JP2005025500A - Self-propelled equipment and its program - Google Patents

Self-propelled equipment and its program Download PDF

Info

Publication number
JP2005025500A
JP2005025500A JP2003190118A JP2003190118A JP2005025500A JP 2005025500 A JP2005025500 A JP 2005025500A JP 2003190118 A JP2003190118 A JP 2003190118A JP 2003190118 A JP2003190118 A JP 2003190118A JP 2005025500 A JP2005025500 A JP 2005025500A
Authority
JP
Japan
Prior art keywords
mode
travel
dead end
traveling
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190118A
Other languages
Japanese (ja)
Inventor
Yumiko Hara
由美子 原
Tetsuya Koda
哲也 甲田
Keiko Noda
桂子 野田
Hiroaki Kako
裕章 加来
Hirotsugu Kamiya
洋次 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003190118A priority Critical patent/JP2005025500A/en
Publication of JP2005025500A publication Critical patent/JP2005025500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide self-propelled equipment which automatically travels in every corner without using a guide means even when it automatically travels in a room where pieces of furniture or the like are placed in a complicated layout, and a dead end exists. <P>SOLUTION: This self-propelled equipment is provided with a position recognizing means 8 which recognizes the position where it is travelling and a travelling range storing means 9 which stores the scale of a range where it is travelling from the recognized position of the position recognizing means 8. An autonomous control means 5 is provided with a travelling planning means 10 which makes a travelling plan based on the information on the travelling range stored by the travelling range storing means 9 and a dead end dealing means 11 which judges dealings with a dead end. Thus, it is possible to provide self-propelled equipment which efficiently and automatically travels in every corner according to a preliminarily decided traveling pattern even when it automatically travels in a room where pieces of furniture are placed in a complicated layout, and a dead end exists without installing a guide means, or inputting the maps of the shape of a room and the layout of furniture. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動走行を行って室内を自動的に移動し、室内を隈無く塗りつぶすように走行する自走機器に関するものである。
【0002】
【従来の技術】
従来の自走機器は、位置を制御するためにガイド装置を使用している(例えば、特許文献1参照)。
【0003】
図16、図17は、前記公報に記載された従来の自走機器の模式図、制御機構のブロック図をそれぞれ示すものである。図16、図17において、102および103はガイド手段、113はCCDカメラ、120は画像処理装置、121は現在位置算出部、124は位置確定部である。CCDカメラ113はガイド手段102、103の不在個所走行時に、位置指標でもあるガイド手段102、103を視覚的に検出する電気光学手段である。現在位置算出部121はエンコーダ119からの情報に基づき現在位置を算出する第1算出部122と、画像処理装置120からの情報に基づき現在位置を算出する第2算出部123と、これら両算出部122,123の算出結果及びガイド手段検出器109,110、停止位置検出器111の検出結果に基づき現在位置を確定する位置確定部124とより構成する。即ち走行時の車輪のスリツプの発生などに係わらず、電気光学手段113の検出結果により現在位置を正確に確認して走行することができるものであった。
【0004】
【特許文献1】
特開平03−229311号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成は、あらかじめ設定されたガイド手段に従って自走するものである。従って例えば走行のための特別な方向規定テープなどの設置が出来ない家庭内で自走しながら部屋中を隈無く走行し清掃する自走機器に用いた場合に清掃し残す床面が発生する。特に、コの字型の家具配置によって生じる行き止まりがある場合に行き止まりで清掃を終了すると清掃もれが広範囲で発生する可能性が有る。前記従来の構成は以上のような課題を有していた。
【0006】
本発明は、前記従来の課題を解決するもので、家具などが複雑な配置で置いてあり行き止まりのある室内などの自動走行時にもガイド手段を用いることなく隈無く自動走行を行う自走機器を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の自走機器は、走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段とを備え、前記自律制御手段は前記走行範囲記憶手段が記憶した走行範囲の情報に基づいて走行計画を行う走行計画手段と行き止まりでの動作を決定する行き止まり対応手段を有する自走機器とするものである。
【0008】
これによって、走行した範囲の大きさを記憶し、記憶した走行範囲の情報と行き止まり検知手段による行き止まり情報に基づいて走行計画を行うことにより、家具などが複雑な配置で置いてあり行き止まりのある室内などの自動走行時にもガイド手段を設けたり部屋の形状と家具配置のマップを入力したりせずに、あらかじめ定めた走行パターンに従って効率よく隈無く自律走行を行うことができる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段とを備え、前記自律制御手段は前記走行範囲記憶手段が記憶した走行範囲の情報に基づいて走行計画を行う走行計画手段と行き止まりでの動作を決定する行き止まり対応手段を有する自走機器とすることにより、走行した範囲の大きさを記憶し、記憶した走行範囲の情報と行き止まり検知手段による行き止まり情報に基づいて走行計画を行うことにより、家具などが複雑な配置で置いてあり行き止まりのある室内などの自動走行時にもガイド手段を設けたり部屋の形状と家具配置のマップを入力したりせずに、あらかじめ定めた走行パターンに従って効率よく隈無く自律走行を行うことができる。
【0010】
請求項2に記載の発明は、特に、請求項1に記載のモード制御手段は、部屋を塗りつぶすように設定され、壁に沿って部屋を一周する周回モード、周回モード開始時に沿った壁と垂直な往復走行を行う縦走行モード・周回モード開始時に沿った壁と平行に往復走行を行う横走行モードの順にモード移行を行い、モード移行時には次モード開始のための移動を行う自走機器とすることにより、自律走行で部屋の周囲と縦方向往復横方向往復で規則的に清掃することで行き止まりがある場合にも隈無く自律走行を行うことができる。
【0011】
請求項3に記載の発明は、特に、請求項2に記載の位置認識手段は、周回モード開始点を原点、最初に沿った壁方向をX軸の正方向、X軸に垂直に反時計回り90°の方向をY軸の正方向としたXY座標として位置を出力し、走行範囲記憶手段は周回モード終了後に部屋のX座標の最小値・最大値、Y座標の最小値・最大値を記憶する自走機器とすることにより、周回モード中に部屋の大きさを簡単に把握することにより部屋の形状によらずに行き止まりに対応して隈無く自律走行することができる。
【0012】
請求項4に記載の発明は、特に、請求項3に記載の走行計画手段は、周回モードの終了位置・縦走行モード及び横走行モードの開始位置と終了位置を位置認識手段と走行範囲記憶手段に記憶された走行範囲情報を用いて決定し、自律制御手段は走行計画手段による走行計画と行き止まり対応手段による行き止まり時の動作指示に基づいて自律制御を行う自走機器とすることにより、部屋の形状を走行計画に簡単に反映することで、行き止まりがある場合にも部屋の形状に合わせて走行漏れのない自律走行ができる。
【0013】
請求項5に記載の発明は、特に、請求項4に記載の行き止まり対応手段は、行き止まり検知手段を備え、縦走行モード及び横走行モードにおいて行き止まり検知手段が行き止まりを検知した際に位置認識手段による位置がモードの終了位置の場合はモードの終了を指示し、位置認識手段による位置がモードの終了位置でない場合は行き止まりからの脱出を指示する自走機器とすることにより、行き止まりの条件に合致する場所が該当モードでの清掃終了位置かどうかを正しく判断して隈無く清掃することができる。
【0014】
請求項6に記載の発明は、特に、コンピュータを請求項1〜5のいずれか1項に記載の自走機器の全てまたはその一部を機能させるためのプログラムとすることにより、コンピュータを請求項1〜5のいずれか1記載の自走機器の全てもしくは一部として機能させることで、汎用コンピュータやサーバーを用いて本発明の自走機器の一部あるいは全てを容易に実現することができる。
【0015】
【実施例】
以下本発明の実施例について図面を参照しながら説明する。
【0016】
(実施例1)
図1は本実施例の第1の実施例における自走機器の概略構成を示す。1は本体、2は走行手段で本実施例では前進又は後退を行う駆動輪で構成している。3は走行制御手段で走行手段2である駆動輪の回転速度を制御することで本体1の走行速度及び回転を制御して所定の方向へ所定の速度で走行を行う。4はモード制御手段であらかじめ定めた走行パターンをモードの移行として指示する。5は自律制御手段でモード制御手段4の指示するモードに従って走行制御手段3を制御する。6は障害物認識手段で本体前方の障害物を認識する。本実施例では障害物認識手段6は超音波センサで実現している。
【0017】
7は側方測距手段で側方壁との距離を測定する。側方測距手段7は本実施例では赤外線測距センサを用いている。8は位置認識手段で現在位置を認識する。位置認識手段8は本実施例ではジャイロセンサと走行距離センサを備え、走行距離センサのみでなくジャイロセンサによる方向を用いることで現在位置をより正確に認識するものである。9は走行範囲記憶手段で走行中の位置認識手段8の認識位置から走行した範囲の大きさを記憶する。10はモードごとに走行の計画を行う走行計画手段、11は行き止まりの際に対応方法を指示する行き止まり対応手段であり、走行計画手段10と行き止まり対応手段11は自律制御手段5を構成する。
【0018】
本実施例では走行制御手段3、モード制御手段4、自律制御手段5、走行範囲記憶手段9、走行計画手段10、行き止まり対応手段11はマイクロコンピュータで構成している。
【0019】
次に、図2から図15を用いて自律走行動作の概略を説明する。図2は自律走行動作を示すフローチャートである。自律走行動作を開始すると、ステップ1の周回モードで部屋を一周する周回走行を行う。次にステップ2で縦走行モード開始位置への移動1を行い、ステップ3で縦方向の往復走行である縦走行を行う。次にステップ4で横走行の開始位置への移動である移動2を行い、ステップ5で横方向の往復走行である横走行を行う。ステップ6は終了のための移動3である。
【0020】
次に図3、図4を用いて周回モードの動作を説明する。図3はステップ1の周回走行動作を示すフローチャートである。周回モードは壁に沿って部屋を一周するモードで、図3のステップ11で開始時の座標を原点すなわち(X、Y)=(0,0)に設定した後、壁沿いに部屋を一周する。周回モードで走行する間、ステップ12で右壁との距離が所定値aとなるように壁との距離を保ちながら直進する。
【0021】
また、同時に位置認識手段8による位置データからX、Yそれぞれの最大値、最小値を更新する。すなわち、記憶している最大値より大きな値が認識されたときに最大値を更新し、最小値より小さい値が認識されたときに最小値を更新する。
【0022】
ステップ13で座標(X、Y)が開始位置(0,0)に戻ったかどうかを確認し、戻れば終了する。戻っていない場合はステップ14で前に障害物がないか確認し、無ければステップ12を繰り返し、前に壁や家具などの障害物があれば前進可能になるまで回転した後にステップ12に戻って壁沿い走行を続ける。図4は周回モードでの走行例を示した図であり、12は部屋の壁、13は家具である。本体1は図4に示す周回開始位置(0,0)から壁沿いの周回走行を開始して壁に沿って部屋の外周を一周したのち、原点(0,0)すなわち、周回開始点に戻ると周回走行を終了する。
【0023】
次に図5、図6を用いてステップ2の移動1の動作を説明する。図5は移動1動作を示すフローチャートである。ステップ21で壁沿いに移動を行い、ステップ22でX座標が最大値Xmaxになったかどうかを確認し、最大でなければステップ21で壁沿い移動を続ける。ステップ22で最大になれば終了する。図6は移動1の走行例を示した図である。周回走行の終了位置から移動1を行い、縦走行の開始位置へと移動する。X座標が最大値Xmaxになると移動1を終了する。
【0024】
次に図7、図8を用いてステップ3の縦走行モードの動作を説明する。図7は縦走行モードの動作を示すフローチャートである。ステップ31で縦走行モードとし、ステップ32で縦走行モード動作、すなわち周回モード開始時に沿った壁と垂直方向であるY方向への往復走行を行い、ステップ33で行き止まり対応手段11が「行き止まり」かつ「X座標が最小値Xminになったかどうか」を確認し、行き止まりでないか、または、X座標が最小値Xminでなければステップ32で縦方向の往復走行を続ける。ステップ33で「行き止まり」かつ「X座標が最小値Xmin」になれば終了する。
【0025】
図8は縦走行モードの走行例を示した図である。縦走行の開始位置から縦方向の往復走行を行う。点Aで行き止まり対応手段11は「行き止まり」であるが「X座標が最小値Xminでない」ため縦走行モードを続行し、部屋の端にあるB点では「行き止まり」かつ「X座標が最小値Xmin」となるため縦走行を終了する。ここで、行き止まり対応手段11は壁もしくは障害物のために目標進行方向、すなわち縦走行モードでは横方向、への前進が出来ない状況を「行き止まり」と認識する。このように行き止まり対応手段11は、行き止まりの場合でも部屋の端まで走行できていない場合には行き止まりを抜け出して走行を続けるよう対応することで、部屋の中央の家具などによって走行が中断されてしまうのを防ぐことができる。
【0026】
次に図9、図10を用いてステップ4の移動2の動作を説明する。図9は移動2動作を示すフローチャートである。ステップ41で壁沿いに移動を行い、ステップ42でY座標が最小値Yminになったかどうかを確認し、最小でなければステップ41で壁沿い移動を続ける。ステップ42で最小になれば終了する。図10は移動2の走行例を示した図である。縦走行の終了位置から移動2を行い、横走行の開始位置へと移動する。Y座標が最小値Yminになると移動2を終了する。
【0027】
次に図11、図12を用いてステップ5の横走行モードの動作を説明する。図11は横走行モードの動作を示すフローチャートである。ステップ51で横走行モードとし、ステップ52で横走行モード動作、すなわち周回モード開始時に沿った壁と平行方向であるX方向への往復走行を行い、ステップ53で行き止まり対応手段11が「行き止まり」かつ「Y座標が最大値Xmaxになったかどうか」を確認し、行き止まりでないかまたはY座標が最大値Xmaxでなければステップ52で横方向の往復走行を続ける。ステップ53でY座標が最大値Xmaxになれば横走行モードを終了する。図12は横走行モードの走行例を示した図である。横走行の開始位置から横方向の往復走行を行う。点Cで行き止まり対応手段11は「行き止まり」であるが「Y座標が最大値Ymaxでない」ため縦走行モードを続行し、部屋の端にあるD点では「行き止まり」かつ「Y座標が最大値Ymax」となるため縦走行を終了する。
【0028】
次に図13、図14を用いてステップ6の移動3の動作を説明する。図13は移動3動作を示すフローチャートである。ステップ61で壁沿いに移動を行い、ステップ62で(X、Y)座標が開始位置、即ち原点(0,0)になったかどうかを確認し、原点(0,0)でなければステップ61で壁沿い移動を続ける。ステップ62で原点(0,0)になれば終了する。図14は移動3の走行例を示した図である。横走行の終了位置から移動3を行い、終了位置である走行開始位置へと移動する。(X、Y)座標が開始位置、即ち原点(0,0)になると移動3を終了する。つまり、走行を開始した位置に戻って動作を停止するわけである。
【0029】
図15に周回モード、縦走行モード、横走行モードの全走行軌跡を重ねて表示した図を示す。図15に示すように、本実施例によると、家具などが複雑な配置で置いてあり行き止まりのある室内などの自動走行時にもガイド手段を用いることなく隈無く自動走行を行うことができる。
【0030】
また、本実施例のプログラムは、コンピュータを本実施例の自走式機器の一部として機能させるものである。そして、プログラムであるので汎用コンピュータやサーバーを用いて本発明の自走機器の一部を容易に実現することができる。また記録媒体に記録したり通信回線を用いてプログラムを配信したりすることでプログラムの配布やインストール作業が簡単にできる。以上述べた動作のプログラムの実施例として、図2、3、5、7、9、11、13にプログラムのフローチャートを示すものである。
【0031】
以上述べたように、本実施例に寄れば家具などが複雑に配置され、行き止まりのある室内などの自動走行時にも、ガイド手段を用いることなく隈無く自動走行を行う自走機器を実現できるものである。
【0032】
【発明の効果】
以上のように、本発明によれば、走行した範囲の大きさを記憶し、記憶した走行範囲の情報等に基づいて走行計画を行うことにより、家具などが複雑な配置に置かれ、行き止まりのある室内などの自動走行時にも、ガイド手段を設けたり部屋の形状と家具配置のマップを入力したりせずに、あらかじめ定めた走行パターンに従って効率よく隈無く自律走行を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における自走機器の構成図
【図2】同、動作を示すフローチャート
【図3】同、動作を示す他のフローチャート
【図4】同、走行例を示す図
【図5】同、動作を示す他のフローチャート
【図6】同、走行例を示す図
【図7】同、動作を示す他のフローチャート
【図8】同、走行例を示す図
【図9】同、動作を示す他のフローチャート
【図10】同、走行例を示す図
【図11】同、動作を示す他のフローチャート
【図12】同、走行例を示す図
【図13】同、動作を示す他のフローチャート
【図14】同、走行例を示す図
【図15】同、他の走行例を示す図
【図16】従来の自走機器の模式図
【図17】同、自走機器の制御機構を示すブロック図
【符号の説明】
1 本体
2 走行手段
3 走行制御手段
4 モード制御手段
5 自律制御手段
6 障害物認識手段
7 側方測距手段
8 位置認識手段
9 走行範囲記憶手段
10 走行計画手段
11 行き止まり対応手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-propelled device that automatically travels in a room and travels so as to fill the room without any wrinkles.
[0002]
[Prior art]
Conventional self-propelled devices use a guide device to control the position (see, for example, Patent Document 1).
[0003]
FIGS. 16 and 17 show a schematic diagram of a conventional self-propelled device described in the publication and a block diagram of a control mechanism, respectively. 16 and 17, reference numerals 102 and 103 denote guide means, 113 denotes a CCD camera, 120 denotes an image processing apparatus, 121 denotes a current position calculation unit, and 124 denotes a position determination unit. The CCD camera 113 is an electro-optical means that visually detects the guide means 102 and 103 that are also position indicators when the guide means 102 and 103 are traveling at a location where they are absent. The current position calculation unit 121 includes a first calculation unit 122 that calculates a current position based on information from the encoder 119, a second calculation unit 123 that calculates a current position based on information from the image processing apparatus 120, and both of these calculation units. The position determination unit 124 determines the current position based on the calculation results 122 and 123, the guide means detectors 109 and 110, and the detection result of the stop position detector 111. That is, regardless of the occurrence of slipping of the wheels during traveling, the current position can be accurately confirmed based on the detection result of the electro-optical means 113 and the vehicle can travel.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 03-229311
[Problems to be solved by the invention]
However, the conventional configuration is self-propelled according to preset guide means. Therefore, for example, when used in a self-propelled device that travels and cleans throughout the room while self-propelled in a home where a special direction regulating tape or the like for traveling cannot be installed, a floor surface that remains uncleaned is generated. In particular, when there is a dead end caused by the U-shaped furniture arrangement, there is a possibility that a cleaning leak may occur in a wide range when cleaning is completed due to the dead end. The conventional configuration has the above-described problems.
[0006]
The present invention solves the above-described conventional problems, and provides a self-propelled device that can automatically travel without using guide means even during automatic traveling such as indoors where furniture or the like is placed in a complicated arrangement and has a dead end. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problem, a self-propelled device according to the present invention includes a traveling means, a mode control means for instructing a predetermined traveling pattern, and an autonomous control means for controlling the traveling means according to the mode control means. A position recognizing unit for recognizing a position during traveling, and a traveling range storage unit for storing a traveling range from a recognized position of the position recognizing unit during traveling. The autonomous control unit stores the traveling range storing unit. A self-propelled device having travel planning means for making a travel plan based on information on the travel range and dead end response means for determining an operation at a dead end is provided.
[0008]
Thus, the size of the traveled range is stored, and the travel plan is performed based on the stored travel range information and the dead end information by the dead end detection means, so that furniture and the like are placed in a complicated arrangement and have a dead end. It is possible to perform autonomous traveling efficiently and efficiently according to a predetermined traveling pattern without providing guide means or inputting a map of room shape and furniture layout even during automatic traveling such as.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a travel means, a mode control means for instructing a predetermined travel pattern, an autonomous control means for controlling the travel means in accordance with the mode control means, and a position for recognizing a traveling position. Recognizing means, and travel range storage means for storing the travel range from the recognition position of the position recognition means during travel, the autonomous control means is based on the travel range information stored in the travel range storage means By using a self-propelled device having a travel plan means for performing a dead end operation and a dead end corresponding means for determining an action at a dead end, the size of the traveled range is stored, and the stored travel range information and the dead end information by the dead end detecting means are stored. Based on the travel plan, the guide means even during automatic travel such as indoors where furniture is placed in a complicated arrangement and has a dead end Without or type the provided or shape and map furniture arrangement room, it can be performed efficiently thoroughly without autonomous driving in accordance with the running pattern determined in advance.
[0010]
In the invention described in claim 2, in particular, the mode control means described in claim 1 is set so as to fill the room, and is a round mode in which the room goes around the wall and is perpendicular to the wall along the start of the round mode. The mode shifts in the order of the vertical travel mode that performs reciprocal travel and the lateral travel mode that reciprocates parallel to the wall along the start of the revolving mode, and the self-propelled device that moves to start the next mode at the time of mode transition Thus, autonomous traveling can be performed without hesitation even when there is a dead end by regularly cleaning the surroundings of the room by vertical reciprocation and horizontal reciprocation in autonomous traveling.
[0011]
According to a third aspect of the present invention, in particular, the position recognizing means according to the second aspect is characterized in that the rotation mode start point is the origin, the wall direction along the first is the positive direction of the X axis, and the counterclockwise rotation is perpendicular to the X axis. The position is output as XY coordinates with the 90 ° direction as the positive direction of the Y axis, and the travel range storage means stores the minimum and maximum values of the X coordinate of the room and the minimum and maximum values of the Y coordinate after the end of the lap mode. By using the self-propelled device, it is possible to autonomously travel without hesitation corresponding to the dead end regardless of the shape of the room by easily grasping the size of the room during the circulation mode.
[0012]
According to a fourth aspect of the present invention, in particular, the travel planning means according to the third aspect is characterized in that the end position / vertical travel mode and the start position and end position of the lateral travel mode are determined as position recognition means and travel range storage means. The autonomous control means is a self-propelled device that performs autonomous control based on a travel plan by the travel plan means and an operation instruction at the time of dead end by the dead end response means. By simply reflecting the shape in the travel plan, autonomous travel can be performed without omission in accordance with the shape of the room even when there is a dead end.
[0013]
According to a fifth aspect of the present invention, in particular, the dead end handling means according to the fourth aspect includes a dead end detection means, and the position recognition means detects when the dead end detection means detects a dead end in the longitudinal traveling mode and the lateral traveling mode. When the position is the end position of the mode, the end of the mode is instructed. When the position by the position recognition means is not the end position of the mode, the self-propelled device is instructed to escape from the dead end. It is possible to clean without hesitation by correctly judging whether the place is the cleaning end position in the corresponding mode.
[0014]
The invention described in claim 6 particularly claims the computer by using the computer as a program for causing all or part of the self-propelled device described in any one of claims 1 to 5 to function. By making it function as all or part of the self-propelled device according to any one of 1 to 5, part or all of the self-propelled device of the present invention can be easily realized using a general-purpose computer or a server.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
(Example 1)
FIG. 1 shows a schematic configuration of a self-propelled device in the first embodiment of the present embodiment. Reference numeral 1 denotes a main body, and reference numeral 2 denotes traveling means, which in the present embodiment are constituted by drive wheels that move forward or backward. 3 is a traveling control means that controls the traveling speed and rotation of the main body 1 by controlling the rotational speed of the driving wheel that is the traveling means 2 to travel in a predetermined direction at a predetermined speed. 4 designates a predetermined traveling pattern as mode transition by the mode control means. Reference numeral 5 denotes an autonomous control means for controlling the travel control means 3 in accordance with the mode designated by the mode control means 4. 6 is an obstacle recognition means for recognizing an obstacle in front of the main body. In this embodiment, the obstacle recognition means 6 is realized by an ultrasonic sensor.
[0017]
7 is a side distance measuring means for measuring the distance from the side wall. The lateral distance measuring means 7 uses an infrared distance measuring sensor in this embodiment. 8 is a position recognition means for recognizing the current position. In this embodiment, the position recognizing means 8 includes a gyro sensor and a travel distance sensor, and recognizes the current position more accurately by using the direction of the gyro sensor as well as the travel distance sensor. Reference numeral 9 denotes a travel range storage unit that stores the size of the range traveled from the recognized position of the traveling position recognition unit 8. Reference numeral 10 denotes travel planning means for planning a travel for each mode, reference numeral 11 denotes dead end response means for instructing a response method when a dead end occurs, and the travel planning means 10 and the dead end response means 11 constitute an autonomous control means 5.
[0018]
In this embodiment, the travel control means 3, the mode control means 4, the autonomous control means 5, the travel range storage means 9, the travel plan means 10, and the dead end response means 11 are constituted by a microcomputer.
[0019]
Next, an outline of the autonomous traveling operation will be described with reference to FIGS. FIG. 2 is a flowchart showing the autonomous running operation. When the autonomous traveling operation is started, the traveling around the room is performed in the circulation mode of Step 1. Next, in Step 2, a movement 1 to the vertical travel mode start position is performed, and in Step 3, a vertical travel that is a reciprocal travel in the vertical direction is performed. Next, in Step 4, a movement 2 that is a movement to the start position of the lateral travel is performed, and in a step 5, a lateral travel that is a reciprocal travel in the lateral direction is performed. Step 6 is move 3 for termination.
[0020]
Next, the operation in the circular mode will be described with reference to FIGS. FIG. 3 is a flowchart showing the round running operation of Step 1. The round mode is a mode in which the room goes around the wall. In step 11 in FIG. 3, the starting coordinates are set to the origin, that is, (X, Y) = (0, 0), and then the room goes around the wall. . While traveling in the round mode, the vehicle travels straight while maintaining the distance from the wall so that the distance from the right wall becomes a predetermined value a in step 12.
[0021]
At the same time, the maximum and minimum values of X and Y are updated from the position data by the position recognition means 8. That is, the maximum value is updated when a value larger than the stored maximum value is recognized, and the minimum value is updated when a value smaller than the minimum value is recognized.
[0022]
In step 13, it is confirmed whether or not the coordinates (X, Y) have returned to the start position (0, 0). If not, check in step 14 if there are any obstacles in front. If not, repeat step 12. If there are obstacles such as walls and furniture in front, rotate until you can move forward, then return to step 12 Continue running along the wall. FIG. 4 is a diagram showing an example of traveling in the lap mode, in which 12 is a wall of the room and 13 is furniture. The main body 1 starts to circulate along the wall from the lap start position (0, 0) shown in FIG. 4 and goes around the outer periphery of the room along the wall, and then returns to the origin (0, 0), that is, the lap start point. And end the lap driving.
[0023]
Next, the operation of the movement 1 in step 2 will be described with reference to FIGS. FIG. 5 is a flowchart showing the movement 1 operation. In step 21, the movement is performed along the wall. In step 22, it is confirmed whether or not the X coordinate reaches the maximum value Xmax. If the maximum is reached in step 22, the process ends. FIG. 6 is a diagram showing an example of traveling of the movement 1. Movement 1 is performed from the end position of the circular travel, and it moves to the start position of the vertical travel. When the X coordinate reaches the maximum value Xmax, the movement 1 is finished.
[0024]
Next, the operation in the vertical traveling mode in step 3 will be described with reference to FIGS. FIG. 7 is a flowchart showing the operation in the longitudinal traveling mode. In step 31, the longitudinal traveling mode is set, and in step 32, the longitudinal traveling mode operation, that is, the reciprocating traveling in the Y direction, which is perpendicular to the wall along the start of the circulation mode, is performed. It is checked whether or not the X coordinate has reached the minimum value Xmin, and if it is not a dead end or if the X coordinate is not the minimum value Xmin, the longitudinal reciprocation is continued in step 32. If “dead end” and “X coordinate is minimum value Xmin” in step 33, the process ends.
[0025]
FIG. 8 is a diagram showing an example of traveling in the longitudinal traveling mode. A vertical reciprocation is performed from the start position of the vertical travel. At the point A, the dead end handling means 11 is “dead end”, but the “X coordinate is not the minimum value Xmin”, so the longitudinal traveling mode is continued, and at the point B at the end of the room, the “dead end” and the “X coordinate is the minimum value Xmin”. ”To complete the vertical travel. Here, the dead end handling means 11 recognizes a situation in which the vehicle cannot advance in the target traveling direction, that is, in the lateral direction in the longitudinal traveling mode, due to a wall or an obstacle as a “dead end”. In this way, the dead end handling means 11 stops running due to the furniture in the center of the room, etc., in response to exiting the dead end and continuing running when it is not able to travel to the end of the room even in the case of dead end. Can be prevented.
[0026]
Next, the operation of the movement 2 in step 4 will be described with reference to FIGS. FIG. 9 is a flowchart showing the movement 2 operation. In step 41, the movement is performed along the wall. In step 42, it is confirmed whether the Y coordinate has reached the minimum value Ymin. If it becomes the minimum in step 42, the process ends. FIG. 10 is a diagram showing a traveling example of the movement 2. Movement 2 is performed from the end position of the longitudinal travel, and the travel position is moved to the start position of the lateral travel. When the Y coordinate reaches the minimum value Ymin, the movement 2 ends.
[0027]
Next, the operation in the lateral running mode in step 5 will be described with reference to FIGS. FIG. 11 is a flowchart showing the operation in the lateral travel mode. In step 51, the transverse travel mode is set, and in step 52, the lateral travel mode operation, that is, the reciprocal travel is performed in the X direction parallel to the wall along the start of the circulation mode. It is confirmed whether or not the Y coordinate has reached the maximum value Xmax, and if the dead end is not a dead end or the Y coordinate is not the maximum value Xmax, the reciprocating travel in the horizontal direction is continued in step 52. If the Y coordinate reaches the maximum value Xmax in step 53, the lateral travel mode is terminated. FIG. 12 is a diagram showing an example of traveling in the lateral traveling mode. A reciprocal travel in the horizontal direction is performed from the start position of the lateral travel. At the point C, the dead end handling means 11 is “dead end”, but the “Y coordinate is not the maximum value Ymax”, so the longitudinal traveling mode is continued. At the point D at the end of the room, the “dead end” and the “Y coordinate are the maximum value Ymax”. ”To complete the vertical travel.
[0028]
Next, the operation of the movement 3 in step 6 will be described with reference to FIGS. FIG. 13 is a flowchart showing the movement 3 operation. In step 61, movement is performed along the wall. In step 62, it is checked whether the (X, Y) coordinates are at the start position, that is, the origin (0, 0). Continue moving along the wall. If the origin (0, 0) is reached in step 62, the process is terminated. FIG. 14 is a diagram showing a travel example of the movement 3. Movement 3 is performed from the end position of the lateral travel, and the travel position is reached to the travel start position that is the end position. When the (X, Y) coordinates become the start position, that is, the origin (0, 0), the movement 3 is finished. That is, the operation is stopped after returning to the position where the traveling is started.
[0029]
FIG. 15 shows a diagram in which all the traveling loci in the lap mode, the longitudinal traveling mode, and the lateral traveling mode are displayed in an overlapping manner. As shown in FIG. 15, according to the present embodiment, automatic traveling can be performed without using guide means even during automatic traveling in a room where furniture or the like is placed in a complicated arrangement and has a dead end.
[0030]
The program of this embodiment causes a computer to function as a part of the self-propelled device of this embodiment. And since it is a program, a part of self-propelled apparatus of this invention can be easily implement | achieved using a general purpose computer or a server. Also, program distribution and installation can be simplified by recording on a recording medium or distributing a program using a communication line. As an example of the program of the operation described above, FIGS. 2, 3, 5, 7, 9, 11, and 13 show program flowcharts.
[0031]
As described above, according to the present embodiment, furniture and the like are arranged in a complicated manner, and a self-propelled device that can automatically run without using a guide means can be realized even during automatic running in a dead-end room or the like It is.
[0032]
【The invention's effect】
As described above, according to the present invention, the size of the traveled range is stored, and the travel plan is performed based on the stored travel range information, etc., so that furniture and the like are placed in a complicated arrangement, and a dead end is achieved. Even during automatic traveling in a room or the like, autonomous traveling can be performed efficiently and efficiently according to a predetermined traveling pattern without providing guide means or inputting a map of the room shape and furniture layout.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a self-propelled device according to a first embodiment of the present invention. FIG. 2 is a flowchart showing the operation. FIG. 3 is another flowchart showing the operation. FIG. 5 is a flowchart showing another operation. FIG. 6 is a diagram showing a running example. FIG. 7 is another flowchart showing an operation. FIG. 8 is a diagram showing a running example. 9] Other flowchart showing the operation [FIG. 10] Same as above, FIG. 11 showing the example of running [FIG. 11] Same as the above, other flowchart showing the operation [FIG. 12] Same as FIG. FIG. 14 is a diagram showing an example of traveling. FIG. 15 is a diagram showing another example of traveling. FIG. 16 is a schematic diagram of a conventional self-propelled device. FIG. Block diagram showing equipment control mechanism 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Main body 2 Traveling means 3 Traveling control means 4 Mode control means 5 Autonomous control means 6 Obstacle recognition means 7 Side distance measuring means 8 Position recognition means 9 Traveling range storage means 10 Travel planning means 11 Dead end response means

Claims (6)

走行手段と、あらかじめ定めた走行パターンを指示するモード制御手段と、前記走行手段を前記モード制御手段に従って制御する自律制御手段と、走行中の位置を認識する位置認識手段と、走行中の前記位置認識手段の認識位置から走行範囲を記憶する走行範囲記憶手段とを備え、前記自律制御手段は前記走行範囲記憶手段が記憶した走行範囲の情報に基づいて走行計画を行う走行計画手段と行き止まりでの動作を決定する行き止まり対応手段を有する自走機器。Traveling means, mode control means for instructing a predetermined traveling pattern, autonomous control means for controlling the traveling means in accordance with the mode control means, position recognition means for recognizing a position during traveling, and the position during traveling Travel range storage means for storing the travel range from the recognition position of the recognition means, and the autonomous control means is a travel plan means for making a travel plan based on the travel range information stored by the travel range storage means and a dead end A self-propelled device having a dead end response means for determining operation. モード制御手段は部屋を塗りつぶすように設定され、壁に沿って部屋を一周する周回モード、周回モード開始時に沿った壁と垂直な往復走行を行う縦走行モード・周回モード開始時に沿った壁と平行に往復走行を行う横走行モードの順にモード移行を行い、モード移行時には次モード開始のための移動を行う請求項1に記載の自走機器。The mode control means is set so as to fill the room, the round mode that goes around the room along the wall, the vertical run mode that makes a round trip perpendicular to the wall along the start of the round mode, parallel to the wall along the start of the round mode The self-propelled device according to claim 1, wherein mode transition is performed in the order of the lateral travel mode in which reciprocal travel is performed, and movement for starting the next mode is performed at the time of mode transition. 位置認識手段は周回モード開始点を原点、最初に沿った壁方向をX軸の正方向、X軸に垂直に反時計回り90°の方向をY軸の正方向としたXY座標として位置を出力し、走行範囲記憶手段は周回モード終了後に部屋のX座標の最小値・最大値、Y座標の最小値・最大値を記憶する請求項2に記載の自走機器。The position recognition means outputs the position as an XY coordinate with the starting point of the rotation mode as the origin, the first wall direction along the X axis as the positive direction of the X axis, and the 90 ° counterclockwise direction perpendicular to the X axis as the positive direction of the Y axis. 3. The self-propelled device according to claim 2, wherein the traveling range storage means stores the minimum and maximum values of the X coordinate and the minimum and maximum values of the Y coordinate after the end of the round mode. 走行計画手段は周回モードの終了位置・縦走行モード及び横走行モードの開始位置と終了位置を位置認識手段と走行範囲記憶手段に記憶された走行範囲情報を用いて決定し、自律制御手段は走行計画手段による走行計画と行き止まり対応手段による行き止まり時の動作指示に基づいて自律制御を行う請求項3に記載の自走機器。The travel plan means determines the end position of the lap mode, the start position and the end position of the longitudinal travel mode and the lateral travel mode using the travel range information stored in the position recognition means and the travel range storage means, and the autonomous control means travels. The self-propelled device according to claim 3, wherein autonomous control is performed based on a travel plan by the planning means and an operation instruction at a dead end by the dead end response means. 行き止まり対応手段は行き止まり検知手段を備え、縦走行モード及び横走行モードにおいて行き止まり検知手段が行き止まりを検知した際に位置認識手段による位置がモードの終了位置の場合はモードの終了を指示し、位置認識手段による位置がモードの終了位置でない場合は行き止まりからの脱出を指示する請求項4に記載の自走機器。The dead end response means includes a dead end detection means. When the dead end detection means detects a dead end in the longitudinal travel mode and the lateral travel mode, if the position by the position recognition means is the end position of the mode, the end of the mode is instructed. The self-propelled device according to claim 4, wherein when the position by the means is not the end position of the mode, an instruction to escape from the dead end is given. コンピュータを請求項1〜5のいずれか1項に記載の自走機器の全てまたはその一部を機能させるためのプログラム。The program for functioning all or one part of the self-propelled apparatus of any one of Claims 1-5 for a computer.
JP2003190118A 2003-07-02 2003-07-02 Self-propelled equipment and its program Pending JP2005025500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190118A JP2005025500A (en) 2003-07-02 2003-07-02 Self-propelled equipment and its program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190118A JP2005025500A (en) 2003-07-02 2003-07-02 Self-propelled equipment and its program

Publications (1)

Publication Number Publication Date
JP2005025500A true JP2005025500A (en) 2005-01-27

Family

ID=34188098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190118A Pending JP2005025500A (en) 2003-07-02 2003-07-02 Self-propelled equipment and its program

Country Status (1)

Country Link
JP (1) JP2005025500A (en)

Similar Documents

Publication Publication Date Title
US6574536B1 (en) Moving apparatus for efficiently moving on floor with obstacle
US6119057A (en) Autonomous vehicle with an easily set work area and easily switched mode
EP3439522B1 (en) Autoscrubber convertible between manual and autonomous operation
KR102445731B1 (en) How to predict and control the robot&#39;s driving
WO2016031263A1 (en) Autonomous mobile object and autonomous mobile object system
JP6052045B2 (en) Autonomous mobile
JP7019179B2 (en) Travel route setting device for field work vehicle, field work vehicle, travel route setting method for field work vehicle, and program for travel route setting
US9599987B2 (en) Autonomous mobile robot and method for operating the same
US20200397202A1 (en) Floor treatment by means of an autonomous mobile robot
WO2014048597A1 (en) Autonomous mobile robot and method for operating the same
JP2009123061A (en) System for detecting robot position
CN112806912B (en) Robot cleaning control method and device and robot
EP3892426A1 (en) Autonomously traveling mobile robot and traveling control method therefor
JP6348971B2 (en) Moving body
JP2009223757A (en) Autonomous mobile body, control system, and self-position estimation method
KR20080098842A (en) Cleaning robot unit and cleaning method using thereof
JP2010026727A (en) Autonomous moving device
WO2020100265A1 (en) Autonomous work machine, control method for autonomous work machine, and program
JPH0884696A (en) Cleaning robot control method and device therefor
JPH09204223A (en) Autonomous mobile working vehicle
JP3237500B2 (en) Autonomous mobile work vehicle
JP2005025500A (en) Self-propelled equipment and its program
JP2003256043A (en) Self-propelled work apparatus, self-propelled cleaner and travel data distributing method for self-propelled work apparatus
JP2017037398A (en) Automatic drive vehicle
CN115500737A (en) Ground medium detection method and device and cleaning equipment