力が少なく接合部位での破損の恐れがなく、電池の安全性が高まる。
【0029】
更に、上記導電性平板2は、固体電解質板1との線膨張係数の差が、±16×10−6[K−1]の範囲に収まることが好ましい。より好ましくは、±8×10−6[K−1]の範囲に、更には±5×10−6[K−1]の範囲に収まることが好ましい。
即ち、上述したように温度290〜350℃の作動温度に昇温の際、固体電解質板1と絶縁性枠3、絶縁性枠と導電性平板2、及び固体電解質板1と導電性平板2との熱伸長差による応力が接合部位を破損させる恐れがある。しかし、導電性平板2の膨張係数の差が固体電解質板1に対して上記範囲内にあれば、上記小型化の平板と相まって、作動温度での応力が少なく接合部位での破損の恐れがなく、接合部での信頼性が高まり電池の安全性が増す。
従って、温度350℃の状態において、固体電解質板1に対する導電性平板2の伸び差は、1.2mm以下、特に0.6mm以下であることが望ましい。
【0030】
上記固体電解質板1が例えばβ”アルミナ(線膨張係数:7.8×10−6[K ])であれば、導電性平板としては、ホウ素化ジルコニウム(線膨張係数:5乃至9×10−6[K−1])、ホウ化物サーメット(線膨張係数:5乃至9×10−6[K−1])等のホウ化物系導電性セラミックス、フェライト系SUS(線膨張係数:10×10−6[K−1])、オーステナイト系SUS(線膨張係数:16×10−6[K−1])、アルミニウム(線膨張係数:23×10−6[K−1])等を挙げることができる。
特に、汎用性が高く、安価なコストのSUS及びアルミニウムは製造上経済的な電池の集電板として好ましい。この場合、SUS及びアルミニウムはクロマイズ処理又はクロム溶射などにより耐腐食層を施す。一方、高度な安全性を求めるのであれば、ホウ化物系導電性セラミックス等を集電板に使用することが好ましい。
【0031】
また、上記導電性平板2は、体積固有抵抗が20×10−5(Ω・cm)以下である。より好ましくは、10×10−5(Ω・cm)以下、更には2×10−5(Ω・cm)以下であることが望ましい。
導電性平板2の体積固有抵抗が上記範囲以下であれば、ナトリウム−硫黄電池としての集電体として十分に機能させることができ、上記に挙げるSUS等の平板に限らず、ホウ素化ジルコニウム、ホウ素化物サーメット(モリブデンのホウ素化合物MoBと金属ニッケルを複合させたもの。)ホウ化物系導電性セラミックス等も上記範囲を満たすものである。
【0032】
上記負極チャンバー23内には安全管に代わる安全箱5が収納される。安全箱5は金属容器、例えば、SUSなどから形成され、上述のように固体電解質板1の破損時に急激に硫黄と反応するナトリウム量を制限するために設けられる。安全箱5の下部には1mm程度の孔12が形成され、また、安全箱5の外壁には突起部13が形成されている。
このような安全箱5にあっては、管状でなく、固体電解質板1の形状に合わせた所定厚みの平板状の安全箱となっているので、安全箱自体の加工が容易にできる。また、従来のような管状でないため、固体電解質管と安全管との軸芯を合わせ加工することもない。また、安全箱5の外壁に突起部13を形成したことにより、安全箱5と固体電解質板1及び/又は導電性平板2の隙間を適宜に、例えば1mm以下のある値に保つことが容易にできる。また、安全箱5内のナトリウムが孔12から排出され、温度290℃乃至350℃の作動温度の昇温の際に、安全箱5にはクリアランスにナトリウムが充満するようにアンルゴン等の不活性ガスが充填される。
【0033】
本発明に係るナトリウム−硫黄電池の正極チャンバー22には硫黄、多硫化ナトリウム等の正極活物質が含浸された導電体4が設けられる。導電体4は、炭素繊維からなり、炭素繊維は、PAN系炭素繊維、PVA系炭素繊維、PVC系炭素繊維、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維若しくは気相合成系炭素繊維のいずれのものであっても良く、また、黒鉛系炭素繊維であっても良い。特に、黒鉛系繊維を用いた場合には、ナトリウム−硫黄電池の内部抵抗を著しく低減することが可能となる。黒鉛系繊維は不活性ガス中で2000乃至3000℃で焼成されるのが一般的であり、カーボン化処理して所望の導電部材、或いは導電体そのものに成形される。
【0034】
導電体4は、マット状に上記繊維を焼成或いはカーボン化処理して形成された導電材を、そのまま、或いは組み合わせてナトリウム−硫黄電池に使用される。導電体4は、そして所定幅の厚みを持たせて、固体電解質板に沿わせて配される。導電体4の厚みは電池の大きさにもよるが、1mm乃至40mmの範囲に形成することが望ましい。所定幅を確保しないと、電池としてエネルギー量が十分に得られないおそれがある。
【0035】
本発明に係るナトリウム−硫黄電池の導電体4にあっては、正極チャンバー22に装着する前に、固体電解質板が対向する内壁面から複数の孔11(或いはスリット)が形成される。複数の孔11の全ては、導電体4をチャンバー22内で立設したときに、内壁面から厚み方向の外壁面に向けて上向きに傾斜して設けられる。孔11の傾斜は水平方向に対して上向きであれば良く、例えば、水平方向に対して5°以上、特に10乃至80°の範囲であることが望ましい。
孔14の傾斜角度が5°未満では、後述するように、ナトリウムリッチで硫黄プアーな多硫化ナトリウムが孔11を介して移動しないおそれがあり、傾斜角度が80°を超えれば、孔11の形成が難しくなる。
ここで、孔11とは内側から外側に導電体4を貫通した孔または貫通していない穴を意味し、また、幅広のスリットとして形成されていても良い。
【0036】
図1に示すように、本発明に係る小型積層電池31は、上述のナトリウム−硫黄電池21を単位セルとして、上記正極チャンバー22と負極チャンバー23とを交互に複数個積層させてそれぞれ接合してなるものである。
尚、上述したように上記正極チャンバー22と負極チャンバー23とを形成する枠材5は円形枠材や、その他の多角形枠材であっても良いが、矩形枠材、三角形枠材、或いは六角形枠材であることが望ましい。
【0037】
次に、本発明に係るナトリウム−硫黄電池及びその小型積層電池の製造方法について簡単に述べる。
図2に示す様に、矩形状部材(例えば、100×100mm)の固体電解質板1(β”アルミナ板)、導電性平板2(ホウ化ジルコニウム焼結板又はSUS板)、絶縁性枠体3(αアルミナ:スペーサ)、導電体4(カーボンフェルト)、安全箱5(SUS製ボックス)、電極端14付き導電性平板2からなる部材から本発明に係るナトリウム−硫黄電池を製造する。
【0038】
導電性平板と絶縁性枠体の接合は、導電性平板がセラミックスならばガラス接合であり、SUS等の金属であればアルミニウム合金をベースとした緩衝材或いは緩衝材となり得る接合材を介した熱圧接合を行う。固体電解質板と絶縁性枠体の接合は、セラミックス同士なのでガラス接合とすることが好ましい。
例えば、真空中で、1つ目の絶縁性枠体3内に導電体4を挿入し、絶縁性枠体3の周縁面にガラスペースト15(又はアルミニウム合金をベースとした緩衝材或いは緩衝材となり得る接合材)を塗布し、電極端14付き導電性平板2を接合する。次に、1つ目の絶縁性枠体3の他方の周縁面にガラスペースト15を塗布し、固体電解質板1を接合する。
次に、2つ目の絶縁性枠体3内に安全箱5を挿入し、該2つ目の絶縁性枠体3を上記固体電解質板1にガラスペースト15を介して接合する。更に、2つ目の絶縁性枠体3の他方の周縁面にガラスペースト15(又はアルミニウム合金をベースとした緩衝材或いは緩衝材となり得る接合材)を塗布し、導電性平板2を接合(必要により熱圧着による接合)する。尚、安全箱5の突起部13と固体電解質板1及び/又は導電性平板2との間のクリラアランスを1.0mm以下に抑えることができる。
【0039】
更に、3つ目以降の絶縁性枠体3を同様に組み合わせて、最後に、また電極端14付き導電性平板2を接合して組み合わせる。かかる組合わせ積層体を両端の電極端14付き導電性平板2から加圧して加熱炉においてガラスペースト15(又はアルミニウム合金をベースとした緩衝材或いは緩衝材となり得る接合材)を熱融合させて各接合部位を密接に固着させる。
【0040】
このように構成されるナトリウム−硫黄電池及びその小型積層電池にあっては、以下のような効果を期待することができる。
【0041】
(正極チャンバーの抵抗軽減)
本発明に係るナトリウム−硫黄電池或いは小型積層電池において、固体電解質板1が立設して配せられる場合、正極における抵抗を軽減させることができる。
一般に充電時、特にその末期に絶縁性の硫黄ないし導電率の低い多硫化ナトリウムが固体電解質板の近傍に析出することにより内部抵抗が増加し、このため活物質利用率及び充放電効率が小さくなる。しかし、本発明に係るナトリウム−硫黄電池では、導電体4に形成した孔11内において、ナトリウム比率が大きく且つ比重の大きい多硫化ナトリウムが比重差から傾斜孔11に沿って固体電解質板1側に移行し、固体電解質板1側に生成した硫黄リッチな多硫化ナトリウムが比重の大きい多硫化ナトリウムと比重差対流を起こし、固体電解質板1側で導電率の低い(電気抵抗の高い)ナトリウム比率の小さい多硫化ナトリウムないし硫黄の濃度が高くならずに、反応が連続的に行なえる。このため、充電末期においても内部抵抗が増加することなく、活物質利用率を広く確保でき、充放電効率も高くなる。結果として高エネルギー密度の電池が可能となる。
【0042】
即ち、上記孔11は繊維内に施されるものであり、孔11内部の空隙率は繊維内のそれよりも大きく、活物質の移動が容易となる。従って、上記の比重による活物質の移動以外に、本来の活物質の濃度拡散も容易となる効果を有する。
上記孔11を固体電解質板1に対して導電体4の厚さ方向にまんべんなく施すため、固体電解質板1から同一距離の正極用導電体4内の活物質の反応及び拡散が均一化され電流密度のばらつきがなくなるので、内部抵抗を抑制することができる。
【0043】
繊維状正極用導電体4は正極チャンバー22内に収容されるが、孔11を施すということは繊維をカット或いは一部削除することを意味するので、繊維に孔11を施さない場合に比べて固体電解質板側の導電材の密度は低くなる。これは、固体電解質板側の導電材中の電子導電性を低下させることになり、充電時の固体電解質板側の反応を緩和する作用を持ち、結果として内部抵抗の低減を可能とするものである。
【0044】
孔11を施す工程を正極用導電体のみの場合と硫黄含浸後の場合の両方可能とすることにより適切な製造工程を設計できる。
従って、内部抵抗が低下するということは、セル充放電効率を高くできることになり、また括物質利用率を向上させることができるので、エネルギー密度を増加できることになる。
【0045】
(ナトリウム−硫黄電池の安全性)
従来の構造であれば、温度290〜350℃の作動温度に昇温の際、固体電解質管と安全管の熱伸長差による固体電解質管破損を引き起こさないように、固体電解質管と安全管の軸心を合わせて加工する。しかし、かかる加工製造は困難を伴うものである。これに対して、本発明に係るナトリウム−硫黄電池にあっては、負極チャンバー23及びナトリウムを収容する安全箱5が矩形状等であるため加工が容易となる。また、安全箱5に数個の突起物13が形成されているので、安全箱5と固体電解質板1ないし導電性平板2の隙間を1mm以下の適値に保つことを容易にする。更に、固体電解質板1乃至導電性平板2と絶縁性枠材3の性都合シール部15を強化するために、チャンバー内部を予め真空にして外部を陽圧状態にして製造することも好ましい。
【0046】
(モジュールの効率化)
本発明に係る小型積層電池31によれば、積層化した際に、上記ナトリウム−硫黄電池21を単位セル(平板型)とするため、電気的接続が容易であり、直列或いは並列の組み合わせが容易にでき、適宜なモジュール化ができる。
・上記平板型単位セル21では導電性セラミックス2(又はセパレータ)より単セルを重ねて電気的に接続してスタック化する。このセパレータは隣接する単位セルに共用されているため、従来の円筒型単セルごとで活物質を収容している場合に比べて、単位セル間の空隙をなくすことができる。更に、小型積層電池31内の材料占有率も低下する。このため、小型積層電池31を収容するモジュール内の活物質占有率が大きくなるため、モジュールのエネルギー密度が向上する。自己消火用の乾燥砂を充填した場合でもモジュールエネルギー密度は210Wh/Lと、従来の円筒型セル(160〜170Wh/L程度)の場合に比べて2割程度増加する。
【0047】
従来の単位セルのように正極容器及び負極安全管からの集電した従来方法では、正極容器長手方向(縦軸方向)の抵抗、負極安全管長手方向(縦軸方向)の抵抗及び単位セル間の接続端子の抵抗により電圧損失を招いていた。また、従来、高温腐食雰囲気でのセル間の端子の接続には、かしめ、圧着法が使用できず、ボルト締めや耐腐食コーティングなどが必要とされコスト増の要因となっている。しかし、本発明に係る正極構造を有したナトリウム−硫黄電池を単位セルとする新しい方法では、導電性平板2で直接集電、且つ正極が隣接するセルの負極を兼ねているため、特別な接続手段が要らないので、導電性平板2の厚みの抵抗のみ電圧降下が起こる。本発明の導電性平板は長さを制限することにより伸び差を許容するものであるので導電性平板の面積は小さくなる。従来の円筒型に比べてセル接続による電圧降下のみ表示することとなる。従来のセルに比較して、電圧損失を低減することができ、単位セルの充放電効率とエネルギー密度が向上する。単位セル当たりの充放電効率は95%と従来の円筒型セル(89%程度)に比べて6%程度の増加が期待され、単位セル当たりのエネルギー密度は370Wh/Lと従来の円筒型セル(360〜370Wh/L程度)と同程度である。
【0048】
単位セル21は平板型であり固体電解質板1を有底状に成形する必要はなく、正極チャンバー22の導電体4の加工においても従来の湾曲成形は不要となる。また、安全箱5に関しても有底管に成形する必要がないことから製造工程が簡素化できる。
【0049】
固体電解質壁と絶縁体部材と集電体との関係において従来のように温度変化時に線膨張差によりシール部の破損、固体電解質壁に加わる応力等の懸念が存在したが、本発明に係るナトリウム−硫黄電池及び小型積層電池にあっては、固体電解質板1と導電性平板2との線膨張係数を含めた線膨張による実質的な伸びの差が許容範囲に納まるため、シール部の破損がなく、接合信頼性の向上により安全性が極めて高くなる。
このようなことから、本発明に係るナトリウム−硫黄電池及び小型積層電池は熱変動に対して極めて安定且つ安全となることが期待できる。
【0050】
【発明の効果】
以上、説明したように本発明に係るナトリウム−硫黄電池によれば、固体電解質板の両側に正極チャンバーと負極チャンバーが配せられるナトリウム−硫黄電池であって、上記固体電解質板の両面に、導電性平板が対向して配されるので、安全且つ簡単に製造することのでき、平板型電池、特に矩形や六角形等の省スペース形状に容易に形成することができる。またナトリウム−硫黄電池を容易に積層させることができ、エネルギー密度が極めて高く、安全性に優れた小型積層電池を簡単に製造することができる。
【図面の簡単な説明】
【図1】図1(a)及び(b)は、本発明に係るナトリウム−硫黄電池及びそれ単位セルとした小型積層電池の断面図及びその概略電気回路図である。
【図2】図2(a)乃至(f)は、図1のナトリウム−硫黄電池に使用される部材の斜視図である。
【図3】図3は、従来のナトリウム−硫黄電池の縦断面図である。
【符号の説明】
1 固体電解質板
2 導電性平板
3 絶縁性枠材
4 導電体
5 安全箱
21 単位セル
22 正極チャンバー
23 負極チャンバー
31 小型積層電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sodium-sulfur battery and a small stacked battery thereof, and more particularly, to a sodium-sulfur battery used as a secondary battery for power storage, an emergency power supply, an uninterruptible power supply, an electric vehicle, and the like. The present invention relates to the small stacked battery.
[0002]
[Prior art]
2. Description of the Related Art Recently, sodium-sulfur batteries having a high active material utilization rate and a high charge / discharge efficiency have been actively developed for the purpose of leveling power during the day and night or at night, and for emergency or uninterrupted power use.
A sodium-sulfur battery is a β ″ alumina solid electrolyte that has molten metal sodium as a negative electrode active material on one side and molten sulfur as a positive electrode active material on the other side, and both have selective permeability to sodium ions. And operated at 290-350 ° C.
[0003]
As shown in FIG. 3, a conventional sodium-sulfur battery generally has a structure in which a sulfur and / or sodium polysulfide is provided between a cathode current collector container 76 and a solid electrolyte tube 71 formed in a cylindrical shape (tube or deep cup). The conductive material 73 impregnated with is provided. A sodium-sulfur battery has also been proposed in which a material layer 77 having excellent sulfur resistance and sodium polysulfide and having relatively low conductivity is interposed between the solid electrolyte tube 71 and the conductive material 73 to enhance the discharge / charge cycle characteristics. (For example, see Patent Document 1).
[0004]
The molten metal sodium (Na), which is a negative electrode active material, is accommodated in the negative electrode inside the solid electrolyte tube 71. Although not shown, a rapid reaction of sodium that reacts with sulfur when the solid electrolyte tube 71 is damaged is performed. In order to prevent such a situation, there is a case where it is housed via a safety pipe or the like (for example, see Patent Document 2). The bottomed cylindrical safety tube for housing the molten sodium is disposed so as to have a gap of about 1 mm or less from the solid electrolyte tube, and the bottom of the safety tube is provided so that sodium can enter the gap between the solid electrolyte tube 72 and the safety tube. Is provided with a hole having a diameter of about 1 mm.
In such a conventional sodium-sulfur battery, the solid electrolyte tube is formed from the above-mentioned β ″ alumina or the like, and the positive electrode current collector tube and the safety tube are formed not only from stainless steel but also from aluminum or the like. .
[0005]
In a sodium-sulfur battery, during discharge, sodium and sulfur react to generate sodium polysulfide in the positive electrode chamber, and during charging, sodium and sulfur are reversibly generated from the sodium polysulfide in the positive electrode chamber, or a sulfur-rich polysulfide is generated. Sodium sulfide increases.
That is, sodium (Na), which is the negative electrode active material, is divided into sodium ions (Na +) and electrons (e−), and the sodium ions (Na +) penetrate into the positive electrode active material through the solid electrolyte wall, and the electrons ( e-) flows from an anode current collector or the like to an external circuit. In the discharge reaction at the positive electrode, sodium ions (Na +) penetrating into the positive electrode active material react with sulfur (S) to form sodium polysulfide (Na2Sx).
On the other hand, when charging the sodium-sulfur battery, a reaction opposite to the discharge reaction occurs, and sodium (Na) and sulfur (S) are generated. Usually, sodium polysulfide (Na2Sx) To the extent that part of the battery remains.
[0006]
By the way, in the conventional sodium-sulfur battery, the following problems have conventionally been encountered in manufacturing, safety, reduction of the positive electrode resistance at the time of discharging or charging, and further modularization using this as a unit cell. Is left.
First, in the case of the cylindrical battery or the unit cell, when a module is formed, a gap is generated between adjacent cells, so that the energy density of the module is reduced.
Secondly, in the case of the above-mentioned cylindrical structure, current collection of the unit cell of the battery is performed from the positive electrode container and the negative electrode safety tube, and the resistance in the positive electrode container longitudinal direction (vertical axis direction) and the negative electrode safety tube longitudinal direction (vertical axis) Direction) and the resistance of the connection terminals between the unit cells of the battery, causing a voltage loss, thereby reducing the energy density of the unit cells.
Third, if the above-mentioned cylindrical structure is used, it is necessary to form the solid electrolyte plate and the safety tube constituting the unit cell with a bottom, and to form a conductive material in the positive electrode chamber by bending. Cannot be simplified.
Fourth, the safety pipe is usually made of SUS or the like to prevent rapid reaction between sulfur and sodium when the solid electrolyte plate breaks.However, since the longitudinal expansion change is large, clearance at the entrance and exit is reduced. Cannot be taken exactly.
[0007]
Fifth, during charging, sodium ions generated in the conductive material on the positive electrode container side move to the solid electrolyte wall side. In the conductor, a reaction easily occurs near the solid electrolyte wall. As a result, a sulfur-rich product having a low sodium ratio stays in the vicinity thereof. For this reason, the conductivity decreases in the vicinity, causing an increase in the internal resistance, and further hindering the movement of sodium ions generated in the outer conductor, and as a result, the increase in the internal resistance decreases the charge / discharge efficiency. Connect.
[0008]
Conventionally, improvement of the conductor has been proposed to prevent such a decrease in the charge / discharge rate. For example, a conductor or the like was used in which the carbon fiber woven fabric was laminated and formed by applying a needle punch, and the fiber diameter of the carbon fiber woven fabric was configured to be gradually reduced from the solid electrolyte wall toward the outside. A sodium-sulfur battery has been proposed (for example, see Patent Document 3). In addition, a carbon fiber woven fabric as a conductor is composed of a plurality of woven fabrics having different thicknesses, and a thick woven fabric is incorporated on the outside, and further, in a thickness direction of the plurality of carbon fiber woven fabrics. There is also proposed a fiber in which the ratio of oriented fibers is set to be higher toward the outside.
[0009]
Further, there has been proposed a material in which a material layer having excellent sulfur resistance and sodium polysulfide and having low electron conductivity is adhered and arranged between a solid electrolyte and an electronic conductor (for example, see Patent Document 1).
In a sodium-sulfur battery using these conventional conductors, the production of the conductor is also complicated, does not suppress the increase in the resistance of the positive electrode itself, and cannot sufficiently increase the charge / discharge efficiency. Further, since the active material utilization rate is limited, the energy density cannot be increased.
[0010]
Sixth, as described above in order to enhance the safety of the conventional sodium-sulfur battery, a bottomed and cylindrical safety tube is disposed in the negative electrode chamber so as to have a gap of 1 mm or less from the solid electrode tube. I have. Also, a hole having a diameter of about 1 mm is provided at the bottom of the safety pipe.
However, when the temperature of the safety pipe is raised to an operating temperature of 290 to 350 ° C., the axis of the solid electrolyte pipe and the safety pipe must be adjusted so that the solid electrolyte pipe and the safety pipe do not break due to a difference in extension between the safety pipe and the safety pipe. Process together. For this reason, extremely difficult manufacturing is required. In addition, it is necessary to form the safety tube into a bottomed shape, in combination with the forming of the solid electrolyte material into a bottomed shape and the curved forming of the conductive material in the positive electrode chamber, so that the manufacturing process cannot be simplified. It is in.
[0011]
[Patent Document 1]
JP-A-9-35741 (page 2, column 2)
[Patent Document 2]
JP 2001-266937 A (FIG. 1 and first page)
[Patent Document 3]
JP-A-8-31451 (page 1)
[0012]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and can be manufactured safely and easily, reduces the positive electrode resistance at the time of charge and discharge, and enables a space-saving modular sodium-sulfur battery and the same. An object of the present invention is to provide a small stacked battery.
[0013]
[Means for Solving the Problems]
The present inventors consider that the solid electrolyte surface and the current collecting surface are flat plates facing each other, the maximum diameter or length of the flat plates is relatively short, and a small flat sodium-sulfur battery is used. If the difference in the coefficient of linear expansion is kept within a certain range and the solid electrolyte plate is assembled using an aluminum alloy base or a glass paste, etc., it is safe and easy to manufacture. The present inventors have found that space saving is achieved, and have led to the present invention.
Further, the present inventors, at the same time as the charging process proceeds, sodium polysulfide present near the outside of the sodium-rich, sulfur-poor positive electrode conductor, if the specific gravity difference is used inside the conductor, that is, the solid electrolyte The inventors have found that the positive electrode resistance can be reduced by moving to the wall side, and the present invention has been achieved.
[0014]
That is, the sodium-sulfur battery according to the present invention and the small stacked battery thereof have the following configurations and features.
[0015]
(1) A sodium-sulfur battery in which a positive electrode chamber and a negative electrode chamber are provided on both sides of a solid electrolyte plate that transmits sodium ions, wherein a conductive flat plate is provided opposite to both surfaces of the solid electrolyte plate. A sodium-sulfur battery characterized by the following.
[0016]
(2) The difference in linear expansion coefficient between the conductive flat plate and the solid electrolyte plate is ± 16 (× 10-6[K-1]), The sodium-sulfur battery according to the above (1).
[0017]
(3) The sodium-sulfur battery according to (1) or (2), wherein the longest diameter or the longest width of the conductive flat plate is 200 mm or less.
[0018]
(4) The conductive flat plate has a volume resistivity (Ω · cm) of 20 × 10-5(Ω · cm) or less.
[0019]
(5) The sodium-sulfur battery according to (1), wherein the solid electrolyte plate is β ″ alumina.
[0020]
(6) The positive electrode chamber and / or the negative electrode chamber have side peripheral walls formed of a frame material (or spacer) made of insulating ceramics, and the insulating ceramics and the solid electrolyte plate and / or the conductive flat plate are made of an aluminum alloy base. The sodium-sulfur battery according to the above (1), wherein the sodium-sulfur battery is joined by hot-press bonding via a buffer material or by melting a glass paste.
[0021]
(7) A safety box containing a negative electrode active material is provided in the negative electrode chamber, and the safety box has an outer wall surface substantially parallel to the solid electrolyte plate surface and / or the conductive flat plate surface. The sodium-sulfur battery according to the above (1), wherein a projection is formed on the outer wall surface.
[0022]
(8) A small-sized laminated battery in which the sodium-sulfur battery according to any of (1) to (7) is formed by alternately laminating a plurality of the positive electrode chambers and the negative electrode chambers and joining them.
[0023]
(9) A conductor impregnated with a positive electrode active material is provided in the positive electrode chamber so as to stand upright together with the solid electrolyte plate, and the conductor has a predetermined width from the surface of the solid electrolyte plate. The small laminated battery according to the above (8), wherein a hole is formed in a thickness width direction from a side in contact with the plate, and the hole is formed to be inclined upward as the distance from the solid electrolyte plate increases.
[0024]
(10) The small-sized laminated battery according to (8) or (9), wherein the frame material forming the positive electrode chamber and the negative electrode chamber is a rectangular frame material, a triangular frame material, or a hexagonal frame material.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the sodium-sulfur battery according to the present invention will be described in detail. Note that the sodium-sulfur battery according to the present invention is not limited to the following embodiments and examples.
FIG. 1 is a cross-sectional view of a sodium-sulfur battery according to the present invention and a small stacked battery as a unit cell thereof. 2A to 2F are perspective views of members used in the sodium-sulfur battery of FIG.
[0026]
In the sodium-sulfur battery according to the present invention, for example, as shown in FIG. 1, a positive electrode chamber 22 and a negative electrode chamber 23 are formed on both sides of a solid electrolyte plate 1 made of a flat plate that selectively transmits sodium. The conductive flat plate 2 is arranged to face each other via the chambers 22 and 23 as a cover member and a current collector. The shape of the solid electrolyte plate 1 and the conductive flat plate 2 is a flat plate such as a circle, an ellipse, a rectangle, a square, a hexagon, and a polygon. Although not particularly limited in the present invention, the solid electrolyte 1 and the conductive flat plate 2 are substantially the same. It is preferably a flat plate having a shape. When a small stacked battery is used as described later, it is preferable that the small stacked battery has a shape such as a rectangular shape, a triangular shape, and a hexagonal shape, in which no gap is formed between the small stacked batteries.
[0027]
The solid electrolyte plate 1 is not particularly limited as long as it selectively permeates sodium, but a β ″ alumina plate is usually used.
Further, it is desirable that the positive electrode chamber 22 and the negative electrode chamber 23 be formed of an insulating frame (spacer) 3 that is closely joined to the respective peripheral surfaces of the solid electrolyte plate 1 and the conductive flat plate 2. If the conductive flat plate 2 is made of ceramics, it can be glass-bonded to the insulating frame 3 (made of ceramics). Pressure bonding is preferred. The insulating frame 3 can be used in the present invention as long as it is an insulating material. The insulating frame 3 is preferably an insulating ceramic, for example, α alumina.
If the solid electrolyte plate 1 and the insulating frame 3 are made of ceramics such as β ″ and α-alumina, thermal bonding via a glass paste or aluminum alloy-based buffer material is easy as described later, Increases reliability.
[0028]
In the sodium-sulfur battery according to the present invention, the size of the solid electrolyte plate 1 and the conductive flat plate 2 is limited to a maximum diameter or a maximum length of 200 mm or less, particularly 100 mm or less. Is preferred.
That is, when the temperature is raised to an operating temperature of 290 to 350 ° C., the thermal expansion of the solid electrolyte plate 1 and the insulating frame 3, particularly, the insulating frame and the conductive flat plate 2, and the solid electrolyte plate 1 and the conductive flat plate 2. The stress due to the difference may damage the joint. However, if the maximum diameter or the maximum length of the conductive flat plate 2 and the solid electrolyte plate 1 is within the above range, the stress at the operating temperature is small, and there is no possibility of breakage at the joint portion, and the safety of the battery is improved.
[0029]
Further, the conductive flat plate 2 has a difference in linear expansion coefficient from the solid electrolyte plate 1 of ± 16 × 10-6[K-1]. More preferably, ± 8 × 10-6[K-1] And ± 5 × 10-6[K-1].
That is, as described above, when the temperature is raised to the operating temperature of 290 to 350 ° C., the solid electrolyte plate 1 and the insulating frame 3, the insulating frame and the conductive flat plate 2, and the solid electrolyte plate 1 and the conductive flat plate 2 There is a possibility that the stress due to the difference in thermal expansion may damage the joint. However, if the difference in the expansion coefficient of the conductive flat plate 2 is within the above range with respect to the solid electrolyte plate 1, the stress at the operating temperature is small and there is no possibility of breakage at the joining portion, in combination with the above-mentioned miniaturized flat plate. In addition, the reliability at the junction increases, and the safety of the battery increases.
Therefore, at a temperature of 350 ° C., the difference in extension of the conductive flat plate 2 with respect to the solid electrolyte plate 1 is desirably 1.2 mm or less, particularly preferably 0.6 mm or less.
[0030]
The solid electrolyte plate 1 is made of, for example, β ″ alumina (linear expansion coefficient: 7.8 × 10-6[K 1]), Zirconium boride (linear expansion coefficient: 5 to 9 × 10-6[K-1]), Boride cermet (linear expansion coefficient: 5 to 9 × 10-6[K-1]), Ferrite-based SUS (linear expansion coefficient: 10 × 10-6[K-1]), Austenitic SUS (linear expansion coefficient: 16 × 10-6[K-1]), Aluminum (linear expansion coefficient: 23 × 10-6[K-1]) And the like.
In particular, SUS and aluminum, which are highly versatile and inexpensive, are preferable as a current collector plate of a battery which is economical in manufacturing. In this case, SUS and aluminum are provided with a corrosion-resistant layer by chromizing treatment or chromium spraying. On the other hand, if a high degree of safety is required, it is preferable to use a boride-based conductive ceramic or the like for the current collector.
[0031]
The conductive flat plate 2 has a volume resistivity of 20 × 10-5(Ω · cm) or less. More preferably, 10 × 10-5(Ωcm) or less, and 2 × 10-5(Ω · cm) or less.
If the volume resistivity of the conductive flat plate 2 is equal to or less than the above range, the conductive flat plate 2 can sufficiently function as a current collector as a sodium-sulfur battery, and is not limited to the above-described flat plate such as SUS, but may be zirconium boride or boron. Boride cermet (combination of molybdenum boron compound MoB and metallic nickel), boride-based conductive ceramics, and the like also satisfy the above range.
[0032]
A safety box 5 instead of a safety tube is housed in the negative electrode chamber 23. The safety box 5 is formed of a metal container, for example, SUS, and is provided to limit the amount of sodium that rapidly reacts with sulfur when the solid electrolyte plate 1 is damaged as described above. A hole 12 of about 1 mm is formed in a lower portion of the safety box 5, and a projection 13 is formed on an outer wall of the safety box 5.
In such a safety box 5, since the safety box 5 is not a tube but a plate-shaped safety box having a predetermined thickness corresponding to the shape of the solid electrolyte plate 1, the safety box itself can be easily processed. Further, since it is not a conventional tubular shape, the solid electrolyte tube and the safety tube are not aligned and processed. In addition, since the projection 13 is formed on the outer wall of the safety box 5, it is easy to appropriately maintain the gap between the safety box 5 and the solid electrolyte plate 1 and / or the conductive flat plate 2 at a certain value of, for example, 1 mm or less. it can. Also, when sodium in the safety box 5 is discharged from the hole 12 and the operating temperature is raised from 290 ° C. to 350 ° C., the safety box 5 is filled with an inert gas such as argon so that the clearance is filled with sodium. Is filled.
[0033]
A conductor 4 impregnated with a positive electrode active material such as sulfur or sodium polysulfide is provided in the positive electrode chamber 22 of the sodium-sulfur battery according to the present invention. The conductor 4 is made of carbon fiber, and the carbon fiber is any one of PAN-based carbon fiber, PVA-based carbon fiber, PVC-based carbon fiber, petroleum pitch-based carbon fiber, coal pitch-based carbon fiber, and vapor-phase synthetic carbon fiber. Or a graphite-based carbon fiber. In particular, when graphite fibers are used, the internal resistance of the sodium-sulfur battery can be significantly reduced. Graphite fibers are generally baked at 2000 to 3000 ° C. in an inert gas, and are formed into a desired conductive member or conductor by carbonization.
[0034]
The conductor 4 is used in a sodium-sulfur battery as it is or in combination with a conductive material formed by baking or carbonizing the fibers in a mat shape. The conductor 4 has a thickness of a predetermined width and is arranged along the solid electrolyte plate. The thickness of the conductor 4 depends on the size of the battery, but is desirably in the range of 1 mm to 40 mm. If the predetermined width is not ensured, a sufficient amount of energy may not be obtained as a battery.
[0035]
In the conductor 4 of the sodium-sulfur battery according to the present invention, a plurality of holes 11 (or slits) are formed from the inner wall surface facing the solid electrolyte plate before the conductor 4 is mounted in the positive electrode chamber 22. All of the plurality of holes 11 are provided to be inclined upward from the inner wall surface to the outer wall surface in the thickness direction when the conductor 4 is erected in the chamber 22. The inclination of the hole 11 only needs to be upward with respect to the horizontal direction, and for example, is desirably 5 ° or more, particularly 10 to 80 ° with respect to the horizontal direction.
If the inclination angle of the hole 14 is less than 5 °, the sodium-rich, sulfur-poor sodium polysulfide may not move through the hole 11 as described later. Becomes difficult.
Here, the hole 11 means a hole penetrating the conductor 4 from the inside to the outside, or a hole not penetrating the conductor 4, and may be formed as a wide slit.
[0036]
As shown in FIG. 1, a small stacked battery 31 according to the present invention is obtained by alternately stacking and bonding a plurality of the positive electrode chambers 22 and the negative electrode chambers 23 with the above-described sodium-sulfur battery 21 as a unit cell. It becomes.
As described above, the frame material 5 forming the positive electrode chamber 22 and the negative electrode chamber 23 may be a circular frame material or another polygonal frame material, but may be a rectangular frame material, a triangular frame material, or a hexagonal frame material. It is desirable to use a square frame material.
[0037]
Next, a method for manufacturing the sodium-sulfur battery according to the present invention and the small-sized stacked battery thereof will be briefly described.
As shown in FIG. 2, a rectangular solid member (for example, 100 × 100 mm) solid electrolyte plate 1 (β ″ alumina plate), conductive plate 2 (zirconium boride sintered plate or SUS plate), insulating frame 3 A sodium-sulfur battery according to the present invention is manufactured from a member composed of (α-alumina: spacer), a conductor 4 (carbon felt), a safety box 5 (a box made of SUS), and a conductive flat plate 2 having an electrode end 14.
[0038]
When the conductive flat plate and the insulating frame are joined together, the conductive flat plate is made of glass if the ceramic is used. Pressure bonding is performed. Since the joining between the solid electrolyte plate and the insulating frame is made of ceramics, it is preferable to use glass joining.
For example, the conductor 4 is inserted into the first insulating frame 3 in a vacuum, and a glass paste 15 (or a buffer material based on an aluminum alloy or a buffer material) is formed on the peripheral surface of the insulating frame 3. Then, the conductive flat plate 2 with the electrode end 14 is bonded. Next, a glass paste 15 is applied to the other peripheral surface of the first insulating frame 3 and the solid electrolyte plate 1 is joined.
Next, the safety box 5 is inserted into the second insulating frame 3, and the second insulating frame 3 is joined to the solid electrolyte plate 1 via the glass paste 15. Further, a glass paste 15 (or a buffer material based on an aluminum alloy or a bonding material that can be a buffer material) is applied to the other peripheral surface of the second insulating frame 3 to bond the conductive flat plate 2 (necessary). Bonding by thermocompression bonding). In addition, the clarity clearance between the protrusion 13 of the safety box 5 and the solid electrolyte plate 1 and / or the conductive flat plate 2 can be suppressed to 1.0 mm or less.
[0039]
Further, the third and subsequent insulating frames 3 are combined in the same manner, and finally, the conductive flat plate 2 with the electrode end 14 is joined and combined. The combined laminate is pressed from the conductive flat plate 2 having the electrode ends 14 at both ends, and heat-fused with a glass paste 15 (or a buffer material based on an aluminum alloy or a bonding material that can serve as a buffer material) in a heating furnace. The joint is tightly fixed.
[0040]
The following effects can be expected from the sodium-sulfur battery and the small-sized stacked battery thus configured.
[0041]
(Reducing the resistance of the positive electrode chamber)
In the sodium-sulfur battery or the small stacked battery according to the present invention, when the solid electrolyte plate 1 is provided upright, the resistance at the positive electrode can be reduced.
In general, at the time of charging, especially in the last stage, the insulating sulfur or low-conductivity sodium polysulfide precipitates near the solid electrolyte plate, thereby increasing the internal resistance, thereby reducing the active material utilization rate and the charge / discharge efficiency. . However, in the sodium-sulfur battery according to the present invention, in the hole 11 formed in the conductor 4, sodium polysulfide having a large sodium ratio and a large specific gravity is supplied from the specific gravity difference along the inclined hole 11 to the solid electrolyte plate 1 side. Then, the sulfur-rich sodium polysulfide generated on the solid electrolyte plate 1 side causes a specific gravity difference convection with the sodium polysulfide having a large specific gravity, and the sodium ratio of low conductivity (high electric resistance) on the solid electrolyte plate 1 side is reduced. The reaction can be carried out continuously without increasing the concentration of small sodium polysulfide or sulfur. For this reason, even in the last stage of charging, the active material utilization can be secured widely without increasing the internal resistance, and the charging / discharging efficiency also increases. As a result, a battery with a high energy density is possible.
[0042]
That is, the hole 11 is provided in the fiber, the porosity inside the hole 11 is larger than that in the fiber, and the movement of the active material is facilitated. Therefore, in addition to the movement of the active material due to the above specific gravity, there is an effect that the concentration of the original active material can be easily diffused.
Since the holes 11 are uniformly formed in the solid electrolyte plate 1 in the thickness direction of the conductor 4, the reaction and diffusion of the active material in the positive electrode conductor 4 at the same distance from the solid electrolyte plate 1 are uniformed, and the current density is increased. , The internal resistance can be suppressed.
[0043]
Although the fibrous positive electrode conductor 4 is accommodated in the positive electrode chamber 22, since providing the holes 11 means cutting or partially deleting the fibers, compared to the case where the holes 11 are not provided in the fibers. The density of the conductive material on the solid electrolyte plate side decreases. This lowers the electronic conductivity of the conductive material on the solid electrolyte plate side, has the effect of relaxing the reaction on the solid electrolyte plate side during charging, and as a result, enables the internal resistance to be reduced. is there.
[0044]
An appropriate manufacturing process can be designed by allowing the process of providing the holes 11 both in the case of using only the positive electrode conductor and after the sulfur impregnation.
Therefore, a decrease in the internal resistance means that the charge / discharge efficiency of the cell can be increased, and the utilization rate of the bulk material can be improved, so that the energy density can be increased.
[0045]
(Safety of sodium-sulfur battery)
With the conventional structure, when the temperature is raised to the operating temperature of 290 to 350 ° C., the solid electrolyte tube and the safety tube are prevented from being damaged due to the difference in thermal expansion between the solid electrolyte tube and the safety tube. Work with your heart. However, such fabrication is difficult. On the other hand, in the sodium-sulfur battery according to the present invention, since the negative electrode chamber 23 and the safety box 5 containing sodium are rectangular or the like, the processing becomes easy. Further, since several projections 13 are formed on the safety box 5, it is easy to keep the gap between the safety box 5 and the solid electrolyte plate 1 or the conductive flat plate 2 at an appropriate value of 1 mm or less. Further, in order to strengthen the sealing portion 15 between the solid electrolyte plate 1 or the conductive flat plate 2 and the insulating frame member 3, it is preferable that the inside of the chamber is previously evacuated and the outside is in a positive pressure state.
[0046]
(Module efficiency)
According to the small-sized stacked battery 31 according to the present invention, when the batteries are stacked, the sodium-sulfur battery 21 is made into a unit cell (plate type), so that electrical connection is easy and series or parallel combination is easy. And can be appropriately modularized.
In the flat plate type unit cell 21, the unit cells are stacked from the conductive ceramics 2 (or separator) and electrically connected to form a stack. Since this separator is shared by adjacent unit cells, voids between the unit cells can be eliminated as compared with the case where the active material is contained in each conventional cylindrical single cell. Further, the material occupancy in the small stacked battery 31 is also reduced. For this reason, the active material occupancy in the module that accommodates the small stacked battery 31 is increased, and the energy density of the module is improved. Even when dry sand for self-extinguishing is filled, the module energy density is 210 Wh / L, which is about 20% higher than that of a conventional cylindrical cell (about 160 to 170 Wh / L).
[0047]
In the conventional method in which current is collected from the positive electrode container and the negative electrode safety tube as in a conventional unit cell, the resistance in the positive electrode container longitudinal direction (vertical direction), the resistance in the negative electrode safety tube longitudinal direction (vertical direction), and the Caused a voltage loss due to the resistance of the connection terminal. Conventionally, caulking and crimping methods cannot be used to connect terminals between cells in a high-temperature corrosive atmosphere, and bolting and corrosion-resistant coating are required, which is a factor of cost increase. However, in the new method of using a sodium-sulfur battery having a positive electrode structure according to the present invention as a unit cell, current is directly collected by the conductive plate 2 and the positive electrode also serves as the negative electrode of an adjacent cell, so that a special connection is required. Since no means is required, a voltage drop occurs only in the resistance of the thickness of the conductive flat plate 2. Since the conductive flat plate of the present invention allows a difference in elongation by limiting the length, the area of the conductive flat plate is reduced. Only the voltage drop due to the cell connection is displayed as compared with the conventional cylindrical type. Voltage loss can be reduced as compared with a conventional cell, and the charge / discharge efficiency and energy density of a unit cell are improved. The charge / discharge efficiency per unit cell is expected to be 95%, an increase of about 6% as compared with the conventional cylindrical cell (about 89%), and the energy density per unit cell is 370 Wh / L, which is a conventional cylindrical cell ( (About 360 to 370 Wh / L).
[0048]
Since the unit cell 21 is a flat plate type, it is not necessary to form the solid electrolyte plate 1 with a bottom, and the conventional curve forming is not required even when the conductor 4 of the positive electrode chamber 22 is processed. Also, since the safety box 5 does not need to be formed into a bottomed tube, the manufacturing process can be simplified.
[0049]
In the relationship between the solid electrolyte wall, the insulator member, and the current collector, there were concerns about breakage of the seal portion due to a difference in linear expansion at the time of temperature change, stress applied to the solid electrolyte wall, etc. as in the conventional case. -In the case of the sulfur battery and the small stacked battery, since the substantial difference in elongation due to linear expansion including the coefficient of linear expansion between the solid electrolyte plate 1 and the conductive flat plate 2 falls within an allowable range, breakage of the seal portion is prevented. In addition, the safety is extremely enhanced due to the improvement of the bonding reliability.
From the above, the sodium-sulfur battery and the small stacked battery according to the present invention can be expected to be extremely stable and safe against heat fluctuation.
[0050]
【The invention's effect】
As described above, according to the sodium-sulfur battery according to the present invention, a sodium-sulfur battery in which a positive electrode chamber and a negative electrode chamber are arranged on both sides of a solid electrolyte plate, Since the flexible flat plates are arranged to face each other, they can be manufactured safely and easily, and can be easily formed into a flat type battery, especially a space-saving shape such as a rectangular or hexagonal shape. In addition, sodium-sulfur batteries can be easily stacked, and a small-sized stacked battery having extremely high energy density and excellent safety can be easily manufactured.
[Brief description of the drawings]
1 (a) and 1 (b) are a cross-sectional view of a sodium-sulfur battery according to the present invention and a small stacked battery as a unit cell thereof, and a schematic electric circuit diagram thereof.
FIGS. 2A to 2F are perspective views of members used in the sodium-sulfur battery of FIG.
FIG. 3 is a longitudinal sectional view of a conventional sodium-sulfur battery.
[Explanation of symbols]
1 solid electrolyte plate
2 Conductive flat plate
3 Insulating frame material
4 conductor
5 Safety box
21 unit cell
22 Positive electrode chamber
23 Negative electrode chamber
31 Small stacked battery

Claims (10)

ナトリウムイオンを透過する固体電解質板の両側に正極チャンバーと負極チャンバーが配せられるナトリウム−硫黄電池であって、上記固体電解質板の両面に、導電性平板が対向して配されることを特徴とするナトリウム−硫黄電池。A sodium-sulfur battery in which a positive electrode chamber and a negative electrode chamber are disposed on both sides of a solid electrolyte plate that transmits sodium ions, wherein a conductive flat plate is disposed on both sides of the solid electrolyte plate so as to face each other. Sodium-sulfur battery. 上記導電性平板は、上記固体電解質板との線膨張係数の差が、±16(×10−6[K−1])の範囲に収まることを特徴とする請求項1記載のナトリウム−硫黄電池。2. The sodium-sulfur battery according to claim 1, wherein the conductive flat plate has a difference in linear expansion coefficient from the solid electrolyte plate within a range of ± 16 (× 10 −6 [K −1 ]). . 上記導電性平板の最長径或いは最長幅が200mm以下であることを特徴とする請求項1又は2に記載のナトリウム−硫黄電池。3. The sodium-sulfur battery according to claim 1, wherein a longest diameter or a longest width of the conductive flat plate is 200 mm or less. 4. 上記導電性平板は、体積固有抵抗(Ω・cm)が20×10−5(Ω・cm)以下であることを特徴とする請求項1記載のナトリウム−硫黄電池。2. The sodium-sulfur battery according to claim 1, wherein the conductive flat plate has a volume resistivity (Ω · cm) of 20 × 10 −5 (Ω · cm) or less. 上記固体電解質板はβ”アルミナであることを特徴とする請求項1記載のナトリウム−硫黄電池。The sodium-sulfur battery according to claim 1, wherein the solid electrolyte plate is β "alumina. 上記正極チャンバー及び/又は負極チャンバーは側周壁が絶縁性セラミックスからなる枠材で形成され、該絶縁性セラミックスと上記固体電解質板及び/又は導電性平板とはアルミニウム合金ベースの緩衝材を介した熱圧接合、或いはガラスペーストを溶融させて接合したものであることを特徴とする請求項1記載のナトリウム−硫黄電池。The positive electrode chamber and / or the negative electrode chamber are formed of a frame material whose peripheral side wall is made of insulating ceramics. The sodium-sulfur battery according to claim 1, wherein the sodium-sulfur battery is formed by pressure bonding or bonding by melting a glass paste. 上記負極チャンバー内に負極活物質が収容された安全箱が設けられ、該安全箱は上記固体電解質板面及び/又は導電性平板面に略平行に対向する外壁面を有し、該外壁面には突起部が形成されていることを特徴とする請求項1記載のナトリウム−硫黄電池。A safety box containing a negative electrode active material is provided in the negative electrode chamber, and the safety box has an outer wall surface substantially parallel to the solid electrolyte plate surface and / or the conductive flat plate surface. The sodium-sulfur battery according to claim 1, wherein a protrusion is formed. 上記請求項1乃至7のいずれかに記載のナトリウム−硫黄電池を上記正極チャンバーと負極チャンバーとを交互に複数個積層させてそれぞれ接合してなる小型積層電池。A small stacked battery comprising the sodium-sulfur battery according to any one of claims 1 to 7, wherein a plurality of the positive electrode chambers and a plurality of the negative electrode chambers are alternately stacked and joined. 上記正極チャンバー内に正極活物質を含浸させた導電体が上記固体電解質板と共に立設して配せられ、該導電体は固体電解質板面から所定の厚み幅を有すると共に、固体電解質板と接する側から厚み幅方向に向けて孔を有し、該孔は上記固体電解質板から離れるに従って上向きに傾斜させて形成されていることを特徴とする請求項8記載の小型積層電池。A conductor impregnated with a positive electrode active material is provided upright together with the solid electrolyte plate in the positive electrode chamber, and the conductor has a predetermined thickness from the solid electrolyte plate surface and is in contact with the solid electrolyte plate. 9. The small-sized laminated battery according to claim 8, wherein a hole is formed from a side toward a thickness width direction, and the hole is formed so as to be inclined upward as the distance from the solid electrolyte plate increases. 上記正極チャンバーと負極チャンバーとを形成する枠材は矩形枠材、三角形枠材、或いは六角形枠材であることを特徴とする請求項8又は9記載の小型積層電池。10. The small laminated battery according to claim 8, wherein the frame material forming the positive electrode chamber and the negative electrode chamber is a rectangular frame material, a triangular frame material, or a hexagonal frame material.
JP2003012524A 2003-01-21 2003-01-21 Sodium-sulfur cell and small laminated cell thereof Pending JP2004227860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012524A JP2004227860A (en) 2003-01-21 2003-01-21 Sodium-sulfur cell and small laminated cell thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012524A JP2004227860A (en) 2003-01-21 2003-01-21 Sodium-sulfur cell and small laminated cell thereof

Publications (1)

Publication Number Publication Date
JP2004227860A true JP2004227860A (en) 2004-08-12

Family

ID=32901105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012524A Pending JP2004227860A (en) 2003-01-21 2003-01-21 Sodium-sulfur cell and small laminated cell thereof

Country Status (1)

Country Link
JP (1) JP2004227860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416824B2 (en) 2009-07-28 2013-04-09 Canon Kabushiki Kaisha Surface emitting laser with current constriction layer and multiple active regions
KR101353341B1 (en) * 2011-12-22 2014-01-22 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery
KR101550891B1 (en) 2013-12-26 2015-09-08 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416824B2 (en) 2009-07-28 2013-04-09 Canon Kabushiki Kaisha Surface emitting laser with current constriction layer and multiple active regions
KR101353341B1 (en) * 2011-12-22 2014-01-22 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery
KR101550891B1 (en) 2013-12-26 2015-09-08 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module

Similar Documents

Publication Publication Date Title
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
CN101507013B (en) Electrode for electric storage device and electric storage device
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
KR101484437B1 (en) Secondary battery
JPH04349364A (en) Planar type sodium sulfur battery
US3607403A (en) Self-charging battery incorporating a solid-gas battery and storage battery within a honeycomb matrix
JP2012516009A (en) Electrochemical energy storage cell
EP1482590A1 (en) Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell power generator
EP0592548A1 (en) Bipolar battery and method of making a partition wall for such a battery.
JP2004227860A (en) Sodium-sulfur cell and small laminated cell thereof
KR101348967B1 (en) Unit cell of flat-tubular solid oxide fuel cell or solid oxide electrolyzer cell and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
US11876265B2 (en) Fuel cell and fuel cell system for an aircraft
JPH09161763A (en) Lithium ion secondary battery
JP2004103422A (en) Sodium sulfur battery and its stacked type battery
JP2943149B2 (en) Molten carbonate fuel cell stack
JPH1125999A (en) Solid electrolyte fuel cell
KR100294468B1 (en) Sodium-sulfur battery having multi-layered sulfur electrode
JP3070106B2 (en) Fuel cell
US10490819B2 (en) Electrochemical energy storage system and battery
JP3297609B2 (en) Method for manufacturing fuel cell stack
KR101287959B1 (en) Electrode for an energy storage unit
KR101368226B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR100669337B1 (en) Secondary battery and fabrication method thereof
KR101348968B1 (en) Cathode for flat-tubular soide oxide cell and flat-tubular solid oxide cell and method for manufacturing the same and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
KR101462462B1 (en) Swparator for secondary battery