JP2004227474A - Self-propelled equipment and program therefor - Google Patents

Self-propelled equipment and program therefor Download PDF

Info

Publication number
JP2004227474A
JP2004227474A JP2003017381A JP2003017381A JP2004227474A JP 2004227474 A JP2004227474 A JP 2004227474A JP 2003017381 A JP2003017381 A JP 2003017381A JP 2003017381 A JP2003017381 A JP 2003017381A JP 2004227474 A JP2004227474 A JP 2004227474A
Authority
JP
Japan
Prior art keywords
error
traveling
mode
coordinate
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017381A
Other languages
Japanese (ja)
Inventor
Yumiko Hara
由美子 原
Tetsuya Koda
哲也 甲田
Keiko Noda
桂子 野田
Masayo Haji
雅代 土師
Hirotsugu Kamiya
洋次 上谷
Tadashi Nakatani
直史 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003017381A priority Critical patent/JP2004227474A/en
Publication of JP2004227474A publication Critical patent/JP2004227474A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-propelled equipment which travels automatically in every corner without using a guiding means even if it travels automatically in a room, where pieces of furniture are put in a complicated layout and precision in detecting a position is difficult to obtain due to the slipperiness of a floor surface. <P>SOLUTION: The self-propelled equipment is provided with a position recognizing means 8 which recognizes a position where it is traveling, a traveling range storage means 9 which stores a traveling range from the recognized position which the position recognizing means 8 recognizes and an error estimating means 11 which estimates the error of a recognized position which the position recognizing means 8 recognizes and a self-control means 5 which executes a travel plan based on information on the traveling range stored by the traveling range storage means 9, the information of an obstacle recognizing means 6 and the result of the estimation by the error estimating means 11. By this, the self-traveling device can travel automatically in every corner without using a guiding means even when it travels automatically in the room where pieces of the furniture are put in a complicated layout and the precision in detecting a position is difficult to obtain due to the slipperiness of a floor surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動走行を行って室内を自動的に移動し、室内を隈無く塗りつぶすよう走行する自走機器に関するものである。
【0002】
【従来の技術】
従来、この種の自走機器は走行位置を制御するためにガイド装置を使用している(例えば、特許文献1参照)。図16、図17は、前記特許文献1に記載された従来の自走機器を示すものである。
【0003】
図16、図17において、102および103はガイド手段、113はCCDカメラ、120は画像処理装置、121は現在位置算出部、124は位置確定部である。CCDカメラ113はガイド手段102、103の不在個所走行時に、位置指標でもあるガイド手段102、103を視覚的に検出する電気光学手段である。
【0004】
現在位置算出部121はエンコーダ119からの情報に基づき現在位置を算出する第1算出部122と、画像処理装置120からの情報に基づき現在位置を算出する第2算出部123と、これら両算出部122,123の算出結果及びガイド手段検出器109,110、停止位置検出器111の検出結果に基づき現在位置を確定する位置確定部124とより構成する。即ち走行時の車輪のスリツプの発生などに係わらず、電気光学手段113の検出結果により現在位置を正確に確認して走行することができるものであった。
【0005】
【特許文献1】
特開平03−229311号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、あらかじめ設定されたガイド手段に従って自走するものである。従って例えば走行のための特別な方向規定テープなどの設置が出来ない家庭内で自走しながら部屋中を隈無く走行し清掃する自走機器に用いた場合に、清掃し残す床面が発生するという課題を有していた。
【0007】
本発明は、前記従来の課題を解決するもので、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも、ガイド手段を用いることなく自動走行を行う自走機器を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明は、走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、前方の障害物を認識する障害物認識手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段と、前記位置認識手段の認識位置の誤差を推定する誤差推定手段とを備え、前記自律制御手段は、前記走行範囲記憶手段が記憶した走行範囲の情報と前記障害物認識手段の情報と前記誤差推定手段の推定結果とに基づいて走行計画を行う走行計画手段を有する自走機器とするものである。
【0009】
これによって、走行範囲を記憶し、また認識している位置の誤差を考慮して記憶した走行範囲の情報と障害物の情報に基づいて走行計画を行うことにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも、ガイド手段を用いることなく自動走行を行うことが出来るようになる。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、前方の障害物を認識する障害物認識手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段と、前記位置認識手段の認識位置の誤差を推定する誤差推定手段とを備え、前記自律制御手段は、前記走行範囲記憶手段が記憶した走行範囲の情報と前記障害物認識手段の情報と前記誤差推定手段の推定結果とに基づいて走行計画を行う走行計画手段を有する自走機器とした。
【0011】
そして、走行した範囲の大きさを記憶し、また認識している位置の誤差を考慮して記憶した走行範囲の情報と障害物の情報とに基づいて走行計画を行うことにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にもガイド手段を用いることなく隈無く自動走行を行うことが出来るようになる。
【0012】
請求項2に記載の発明は、特に、請求項1に記載のモード制御手段が、部屋中を走行するように設定され、壁に沿って部屋を一周する周回モード、前記周回モード開始時に沿った壁と垂直に往復走行を行う縦走行モード、前記周回モード開始時に沿った壁と平行に往復走行を行う横走行モードの順にモード移行を行い、モード移行時には次モード開始のための移動を行うようにしたことにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも、自律走行で部屋の周囲と縦方向往復横方向往復で規則的に清掃することで隈無く自動走行を行うことが出来るようになる。
【0013】
請求項3に記載の発明は、特に、請求項2に記載の位置認識手段が、周回モード開始点を原点、最初に沿った壁方向をX軸の正方向、X軸に垂直に反時計回り90°の方向をY軸の正方向としたXY座標として位置を出力し、誤差推定手段は前記位置認識手段の出力するX座標とY座標それぞれの誤差を出力し、走行範囲記憶手段は前記周回モード中のX座標に誤差値を加算した値の最小値、Y座標に誤差値を加算した値の最小値、X座標から誤差値を減算した値の最大値及びY座標から誤差値を減算した値の最大値を記憶するようにしたことにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも、周回モード中に部屋の大きさを簡単に把握することによって、床面の滑りなどで位置検出しにくい部屋でも部屋の形状によらずに隈無く自動走行することが出来るようになる。
【0014】
請求項4に記載の発明は、特に、請求項3に記載の走行計画手段が、周回モードの終了位置と縦走行モード及び横走行モードの開始位置及び終了位置を、誤差推定手段と位置認識手段及び走行範囲記憶手段に記憶された走行範囲の情報とを用いて決定するようにしたことにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも部屋の形状を走行計画に簡単に反映することで、床面の滑りなどで位置検出しにくい部屋でも部屋の形状に合わせて走行漏れのない自動走行が出来るようになる。
【0015】
請求項5に記載の発明は、特に、請求項4に記載の走行計画手段が、周回モードの終了位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲に、周回モード開始位置であるX、Y座標の原点が含まれたときとすることにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも部屋を壁に沿って一周することで、床面の滑りなどで位置検出しにくい部屋でも部屋の外形を確実に把握することが出来るようになる。
【0016】
請求項6に記載の発明は、特に、請求項4に記載の走行計画手段が、縦走行モードの開始位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているX座標の最大値を含むとともに障害物認識手段が前方に障害物を認識したときとすることにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも縦走行の開始位置ずれによる走行漏れを防ぎ、床面の滑りなどで位置検出しにくい部屋でも縦走行の開始を部屋の形状によらず正しく行うことが出来るようになる。
【0017】
請求項7に記載の発明は、特に、請求項4に記載の走行計画手段が、縦走行モードの終了位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているX座標の最小値を含むとともに障害物認識手段が前方に障害物を認識したときとすることにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも縦走行の終了位置ずれによる走行漏れを防ぎ、床面の滑りなどで位置検出しにくい部屋でも縦走行の終了を部屋の形状によらず正しく行うことが出来るようになる。
【0018】
請求項8に記載の発明は、特に、請求項4に記載の走行計画手段が、横走行モードの開始位置を、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているY座標の最小値を含むとともに障害物認識手段が前方に障害物を認識したときとすることにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも横走行の開始位置ずれによる走行漏れを防ぎ、床面の滑りなどで位置検出しにくい部屋でも横走行の開始を部屋の形状によらず正しく行うことが出来るようになる。
【0019】
請求項9に記載の発明は、特に、請求項4に記載の走行計画手段が、横走行モードの終了位置を、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているY座標の最大値を含むとともに障害物認識手段が前方に障害物を認識したときとすることにより、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも横走行の終了位置ずれによる走行漏れを防ぎ、床面の滑りなどで位置検出しにくい部屋でも横走行の終了を部屋の形状によらず正しく行うことが出来るようになる。
【0020】
請求項10に記載の発明は、特に、コンピュータを請求項1〜9のいずれか1項に記載の自走機器の全てまたはその一部を機能させるためのプログラムとすることにより、コンピュータを請求項1〜9のいずれか1記載の自走機器の全てもしくは一部として機能させることで、汎用コンピュータやサーバーを用いて本発明の自走機器の一部あるいは全てを容易に実現することができるようになる。
【0021】
【実施例】
以下本発明の実施例について図面を参照しながら説明する。
【0022】
(実施例1)
図1は本発明の第1の実施例における自走機器の概略構成を示す図である。図1において、1は本体、2は走行手段で本実施例においては前進又は後退を行う駆動輪で構成している。3は走行制御手段で走行手段2である駆動輪の回転速度を制御することで本体1の走行速度及び回転を制御して所定の方向へ所定の速度で走行を行う。4はモード制御手段であらかじめ定めた走行パターンをモードの移行として指示する。5は自律制御手段でモード制御手段4の指示するモードに従って走行制御手段3を制御する。6は障害物認識手段で本体前方の障害物を認識する。本実施例では障害物認識手段6は超音波センサで実現している。7は側方測距手段で側方壁との距離を測定する。側方測距手段7は本実施例では赤外線測距センサを用いている。
【0023】
8は位置認識手段で現在位置を認識する。位置認識手段8は本実施例ではジャイロセンサと走行距離センサを備え、走行距離センサのみでなくジャイロセンサによる方向を用いることで現在位置をより正確に認識するものである。9は走行範囲記憶手段で走行中の位置認識手段8の認識位置から走行した範囲の大きさを記憶する。10は走行計画手段で自律制御手段5を構成する。11は誤差推定手段で、位置認識手段8の出力である認識位置の誤差を出力する。本実施例では誤差推定手段11は走行距離センサの誤差は走行距離に比例するものとして走行距離に係数0.05を掛けジャイロセンサによる方向でX、Y方向の誤差として算出している。
【0024】
本実施例では走行制御手段3、モード制御手段4、自律制御手段5、走行範囲記憶手段9、走行計画手段10、誤差推定手段11はマイクロコンピュータで構成している。
【0025】
次に、図2から図15を用いて自律走行動作の概略を説明する。図2は自律走行動作を示すフローチャートである。自律走行動作を開始すると、ステップ1の周回モードで部屋を一周する周回走行を行う。
【0026】
次にステップ2で縦走行モード開始位置への移動1を行い、ステップ3で縦方向の往復走行である縦走行を行う。次にステップ4で横走行の開始位置への移動である移動2を行い、ステップ5で横方向の往復走行である横走行を行う。ステップ6は終了のための移動3である。
【0027】
次に図3、図4を用いて周回モードの動作を説明する。図3はステップ1の周回走行動作を示すフローチャートである。周回モードは壁に沿って部屋を一周するモードで、図3のステップ11で開始時の座標を原点すなわち(X、Y)=(0,0)に設定した後、壁沿いに部屋を一周する。周回モードで走行する間、ステップ12で右壁との距離が所定値aとなるように壁との距離を保ちながら直進する。ステップ13で位置認識手段8から現在の位置座標(x,y)を入力し、誤差推定手段11から現在の誤差推定値(Ex,Ey)を入力する。ステップ14でX、Yそれぞれの最大値、最小値を更新する。
【0028】
すなわち、記憶しているXの最大値よりも(x−Ex)が大きいときX最大値を更新、記憶しているXの最小値よりも(x+Ex)が小さいときX最小値を更新、記憶しているYの最大値よりも(y−Ey)が大きいときY最大値を更新、記憶しているYの最小値よりも(y+Ey)が小さいときY最小値を更新する。
【0029】
次にステップ15で開始位置に戻ったかどうかを確認する。すなわち現在座標(x,y)に現在誤差(Ex,Ey)を加味した範囲に開始位置(0,0)が含まれれば原点に戻ったと判断しステップ18で周回動作を終了する。ステップ15で開始位置に戻っていない場合はステップ16で前に障害物がないか確認し、無ければステップ12を繰り返し、前に壁や家具などの障害物があればステップ17で前進可能になるまで回転した後にステップ12に戻って壁沿い走行を続ける。図4は周回モードでの走行例を示した図であり、12は部屋の壁、13は家具である。本体1は図4に示す周回開始位置(0,0)から壁沿いの周回走行を開始して壁に沿って部屋の外周を一周したのち、原点(0,0)すなわち、周回開始点に戻ると周回走行を終了する。
【0030】
次に図5、図6を用いてステップ2の移動1の動作を説明する。図5は移動1動作を示すフローチャートである。ステップ21で壁沿いに移動を行う。ステップ22で誤差を考慮したX座標が最大値Xmaxになったかどうか、すなわち、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したX座標の最大値を含むかどうかを確認する。含まない場合はステップ21で壁沿い移動を続ける。ステップ22で位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したX座標の最大値を含む場合はステップ23で前に障害物があるかどうかを確認する。障害物が無ければステップ21で壁沿い移動を続ける。障害物があれば終了する。
【0031】
図6は移動1の走行例を示した図である。周回走行の終了位置から移動1を行い、縦走行の開始位置へと移動する。誤差を加味したX座標が最大値Xmaxになり、かつ、前に障害物があれば移動1を終了する。すなわち、位置検知に誤差が発生する場合にも前に壁があれば終了という条件によって、誤終了を低減することが出来るものである。
【0032】
次に図7、図8を用いてステップ3の縦走行モードの動作を説明する。図7は縦走行モードの動作を示すフローチャートである。ステップ31で縦走行モードとし、ステップ32で縦走行モード動作、すなわち周回モード開始時に沿った壁と垂直方向であるY方向への往復走行を行う。ステップ33で誤差を加味したX座標が最小値Xminになったかどうかを確認する。すなわち、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したX座標の最小値を含むかどうかを確認する。つまり、現在のX座標xから誤差を引いた値(x−Ex)から現在のX座標xに誤差を足した値(x+Ex)の間にXminが存在すれば最小値Xminであるとみなす。誤差を加味したX座標が最小値Xminでなければステップ32で縦方向の往復走行を続ける。
【0033】
ステップ33で誤差を加味したX座標が最小値Xminになればステップ34で前に障害物があるかどうかを判定し、前に障害物があれば終了する。ステップ34で前に障害物がなければステップ32で縦方向の往復走行を続ける。すなわち、位置検知に誤差が発生する場合にも前に壁があれば終了という条件によって、誤終了を低減することが出来るものである。図8は縦走行モードの走行例を示した図である。縦走行の開始位置から縦方向の往復走行を行い、誤差を加味したX座標が最小値Xminになり、かつ、前が壁等の障害物になると縦走行を終了する。
【0034】
次に図9、図10を用いてステップ4の移動2の動作を説明する。図9は移動2動作を示すフローチャートである。ステップ41で壁沿いに移動を行う。ステップ42で誤差を考慮したY座標が最小値Yminになったかどうか、すなわち、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したY座標の最小値を含むかどうかを確認する。含まない場合はステップ41で壁沿い移動を続ける。ステップ42で位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したY座標の最小値を含む場合はステップ43で前に障害物があるかどうかを確認する。障害物が無ければステップ41で壁沿い移動を続ける。障害物があれば終了する。
【0035】
図10は移動2の走行例を示した図である。周回走行の終了位置から移動2を行い、縦走行の開始位置へと移動する。誤差を加味したY座標が最大値Ymaxになり、かつ、前に障害物があれば移動2を終了する。すなわち、位置検知に誤差が発生する場合にも前に壁があれば終了という条件によって、誤終了を低減することが出来るものである。
【0036】
次に図11、図12を用いてステップ5の横走行モードの動作を説明する。図11は横走行モードの動作を示すフローチャートである。ステップ51で横走行モードとし、ステップ52で横走行モード動作、すなわち周回モード開始時に沿った壁と平行方向であるX方向への往復走行を行う。ステップ53で誤差を加味したY座標が最大値Ymaxになったかどうかを確認する。すなわち、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段が記憶している誤差を加味したY座標の最小値を含むかどうかを確認する。つまり、現在のY座標yから誤差を引いた値(y−Ey)から現在のY座標yに誤差を足した値(y+Ey)の間にYmaxが存在すれば最大値Ymaxであるとみなす。誤差を加味したY座標が最大値Ymaxでなければステップ52で縦方向の往復走行を続ける。
【0037】
ステップ53で誤差を加味したX座標が最大値Ymaxになればステップ54で前に障害物があるかどうかを判定し、前に障害物があれば終了する。ステップ54で前に障害物がなければステップ52で縦方向の往復走行を続ける。すなわち、位置検知に誤差が発生する場合にも前に壁があれば終了という条件によって、誤終了を低減することが出来るものである。図12は横走行モードの走行例を示した図である。横走行の開始位置から横方向の往復走行を行い、誤差を加味したY座標が最大値Xmaxになり、かつ、前が壁等の障害物になると縦走行を終了する。
【0038】
次に図13、図14を用いてステップ6の移動3の動作を説明する。図13は移動3の動作を示すフローチャートである。ステップ61で壁沿いに移動を行い、ステップ62で誤差を加味した(X、Y)座標が開始位置、即ち原点(0,0)になったかどうかを確認し、原点(0,0)でなければステップ61で壁沿い移動を続ける。ステップ62で原点(0,0)になれば終了する。図14は移動3の走行例を示した図である。横走行の終了位置から移動3を行い、終了位置である走行開始位置へと移動する。誤差を加味した(X、Y)座標が開始位置、即ち原点(0,0)になると移動3を終了する。つまり、走行を開始した位置に戻って動作を停止するわけである。
【0039】
図15に周回モード、縦走行モード、横走行モードの全走行軌跡を重ねて表示した図を示す。図15に示すように、本実施例によると、家具などが複雑な配置で置いてあり、かつ床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にもガイド手段を用いることなく隈無く自動走行を行うことができる。
【0040】
本発明の請求項10にかかるプログラムは、コンピュータを請求項1〜9のいずれか1記載の自走式機器の一部として機能させるものである。そして、プログラムであるので汎用コンピュータやサーバーを用いて本発明の自走機器の一部を容易に実現することができる。また記録媒体に記録したり通信回線を用いてプログラムを配信したりすることでプログラムの配布やインストール作業が簡単にできる。以上述べた動作のプログラムでの実施例は図2、3、5、7、9、11、13にプログラムのフローチャートを示したものである。
【0041】
【発明の効果】
以上のように、本発明によれば、家具などが複雑に配置され、床面の滑りなどで位置検出精度が得にくい室内などの自動走行時にも、ガイド手段を用いることなく自動走行を行う自走機器を提供することが出来るようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における自走機器の構成図
【図2】同動作を示すフローチャート
【図3】同周回モードの動作を示すフローチャート
【図4】同周回モードの走行例を示す図
【図5】同移動1の動作を示すフローチャート
【図6】同移動1の走行例を示す図
【図7】同縦走行モードの動作を示すフローチャート
【図8】同縦走行モードの走行例を示す図
【図9】同移動2の動作を示すフローチャート
【図10】同移動2の走行例を示す図
【図11】同横走行モードの動作を示すフローチャート
【図12】同横走行モードの走行例を示す図
【図13】同移動3の動作を示すフローチャート
【図14】同移動3の走行例を示す図
【図15】同全走行軌跡を示す図
【図16】従来の自走機器の模式図
【図17】同自走機器の制御機構を示すブロック図
【符号の説明】
1 本体
2 走行手段
3 走行制御手段
4 モード制御手段
5 自律制御手段
6 障害物認識手段
7 側方測距手段
8 位置認識手段
9 走行範囲記憶手段
10 走行計画手段
11 誤差推定手段
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-propelled device that automatically travels in a room by performing automatic traveling and travels so as to fill the entire room.
[0002]
[Prior art]
Conventionally, this type of self-propelled device uses a guide device to control a traveling position (for example, see Patent Document 1). FIGS. 16 and 17 show a conventional self-propelled device described in Patent Document 1. FIG.
[0003]
16 and 17, reference numerals 102 and 103 denote guide means, 113 denotes a CCD camera, 120 denotes an image processing apparatus, 121 denotes a current position calculation unit, and 124 denotes a position determination unit. The CCD camera 113 is electro-optical means for visually detecting the guide means 102, 103 which is also a position index when the guide means 102, 103 travels in an absent place.
[0004]
The current position calculation unit 121 calculates a current position based on information from the encoder 119, a second calculation unit 123 calculates a current position based on information from the image processing apparatus 120, and both of these calculation units It comprises a position determination unit 124 that determines the current position based on the calculation results of 122 and 123, the guide means detectors 109 and 110, and the detection result of the stop position detector 111. That is, it is possible to accurately confirm the current position based on the detection result of the electro-optical means 113 and travel, irrespective of the occurrence of slippage of the wheels during traveling.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 03-229311
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the vehicle runs in accordance with a preset guide means. Therefore, for example, when used in a self-propelled equipment that runs and cleans all over the room while self-propelled in a home where a special direction regulation tape or the like for traveling cannot be installed, a floor surface left to be cleaned occurs. There was a problem that.
[0007]
The present invention solves the above-mentioned conventional problems, and even when furniture or the like is arranged in a complicated manner and automatic traveling in a room or the like where position detection accuracy is difficult to obtain due to slippage of the floor or the like, automatic traveling without using guide means. The purpose is to provide a self-propelled device that performs.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the present invention provides a traveling unit, a mode control unit for instructing a predetermined traveling pattern, an autonomous control unit for controlling the traveling unit in accordance with the mode control unit, and a forward obstacle. Obstacle recognizing means for recognizing an object, position recognizing means for recognizing a running position, running range storing means for storing a running range from the recognized position of the running position recognizing means, and recognition of the position recognizing means. Error estimating means for estimating a position error, wherein the autonomous control means is based on information on the traveling range stored by the traveling range storage means, information on the obstacle recognizing means, and an estimation result of the error estimating means. It is a self-propelled device having travel planning means for performing travel planning.
[0009]
Thereby, the travel range is stored, and the travel plan is performed based on the information of the travel range and the information of the obstacle stored in consideration of the error of the recognized position. Automatic traveling can be performed without using guide means even during automatic traveling in a room or the like where position detection accuracy is difficult to obtain due to slippage of the floor or the like.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, there is provided a traveling means, a mode control means for instructing a predetermined traveling pattern, an autonomous control means for controlling the traveling means according to the mode control means, and an obstacle for recognizing an obstacle ahead. Object recognizing means, position recognizing means for recognizing a running position, running range storing means for storing a running range from the recognized position of the running position recognizing means, and estimating an error of a recognized position of the position recognizing means. And an autonomous control unit performs a traveling plan based on the information on the traveling range stored by the traveling range storage unit, the information on the obstacle recognizing unit, and the estimation result of the error estimating unit. It is a self-propelled device having a travel planning means.
[0011]
Then, by storing the size of the traveled range and making a travel plan based on the travel range information and the obstacle information stored in consideration of the error of the recognized position, furniture and the like are complicated. And automatic running can be performed without using guide means even during automatic running in a room or the like where position detection accuracy is difficult to obtain due to slippage of the floor or the like.
[0012]
According to a second aspect of the present invention, in particular, the mode control means according to the first aspect is set so as to run in a room, and is a circulating mode in which the circuit goes around the room along a wall, and the mode control means is arranged at the start of the circulating mode. The mode transition is performed in the order of a vertical traveling mode in which reciprocating traveling perpendicular to a wall is performed, and a lateral traveling mode in which reciprocating traveling is performed in parallel with the wall at the start of the orbiting mode, and at the time of mode transition, movement for starting the next mode is performed. In this way, furniture and other objects are placed in a complicated manner, and even during automatic driving in a room where position detection accuracy is difficult to obtain due to slippage on the floor, etc. Cleaning makes it possible to perform autonomous driving.
[0013]
According to a third aspect of the present invention, in particular, the position recognizing means according to the second aspect is configured such that the origin is the rotation mode start point, the first wall direction is the positive direction of the X axis, and the counterclockwise direction is perpendicular to the X axis. The position is output as XY coordinates in which the direction of 90 ° is the positive direction of the Y axis, the error estimating means outputs the respective errors of the X coordinate and the Y coordinate output by the position recognizing means, and the traveling range storage means outputs In the mode, the minimum value of the error value added to the X coordinate, the minimum value of the error value added to the Y coordinate, the maximum value of the error value subtracted from the X coordinate, and the error value subtracted from the Y coordinate By storing the maximum value of the value, furniture and other objects are placed in a complicated manner, and the size of the room can be reduced during circulating mode even during automatic driving in indoors where it is difficult to obtain position detection accuracy due to slippage on the floor. Easy to grasp and detect the position by slipping on the floor Also be able to automatically traveling without bear regardless of the shape of the room in hard to the room.
[0014]
According to a fourth aspect of the present invention, in particular, the travel planning means according to the third aspect determines an end position of the lap mode, a start position and an end position of the longitudinal traveling mode and the lateral traveling mode, an error estimating means and a position recognizing means. And the travel range information stored in the travel range storage means, so that furniture and the like are placed in a complicated manner, and automatic traveling in a room or the like where position detection accuracy is difficult to obtain due to slippage on the floor surface or the like. Even when the shape of the room is easily reflected in the travel plan, even in a room where position detection is difficult due to slippage of the floor or the like, it becomes possible to perform automatic traveling without running leaks according to the shape of the room.
[0015]
According to a fifth aspect of the present invention, in particular, the travel planning means according to the fourth aspect sets the end position of the lap mode to a range in which an error by the error estimating means is considered in the X coordinate by the position recognition means. Furniture is placed in a complicated manner by including the origin of the X and Y coordinates, which is the position. By making a round along, even in a room where position detection is difficult due to slippage of the floor or the like, it is possible to reliably grasp the outer shape of the room.
[0016]
According to a sixth aspect of the present invention, in particular, the travel planning means according to the fourth aspect stores a start range of the longitudinal traveling mode, and a range in which an error by the error estimating means is considered in the X coordinate by the position recognition means. Including the maximum value of the X coordinate stored in the means and when the obstacle recognizing means recognizes an obstacle ahead, furniture and the like are placed in a complicated manner, and the position detection accuracy due to slippage of the floor surface etc. Prevents run-out leakage due to vertical travel start position deviation even during automatic travel in difficult-to-obtain rooms, so that vertical travel can be started correctly regardless of room shape even in rooms where position detection is difficult due to slippage on the floor etc. become.
[0017]
According to a seventh aspect of the present invention, in particular, the travel planning means according to the fourth aspect stores the end position of the vertical travel mode in a range in which an error by the error estimating means is considered in the X coordinate by the position recognition means. Furniture etc. are arranged in a complicated manner by including the minimum value of the X coordinate stored in the means and when the obstacle recognition means recognizes an obstacle ahead, and the position detection accuracy due to slippage of the floor surface etc. Prevents run-out leaks due to misalignment of vertical travel end even during automatic travel in difficult-to-obtain rooms, etc., so that vertical travel can be correctly terminated regardless of the shape of the room even in rooms where position detection is difficult due to slippage on the floor etc. become.
[0018]
According to an eighth aspect of the present invention, in particular, the travel planning means according to the fourth aspect stores a start position of the lateral travel mode, and a range in which an error by the error estimating means is considered in the Y coordinate by the position recognition means. Furniture etc. are arranged in a complicated manner by including the minimum value of the Y coordinate stored in the means and when the obstacle recognizing means recognizes an obstacle ahead, and the position detection accuracy due to slippage of the floor surface etc. Prevents runaway due to lateral travel start position deviation even during automatic travel in difficult-to-obtain rooms, and enables lateral travel to be started correctly regardless of room shape even in rooms where position detection is difficult due to slippage on the floor etc. become.
[0019]
According to a ninth aspect of the present invention, in particular, the travel planning means according to the fourth aspect stores the end position of the lateral traveling mode in a travel range in which the error by the error estimating means is considered in the Y coordinate by the position recognition means. Furniture etc. are arranged in a complicated manner by including the maximum value of the Y coordinate stored in the means and when the obstacle recognizing means recognizes an obstacle ahead, so that the position detection accuracy due to slippage of the floor surface etc. Prevents runaway due to misalignment of horizontal travel end position even during automatic travel in difficult-to-obtain rooms, etc., so that lateral travel can be correctly terminated regardless of the shape of the room even in rooms where position detection is difficult due to slippage on the floor etc. become.
[0020]
The invention according to claim 10 provides a computer, particularly when the computer is a program for causing all or a part of the self-propelled device according to any one of claims 1 to 9 to function. By functioning as all or part of the self-propelled device according to any one of 1 to 9, some or all of the self-propelled device of the present invention can be easily realized using a general-purpose computer or server. become.
[0021]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
(Example 1)
FIG. 1 is a diagram showing a schematic configuration of a self-propelled device according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a main body, and 2 denotes a traveling means. In this embodiment, the driving means comprises drive wheels for moving forward or backward. Numeral 3 denotes a traveling control unit which controls the traveling speed and rotation of the main body 1 by controlling the rotation speed of the driving wheels as the traveling unit 2 and travels in a prescribed direction at a prescribed speed. Reference numeral 4 designates a traveling pattern predetermined by the mode control means as a mode transition. Reference numeral 5 denotes an autonomous control unit that controls the traveling control unit 3 in accordance with a mode specified by the mode control unit 4. Reference numeral 6 denotes obstacle recognition means for recognizing an obstacle in front of the main body. In the present embodiment, the obstacle recognition means 6 is realized by an ultrasonic sensor. Reference numeral 7 denotes a side distance measuring means for measuring a distance from a side wall. In this embodiment, the side distance measuring means 7 uses an infrared distance measuring sensor.
[0023]
Numeral 8 is a position recognition means for recognizing the current position. In this embodiment, the position recognition means 8 includes a gyro sensor and a travel distance sensor, and recognizes the current position more accurately by using not only the travel distance sensor but also the direction of the gyro sensor. Reference numeral 9 denotes a traveling range storage unit which stores the size of the traveling range from the recognized position of the traveling position recognizing unit 8. Numeral 10 denotes a travel planning means which constitutes the autonomous control means 5. Numeral 11 denotes an error estimating means for outputting an error of the recognized position which is an output of the position recognizing means 8. In the present embodiment, the error estimating means 11 calculates the error in the X and Y directions in the direction of the gyro sensor by multiplying the travel distance by a coefficient 0.05 assuming that the error of the travel distance sensor is proportional to the travel distance.
[0024]
In this embodiment, the traveling control means 3, the mode control means 4, the autonomous control means 5, the traveling range storage means 9, the traveling planning means 10, and the error estimating means 11 are constituted by microcomputers.
[0025]
Next, an outline of the autonomous traveling operation will be described with reference to FIGS. FIG. 2 is a flowchart showing the autonomous traveling operation. When the autonomous traveling operation is started, the vehicle travels around the room in the traveling mode of step 1.
[0026]
Next, in step 2, the movement 1 to the vertical traveling mode start position is performed, and in step 3, the longitudinal traveling, which is the reciprocating traveling in the vertical direction, is performed. Next, in step 4, the movement 2 which is the movement to the start position of the lateral traveling is performed, and in step 5, the lateral traveling which is the reciprocating traveling in the lateral direction is performed. Step 6 is movement 3 for ending.
[0027]
Next, the operation in the rotation mode will be described with reference to FIGS. FIG. 3 is a flowchart showing the orbital running operation of step 1. The circling mode is a mode for making a round around the room along the wall. In step 11 in FIG. 3, the starting coordinates are set to the origin, that is, (X, Y) = (0, 0), and then the circuit goes around the wall. . While traveling in the orbiting mode, in step 12, the vehicle goes straight while keeping the distance to the right wall such that the distance to the right wall becomes a predetermined value a. In step 13, the current position coordinates (x, y) are inputted from the position recognizing means 8, and the current error estimated value (Ex, Ey) is inputted from the error estimating means 11. In step 14, the maximum and minimum values of X and Y are updated.
[0028]
That is, when (x−Ex) is larger than the stored maximum value of X, the X maximum value is updated, and when (x + Ex) is smaller than the stored minimum value of X, the X minimum value is updated and stored. When (y−Ey) is larger than the maximum value of Y, the Y maximum value is updated. When (y + Ey) is smaller than the stored minimum value of Y, the Y minimum value is updated.
[0029]
Next, at step 15, it is confirmed whether or not it has returned to the start position. That is, if the start position (0, 0) is included in the range in which the current error (Ex, Ey) is added to the current coordinates (x, y), it is determined that the original position has returned to the origin, and the orbiting operation is ended in step 18. If it has not returned to the start position in step 15, it is checked in step 16 if there is any obstacle before, and if there is no obstacle, step 12 is repeated, and if there is an obstacle such as a wall or furniture before, it becomes possible to advance in step 17. After returning to step 12, the process returns to step 12 to continue traveling along the wall. FIG. 4 is a diagram showing an example of traveling in the circuit mode, in which 12 is a wall of a room, and 13 is furniture. The main body 1 starts traveling around the wall from the rotation start position (0, 0) shown in FIG. 4 and makes a round around the room along the wall, and then returns to the origin (0, 0), that is, the rotation start point. And the round running ends.
[0030]
Next, the operation of the movement 1 in step 2 will be described with reference to FIGS. FIG. 5 is a flowchart showing the movement 1 operation. In step 21, the user moves along the wall. In step 22, whether or not the X coordinate considering the error has reached the maximum value Xmax, that is, the range considering the error by the error estimating means to the X coordinate by the position recognizing means takes into account the error stored in the traveling range storage means. Check whether the maximum value of the X coordinate is included. If not included, the movement along the wall is continued in step 21. If the range in which the error by the error estimating means is taken into account in the X coordinate by the position recognizing means in step 22 includes the maximum value of the X coordinate in consideration of the error stored in the traveling range storage means, in step 23, an obstacle is detected before the obstacle. Check if there is. If there is no obstacle, the moving along the wall is continued in step 21. If there is an obstacle, the process ends.
[0031]
FIG. 6 is a diagram showing a running example of the movement 1. Movement 1 is performed from the end position of the round running, and moves to the start position of the vertical running. If the X coordinate considering the error becomes the maximum value Xmax and there is an obstacle before, the movement 1 is ended. In other words, even when an error occurs in position detection, erroneous termination can be reduced by the condition that termination is performed if there is a wall before.
[0032]
Next, the operation in the longitudinal traveling mode in step 3 will be described with reference to FIGS. FIG. 7 is a flowchart showing the operation in the vertical traveling mode. In step 31, a vertical traveling mode is set, and in step 32, a vertical traveling mode operation, that is, reciprocating traveling in the Y direction which is perpendicular to the wall along the start of the circulating mode is performed. In step 33, it is confirmed whether or not the X coordinate including the error has reached the minimum value Xmin. That is, it is confirmed whether or not the range in which the error by the error estimating means is considered in the X coordinate by the position recognizing means includes the minimum value of the X coordinate in consideration of the error stored in the traveling range storage means. That is, if Xmin exists between a value (x−Ex) obtained by subtracting the error from the current X coordinate x and a value (x + Ex) obtained by adding the error to the current X coordinate x, it is regarded as the minimum value Xmin. If the X coordinate in which the error is added is not the minimum value Xmin, the longitudinal reciprocation is continued in step 32.
[0033]
If the X coordinate including the error becomes the minimum value Xmin in step 33, it is determined in step 34 whether or not there is an obstacle before. If there is an obstacle before, the process ends. If there is no obstacle in front at step 34, reciprocation in the vertical direction is continued at step 32. In other words, even when an error occurs in position detection, erroneous termination can be reduced by the condition that termination is performed if there is a wall before. FIG. 8 is a diagram showing an example of traveling in the longitudinal traveling mode. Reciprocating traveling in the vertical direction is performed from the start position of the longitudinal traveling, and when the X coordinate taking into account the error becomes the minimum value Xmin and the front becomes an obstacle such as a wall, the longitudinal traveling ends.
[0034]
Next, the operation of the movement 2 in step 4 will be described with reference to FIGS. FIG. 9 is a flowchart showing the movement 2 operation. In step 41, the user moves along the wall. Whether the Y coordinate in consideration of the error in step 42 has reached the minimum value Ymin, that is, the range in which the error by the error estimating means has been added to the Y coordinate by the position recognition means takes into account the error stored in the traveling range storage means. Check whether the minimum value of the Y coordinate is included. If not included, the movement along the wall is continued in step 41. If the range in which the error by the error estimating means is taken into account in the Y coordinate by the position recognizing means in step 42 includes the minimum value of the Y coordinate in consideration of the error stored in the traveling range storage means, in step 43, an obstacle is detected before the obstacle. Check if there is. If there is no obstacle, the moving along the wall is continued in step 41. If there is an obstacle, the process ends.
[0035]
FIG. 10 is a diagram showing a traveling example of the movement 2. Movement 2 is performed from the end position of the round running, and moves to the start position of the vertical running. If the Y coordinate considering the error becomes the maximum value Ymax and there is an obstacle before, the movement 2 is ended. In other words, even when an error occurs in position detection, erroneous termination can be reduced by the condition that termination is performed if there is a wall before.
[0036]
Next, the operation of the side running mode in step 5 will be described with reference to FIGS. FIG. 11 is a flowchart showing the operation in the side running mode. In step 51, the vehicle is set in the lateral traveling mode. In step 52, the vehicle travels in the lateral traveling mode, that is, reciprocates in the X direction parallel to the wall along the start of the orbiting mode. In step 53, it is confirmed whether or not the Y coordinate taking the error into consideration has reached the maximum value Ymax. That is, it is confirmed whether or not the range in which the error by the error estimating unit is considered in the Y coordinate by the position recognizing unit includes the minimum value of the Y coordinate in consideration of the error stored in the traveling range storage unit. In other words, if Ymax exists between a value (y-Ey) obtained by subtracting the error from the current Y coordinate y and a value (y + Ey) obtained by adding the error to the current Y coordinate y, it is regarded as the maximum value Ymax. If the Y coordinate taking the error into consideration is not the maximum value Ymax, the longitudinal reciprocation is continued in step 52.
[0037]
If the X coordinate including the error reaches the maximum value Ymax in step 53, it is determined in step 54 whether or not there is an obstacle before, and if there is an obstacle before, the process ends. If there is no obstacle before in step 54, reciprocation in the vertical direction is continued in step 52. In other words, even when an error occurs in position detection, erroneous termination can be reduced by the condition that termination is performed if there is a wall before. FIG. 12 is a diagram showing an example of traveling in the lateral traveling mode. Reciprocating traveling in the horizontal direction is performed from the start position of the lateral traveling, and when the Y coordinate taking into account the error becomes the maximum value Xmax and the front becomes an obstacle such as a wall, the longitudinal traveling ends.
[0038]
Next, the operation of the movement 3 in step 6 will be described with reference to FIGS. FIG. 13 is a flowchart showing the operation of the movement 3. In step 61, the user moves along the wall. In step 62, it is checked whether or not the (X, Y) coordinates considering the error have reached the start position, that is, the origin (0, 0). In step 61, the movement along the wall is continued. If it becomes the origin (0, 0) in step 62, the process ends. FIG. 14 is a diagram illustrating a running example of the movement 3. The movement 3 is performed from the end position of the lateral traveling, and moves to the traveling start position which is the end position. When the (X, Y) coordinates taking into account the error become the start position, that is, the origin (0, 0), the movement 3 ends. That is, the operation is stopped after returning to the position where the traveling started.
[0039]
FIG. 15 shows a diagram in which all traveling trajectories of the orbiting mode, the longitudinal traveling mode, and the lateral traveling mode are superimposed and displayed. As shown in FIG. 15, according to the present embodiment, furniture and the like are placed in a complicated arrangement, and the guide means is not used even during automatic traveling in a room or the like where position detection accuracy is difficult to obtain due to slippage of the floor or the like. Automatic driving can be performed throughout.
[0040]
A program according to a tenth aspect of the present invention causes a computer to function as a part of the self-propelled device according to any one of the first to ninth aspects. Since the program is a program, a part of the self-propelled device of the present invention can be easily realized using a general-purpose computer or a server. Further, by recording the program on a recording medium or distributing the program using a communication line, distribution and installation of the program can be easily performed. FIGS. 2, 3, 5, 7, 9, 11, and 13 show flowcharts of the programs in the above-described operation program.
[0041]
【The invention's effect】
As described above, according to the present invention, even when the furniture or the like is arranged in a complicated manner, and the position detection accuracy is not easily obtained due to slippage of the floor or the like, it is possible to automatically perform the automatic travel without using the guide means. Running equipment can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a self-propelled device according to a first embodiment of the present invention. FIG. 2 is a flowchart showing the same operation. FIG. 3 is a flowchart showing an operation in the same circuit mode. FIG. 5 is a flowchart showing an operation of the movement 1 FIG. 6 is a diagram showing a traveling example of the movement 1 FIG. 7 is a flowchart showing an operation of the same vertical traveling mode FIG. FIG. 9 is a flowchart showing an example of travel 2 of the same movement. FIG. 10 is a flowchart showing an example of travel of the same movement 2. FIG. 11 is a flowchart showing an operation of the same horizontal travel mode. FIG. 13 is a flowchart showing the operation of the movement 3; FIG. 14 is a diagram showing an example of the movement of the movement 3; FIG. 15 is a diagram showing the entire traveling locus; FIG. Schematic diagram of running equipment [Figure 17] The control mechanism of the self-propelled equipment To block diagram DESCRIPTION OF SYMBOLS
DESCRIPTION OF SYMBOLS 1 Main body 2 Running means 3 Travel control means 4 Mode control means 5 Autonomous control means 6 Obstacle recognition means 7 Side distance measuring means 8 Position recognition means 9 Travel range storage means 10 Travel planning means 11 Error estimation means

Claims (10)

走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、前方の障害物を認識する障害物認識手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段と、前記位置認識手段の認識位置の誤差を推定する誤差推定手段とを備え、前記自律制御手段は、前記走行範囲記憶手段が記憶した走行範囲の情報と前記障害物認識手段の情報と前記誤差推定手段の推定結果とに基づいて走行計画を行う走行計画手段を有する自走機器。Traveling means, mode control means for instructing a predetermined traveling pattern, autonomous control means for controlling the traveling means according to the mode control means, obstacle recognizing means for recognizing an obstacle ahead, and a traveling position. Position recognition means for recognizing, a traveling range storage means for storing a traveling range from a recognition position of the position recognition means during traveling, and an error estimating means for estimating an error of a recognition position of the position recognition means, A self-propelled device having a travel planning means for performing a travel plan based on information on a travel range stored in the travel range storage means, information on the obstacle recognition means, and an estimation result of the error estimation means. モード制御手段は部屋中を走行するように設定され、壁に沿って部屋を一周する周回モード、前記周回モード開始時に沿った壁と垂直に往復走行を行う縦走行モード、前記周回モード開始時に沿った壁と平行に往復走行を行う横走行モードの順にモード移行を行い、モード移行時には次モード開始のための移動を行う請求項1に記載の自走機器。The mode control means is set to run in the room, a circulating mode for making a round around the room along the wall, a vertical running mode for performing reciprocating running perpendicular to the wall along the start of the circulating mode, 2. The self-propelled device according to claim 1, wherein the mode transition is performed in the order of the lateral traveling mode in which the vehicle reciprocates parallel to the wall, and the mode transition is performed to start the next mode. 位置認識手段は周回モード開始点を原点、最初に沿った壁方向をX軸の正方向、X軸に垂直に反時計回り90°の方向をY軸の正方向としたXY座標として位置を出力し、誤差推定手段は前記位置認識手段の出力するX座標とY座標それぞれの誤差を出力し、走行範囲記憶手段は前記周回モード中のX座標に誤差値を加算した値の最小値、Y座標に誤差値を加算した値の最小値、X座標から誤差値を減算した値の最大値及びY座標から誤差値を減算した値の最大値を記憶する請求項2に記載の自走機器。The position recognizing means outputs the position as the XY coordinates with the origin of the orbiting mode start point, the first wall direction along the X axis as the positive direction, and the 90 ° counterclockwise direction perpendicular to the X axis as the Y axis positive direction. The error estimating means outputs an error of each of the X coordinate and the Y coordinate output from the position recognizing means, and the traveling range storage means stores a minimum value of an error value added to the X coordinate in the orbiting mode, a Y coordinate. 3. The self-propelled device according to claim 2, wherein a minimum value of a value obtained by adding an error value to the maximum value, a maximum value of a value obtained by subtracting the error value from the X coordinate, and a maximum value of a value obtained by subtracting the error value from the Y coordinate are stored. 走行計画手段は、周回モードの終了位置と縦走行モード及び横走行モードの開始位置及び終了位置を、誤差推定手段と位置認識手段及び走行範囲記憶手段に記憶された走行範囲の情報とを用いて決定する請求項3に記載の自走機器。The travel planning means uses the error estimation means, the position recognition means, and the travel range information stored in the travel range storage means to determine the end position of the orbit mode and the start position and end position of the vertical travel mode and the lateral travel mode. The self-propelled device according to claim 3, which determines. 走行計画手段は周回モードの終了位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲に、周回モード開始位置であるX、Y座標の原点が含まれたときとする請求項4に記載の自走機器。The travel planning means sets the end position of the orbiting mode when the origin of the X and Y coordinates as the orbiting mode start position is included in a range in which the X coordinate by the position recognition means and the error by the error estimating means are considered. 4. The self-propelled device according to 4. 走行計画手段は縦走行モードの開始位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているX座標の最大値を含むとともに障害物認識手段が前方に障害物を認識したときとする請求項4に記載の自走機器。The travel planning means includes a start position of the longitudinal traveling mode, a range in which an error by the error estimating means is considered in the X coordinate by the position recognizing means includes a maximum value of the X coordinate stored in the traveling range storage means, and an obstacle recognizing means. 5. The self-propelled device according to claim 4, wherein the device recognizes an obstacle ahead. 走行計画手段は縦走行モードの終了位置を、位置認識手段によるX座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているX座標の最小値を含むとともに障害物認識手段が前方に障害物を認識したときとする請求項4に記載の自走機器。The travel planning means includes an end position of the longitudinal travel mode, a range in which an error by the error estimating means is considered in the X coordinate by the position recognizing means includes a minimum value of the X coordinate stored in the traveling range storage means, and an obstacle recognizing means. 5. The self-propelled device according to claim 4, wherein the device recognizes an obstacle ahead. 走行計画手段は横走行モードの開始位置を、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているY座標の最小値を含むとともに障害物認識手段が前方に障害物を認識したときとする請求項4に記載の自走機器。The travel planning means includes a start position of the lateral traveling mode, a range in which an error estimated by the error estimating means is included in the Y coordinate by the position recognizing means includes a minimum value of the Y coordinate stored in the traveling range storage means, and an obstacle recognizing means. 5. The self-propelled device according to claim 4, wherein the device recognizes an obstacle ahead. 走行計画手段は横走行モードの終了位置を、位置認識手段によるY座標に誤差推定手段による誤差を考慮した範囲が走行範囲記憶手段の記憶しているY座標の最大値を含むとともに障害物認識手段が前方に障害物を認識したときとする請求項4に記載の自走機器。The travel planning means determines the end position of the lateral travel mode, the range in which the error by the error estimating means is considered in the Y coordinate by the position recognizing means includes the maximum value of the Y coordinate stored in the traveling range storage means, and the obstacle recognizing means. 5. The self-propelled device according to claim 4, wherein the device recognizes an obstacle ahead. コンピュータを請求項1〜9のいずれか1項に記載の自走機器の全てまたはその一部を機能させるためのプログラム。A program for causing a computer to function all or a part of the self-propelled device according to any one of claims 1 to 9.
JP2003017381A 2003-01-27 2003-01-27 Self-propelled equipment and program therefor Pending JP2004227474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017381A JP2004227474A (en) 2003-01-27 2003-01-27 Self-propelled equipment and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017381A JP2004227474A (en) 2003-01-27 2003-01-27 Self-propelled equipment and program therefor

Publications (1)

Publication Number Publication Date
JP2004227474A true JP2004227474A (en) 2004-08-12

Family

ID=32904547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017381A Pending JP2004227474A (en) 2003-01-27 2003-01-27 Self-propelled equipment and program therefor

Country Status (1)

Country Link
JP (1) JP2004227474A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120510A (en) * 1985-11-21 1987-06-01 Hitachi Ltd Control method for automatic cleaner
JPH0659733A (en) * 1991-09-04 1994-03-04 Nec Home Electron Ltd Autonomously traveling robot and power source cord carrying method therefor
JP2000172337A (en) * 1998-12-07 2000-06-23 Mitsubishi Electric Corp Autonomous mobile robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120510A (en) * 1985-11-21 1987-06-01 Hitachi Ltd Control method for automatic cleaner
JPH0659733A (en) * 1991-09-04 1994-03-04 Nec Home Electron Ltd Autonomously traveling robot and power source cord carrying method therefor
JP2000172337A (en) * 1998-12-07 2000-06-23 Mitsubishi Electric Corp Autonomous mobile robot

Similar Documents

Publication Publication Date Title
EP3552532B1 (en) Method for angle correction of mobile robot in working area and mobile robot
CN107765688B (en) Autonomous mobile robot and automatic docking control method and device thereof
US7239105B2 (en) Method compensating gyro sensor for robot cleaner
CN108628312B (en) Method for detecting stuck robot, method for controlling stuck robot and chip
KR101338143B1 (en) Apparatus and Method for Detecting Slip of a Mobile Robot
JP2007213236A (en) Method for planning route of autonomously traveling robot and autonomously traveling robot
CN110597265A (en) Recharging method and device for sweeping robot
KR20090053263A (en) Control method of robot cleaner system
JP2009223757A (en) Autonomous mobile body, control system, and self-position estimation method
CN111407188A (en) Mobile robot repositioning method and device and mobile robot
WO2020100265A1 (en) Autonomous work machine, control method for autonomous work machine, and program
JP2004049778A (en) Self-propelled vacuum cleaner, and its program
JP2004227474A (en) Self-propelled equipment and program therefor
CN112190186B (en) Route planning method and system of sweeping robot and sweeping robot
JP2004227473A (en) Self-propelled equipment and program therefor
Cupec et al. Vision-guided humanoid walking—Concepts and experiments
JP3237500B2 (en) Autonomous mobile work vehicle
EP1468342B1 (en) Position determination method
KR20080041890A (en) Sensing method of robot cleaner, recording medium and robot cleaner
JP2006215860A (en) Autonomous traveling device
KR102121458B1 (en) Method for path finding of robot cleaner for automatic charging and robot cleaner using the same
JP2005025500A (en) Self-propelled equipment and its program
JP7322799B2 (en) Self-localization device
JPH06331400A (en) Sensor fusion method
US11561550B2 (en) Robotic cleaner having distance sensors for use in estimating a velocity of the robotic cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127