JP2004227458A - Simulation method for dynamic characteristic of semiconductor device - Google Patents

Simulation method for dynamic characteristic of semiconductor device Download PDF

Info

Publication number
JP2004227458A
JP2004227458A JP2003017182A JP2003017182A JP2004227458A JP 2004227458 A JP2004227458 A JP 2004227458A JP 2003017182 A JP2003017182 A JP 2003017182A JP 2003017182 A JP2003017182 A JP 2003017182A JP 2004227458 A JP2004227458 A JP 2004227458A
Authority
JP
Japan
Prior art keywords
semiconductor element
control
lattice
power supply
dynamic characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017182A
Other languages
Japanese (ja)
Inventor
Saburo Tagami
三郎 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003017182A priority Critical patent/JP2004227458A/en
Publication of JP2004227458A publication Critical patent/JP2004227458A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the simulation method of the dynamic characteristics of a semiconductor device capable of stably and accurately solving the dynamic characteristics of a semiconductor element/circuit system control semiconductor element even when the potential of the low potential side main electrode of the control semiconductor element floats. <P>SOLUTION: A capacitor 1 of a capacitance value C is connected between a lattice point (i, j) and a lattice point (i+i, j) connected to the control electrode and low potential main electrode of a control semiconductor element, and a resistance 2 of a resistance value ro is connected to the both sides, and charge quantities(+Qout, -Qout) whose codes are different are simultaneously injected or discharged from the outside to those lattice points. Thus, it is possible to safely and accurately solve the dynamic characteristics of the semiconductor element/circuit system control semiconductor element even when the potential of the low potential side main electrode of the control semiconductor element floats. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、IGBT(絶縁ゲート型バイポーラトランジスタ)などの制御半導体素子を含む複数の半導体素子の内部状態を、種々の外部回路が接続されている状態で解くことにより、半導体素子の動特性を高速且つ正確に予測するシミュレーション方法に関し、特に、制御半導体素子を制御する制御電源が浮遊しているときにも適用可能なシミュレーション方法に関する。
【0002】
【従来の技術】
半導体装置はその内部に種々の導電形や不純物濃度を持つ半導体領域を備え、その設計や性能向上を図るに際し、これら半導体領域内の電子と正孔の分布や移動の様子を詳しく知る必要がある。しかし、かかる内部の様子を実際に測定するのは不可能なので、計算機技術を利用したシミュレーションによって計算する方法が利用される。
制御半導体素子(例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFETなど)を含む複数の半導体素子の状態方程式と外部回路方程式を単一マトリックス上で一括して解く方法は既に開示されている(例えば、特許文献1)。この特許文献1で示される具体的なシミュレーションの対象回路としては、本文献の図5に示すような、制御半導体素子(IGBT)を制御する制御電源が接地されている場合である。この接地されている場合で他の例として本明細書の図5のような実回路があり、3個のIGBT21を並列接続し、各制御電源は接地されている。尚、図中の22はダイオード、23は抵抗、24はコンデンサ、25はインダクタンス、26はゲート電源、27はドレイン電源である。
【0003】
【特許文献1】
特開平10−223879号公報
【0004】
【発明が解決しようとする課題】
しかし、一般的な回路としては、前記の制御電源は必ずしも接地されていない。例えば、図6で示すような制御半導体素子であるIGBT31から33を直列接続した高電圧回路(回路ではIGBT部のみ示す)や、図7に示すような上アームのIGBT43、44と下アームのIGBT41、42で構成されるインバータ回路の場合には、高電位側に配置された上アームのIGBT43、44を駆動する制御電源の電位(基準位側端子57、58の電位)は浮遊電位となる。このように制御電源が浮遊電位にある場合には、前記の図5や特許文献1の図5で示すように制御電源が接地された場合のシミュレーション方法では解を得ることはできない。尚、図6の34〜36はゲート電源(制御電源)、HVは高電圧電源の高電位側電位、37〜39は配線インダクタンスである。また、図7の45〜48はフリーホイール用のダイオード、49〜52はゲート電源(制御電源)、53〜56は配線インダクタンス、57、58はゲート電源の基準電位側端子である。
【0005】
この発明の目的は、前記の課題を解決して、制御半導体素子を制御する制御電源の電位が浮遊した場合でも、半導体素子−回路系において制御半導体素子の動特性を正確に、且つ、安定に解くことができる半導体装置の動特性のシミュレーション方法を提供することにある。
【0006】
【課題を解決するための手段】
前記の目的を達成するために、複数の半導体素子と外部回路とが接続された半導体素子−回路系で、複数の半導体素子が互いに独立に分割された直交差分格子と、不規則な四辺形から成る回路格子とがマトリックスの五対角性を維持して全体格子中に配置され、該全体格子から導かれる単一の全体マトリックスから前記半導体素子−回路系の動特性を一括して解く半導体装置の動特性のシミュレーション方法において、前記半導体素子に制御電極を有する制御半導体素子が含まれ、該制御半導体素子を制御する制御電源の一方の端子に当たる第1格子点と該制御電源の他方の端子に当たる第2格子点の間にコンデンサを配置し、前記第1、第2格子点に大きさが等しく符号の異なる電荷を同時に注入することで該制御半導体素子の動特性を解くことができるシミュレーション方法とする。
【0007】
また、複数の半導体素子と外部回路とが接続された半導体素子−回路系で、複数の半導体素子が互いに独立に分割された直交差分格子と、格子番号の二次元配列(i、j)によって定義された仮想的な回路格子とがマトリックスの五対角性を維持して全体格子中に配置され、該全体格子から導かれる単一の全体マトリックスから前記半導体素子−回路系の動特性を一括して解く半導体装置の動特性のシミュレーション方法において、前記半導体素子に制御電極を有する制御半導体素子が含まれ、該制御半導体素子を制御する制御電源の一方の端子に当たる第1格子点と該制御電源の他方の端子に当たる第2格子点の間にコンデンサを配置し、前記第1、第2格子点に大きさが等しく符号の異なる電荷を同時に注入することで該制御半導体素子の動特性を解くシミュレーション方法とする。
【0008】
また、外部回路の動作方程式を積分形に変換し、この変換した外部回路の動作方程式と半導体素子内部の状態方程式とを連立させて、半導体素子−回路系の動特性を一括して解くとよい。
前記したように、外部回路中にコンデンサを配置し、その両端の格子点に大きさが等しく符号の異なる電荷を注入もしくは排出することにより、制御半導体素子の制御電源の電位が浮遊した場合でも、制御電源端子間に所定の制御電圧を印加することができる。
【0009】
【発明の実施の形態】
図1は、この発明の一実施例の半導体装置の動特性のシミュレーション方法を説明するための図。尚、同図(a)は±Qout が無い一般的な場合の図、同図(a)は±Qout が有る場合の図である。
この制御半導体素子は、図2のダイアグラムに従って変化する制御電源電圧(ゲート電圧)によって制御されるものとする。尚、図2の縦軸は制御電源(ゲート電源)の電圧Vg(V)を示し、横軸は時間tを示す。
前記の特許文献1において、制御半導体素子を制御する制御電源の一方の端子(高電位側端子)と他方の端子(低電位側端子:基準電位側端子)に接続する格子点を図1(a)に示すようにそれぞれ格子点(i、j)、格子点(i+1、j)とし、格子点(i、j)と格子点(i+1、j)の間に容量値Cのコンデンサ1を接続し、その両側には抵抗値ro の抵抗2のリード線を接続する。図示しない格子点に制御半導体素子の制御電極と低電位側電極に相当する格子点がある。以下に説明する内容は特許文献1に開示されていない内容である。
【0010】
説明を単純にするために、二次元格子点(i、j)を一次元格子点(i)で表す。格子点(i)に流入または流出する電流を各々J(i−1) 、J(i) とすれば
【0011】
【数1】
J(i) =−(C/Δt)×〔(φ(i+1)−φ(i) )−(φ(i +1)−φ(i) )〕・・・(1)
【0012】
【数2】
J(i−1) =−r×(φ(i) −φ(i−1) )・・・(2)
ここでΔtは微小時間、φは時刻t+Δtにおける格子点の電位、φは時刻tにおける格子点の電位である。J(i) はコンデンサ中を流れる変位電流を表している。これを電荷量で表せば、
【0013】
【数3】
Q(i) =−C×〔(φ(i+1)−φ(i) )−(φ(i +1)−φ(i) )〕・・・・(3)
【0014】
【数4】
Q(i−1) =−r×(φ(i) −φ(i−1) )×Δt・・・(4)
キルヒホッフの法則により
【0015】
【数5】
Q(i) −Q(i−1) =0・・・(5)
となる。
ここでQ(i) 、Q(i−1) を試行値<Q(i) >、<Q(i−1) >と修正値δQ(i) 、δQ(i −1) で表せば、
【0016】
【数6】
(<Q(i) >+δQ(i) )−(<Q(i−1) >+δQ(i−1) )=0・・・(6)
【0017】
【数7】
δQ(i) −δQ(i−1) =−(<Q(i) >−<Q(i−1) >)・・・(7)
これを偏微分で表わせば
【0018】
【数8】
〔(∂Q(i) /∂φ(i) )∂φ(i) +(∂Q(i) /∂φ(i+1))∂φ(i+1)〕−〔(∂Q(i−1) /∂φ(i) )∂φ(i) +(∂Q(i−1) /∂φ(i−1) )∂φ(i−1) 〕=−(<Q(i) >−<Q(i−1) >)・・・(8)
(8)式を整理して
【0019】
【数9】
A(i) δφ(i−1) +B(i) δφ(i) +C(i) δφ(i+1)=F(i) ・・・(9)
これがコンデンサの格子点(i)に関する行列方程式でる。
ヤコビアンは各々
【0020】
【数10】
A(i) =−(∂Q(i−1) /∂φ(i−1) )=−r×Δt・・・(10)
【0021】
【数11】
B(i) =(∂Q(i) /∂φ(i) )−(∂Q(i−1) /∂φ(i) )=C+r×Δt・・・(11)
【0022】
【数12】
C(i) =∂Q/∂φ(i+1)=C・・・(12)
【0023】
【数13】
F(i) =−(<Q(i) >−<Q(i−1) >)・・・(13)
同様にして格子点(i+1)に関するヤコビアンA(i+1)、B(i+1)、C(i+1)、F(i+1)が求められる。
ここで図2のダイヤグラムに沿ってコンデンサの端子間の電圧を変化させることを考える。図(b)に示すように、外部から格子点(i)、(i+1)に各々電荷+Qout 、−Qout を同時に注入することによりΔtの間にΔVだけ電圧が変化したとすると、
【0024】
【数14】
out =C×ΔV・・・(14)
out が格子点(i)に注入されると、キルヒホッフの法則に従って、(5)式に相当する式は、格子点(i)に流入する場合を−符号、格子点(i)から流出する場合を+符号とすると、
【0025】
【数15】
Q(i) −Q(i−1) −Qout =0・・・(15)
となる。Qout (+Qout のこと)は、複数の半導体素子と外部回路と接続された半導体素子−回路系の電位φに依存しない定数と見做されるから行列方程式である(9)式の右辺のみが変わって
【0026】
【数16】
F(i) =−(<Q(i) >−<Q(i−1) >)+Qout ・・・(16)
となる。
同様に格子点(i+1)に関しては
【0027】
【数17】
F(i+1)=−(<Q(i+1) >−<Q(i) >)−Qout ・・・(17)
となる。
このようにして行列方程式の右辺に外部からの注入電荷の項を付加するだけで格子点(i)、(i+1)間の電圧を自由に制御できる。このとき、ヤコビアンA、B、Cは不変であるから解の収束性には何ら問題は生じない。
このように、コンデンサに注入する電荷量もしくは排出する電荷量を変化させることで、制御半導体素子を制御する制御電源の電位が浮遊している場合でも、所定の制御電圧波形を制御半導体素子に印加できる。
【0028】
また、変換装置が動作することで、制御電源の浮遊電位が激しく変動した場合でも、正確に所定の制御電圧波形を制御半導体素子に印加できる。
尚、制御電源の電位が接地されている場合も浮遊電位が0Vと見做されるからこのシミュレーション方法で解を得ることができる。
図3は、本発明を適用した例で、2個のMOSFETを直列に接続した場合の図である。
高電位側(上側)のMOSFET102のドレイン電極13bはドレイン電源14によってVD が印加される。静的な状態ではVD は2個のMOSFET101、102によってほぼ均等に分担されるから上側のMOSFET102のゲート電源EG2の基準電位側端子15bの電位はVD /2となる。2個のMOSFETのゲート・ソースの電極間(11aと12aの間、11bと12bの間)には配線インダクタンスL1、L2や図示しない配線抵抗を介してそれぞれゲート電源EG1、EG2が接続しており、このゲート電源EG1、EG2は図2で示すような共通のダイヤグラムで変化する制御電圧(ゲート電圧)によってMOSFET101、102は制御される。
【0029】
図4は、図3の2個のMOSFETのゲート電源の電圧波形とドレイン電流波形の一例を示す図である。ドレイン電圧としてVD =57V、ゲート電源EG1、EG2の働きをするコンデンサの容量値C(図1の格子点(i) 、格子点(i+1) に接続するコンデンサ1の容量値C)を1.2Fとする(この容量値は任意に定めて構わない)。上側のMOSFET102を制御するゲート電源EG2の基準電位側端子15bの電位は浮遊変動しているにも係わらず2個のMOSFET101、102を制御するゲート電源の電圧Vg1、Vg2の波形はほぼ重なっており正確にゲート制御が行われている。点線で示すID はドレイン電流である。また、このシミュレーション方法は3次元に対しても適用可能である。
【0030】
【発明の効果】
この発明によれば、制御半導体素子を含む多数の半導体素子と回路を自由に組み合わせた半導体素子−回路系において、制御半導体素子を制御する制御電源の基準電位側端子と高電位側端子に相当する格子点間にコンデンサを配置し、この格子点に異なる符号の電荷量を注入することで、制御電源の電位が浮遊変動する場合でも半導体装置の動特性を収束性を損なうことなく正確、且つ、安定に解くことができる。
【図面の簡単な説明】
【図1】この発明の一実施例の半導体装置の動特性のシミュレーション方法を説明するための図で同図(a)は±Qout が無い一般的な場合の図、同図(a)は±Qout が有る場合の図
【図2】この制御半導体素子を制御する制御電源のダイヤグラム図(ゲート電源の電圧波形図)
【図3】本発明を適用した例で、2個のMOSFETを直列に接続した場合の図
【図4】図3の2個のMOSFETのゲート電圧波形とドレイン電流波形の一例を示す図
【図5】制御半導体素子(IGBT)の低電位主電極(エミッタ電極)が全て接地している場合の実回路の図
【図6】制御半導体素子を直列接続した高電圧回路図
【図7】インバータ回路図
【符号の説明】
1 コンデンサ
2 抵抗
11a、11b ソース電極
12a、12b ゲート電極
13a、13b ドレイン電極
14 ドレイン電圧
101、102 MOSFET
EG1、EG2 ゲート電源
Vg1、Vg2 ゲート電源電圧(ゲート電圧)
VD ドレイン電圧
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention solves the internal states of a plurality of semiconductor elements including a control semiconductor element such as an IGBT (insulated gate bipolar transistor) in a state where various external circuits are connected, thereby increasing the dynamic characteristics of the semiconductor elements at high speed. The present invention relates to a simulation method for accurately predicting, and more particularly, to a simulation method applicable even when a control power supply for controlling a control semiconductor element is floating.
[0002]
[Prior art]
A semiconductor device includes semiconductor regions having various conductivity types and impurity concentrations therein, and when designing and improving performance, it is necessary to know in detail the distribution and movement of electrons and holes in these semiconductor regions. . However, since it is impossible to actually measure such an internal state, a method of calculating by simulation using computer technology is used.
A method of collectively solving a state equation and an external circuit equation of a plurality of semiconductor elements including a control semiconductor element (for example, an IGBT (insulated gate bipolar transistor) and a MOSFET) on a single matrix has already been disclosed (for example, , Patent Document 1). As a specific circuit to be simulated shown in Patent Document 1, a control power supply for controlling a control semiconductor element (IGBT) is grounded as shown in FIG. 5 of this document. As another example of this grounding, there is an actual circuit as shown in FIG. 5 of the present specification, in which three IGBTs 21 are connected in parallel, and each control power supply is grounded. In the figure, 22 is a diode, 23 is a resistor, 24 is a capacitor, 25 is an inductance, 26 is a gate power supply, and 27 is a drain power supply.
[0003]
[Patent Document 1]
JP-A-10-223879
[Problems to be solved by the invention]
However, as a general circuit, the control power is not always grounded. For example, a high voltage circuit in which IGBTs 31 to 33, which are control semiconductor elements, are connected in series as shown in FIG. , 42, the potential of the control power supply (potential of the reference side terminals 57, 58) for driving the IGBTs 43, 44 of the upper arm disposed on the high potential side becomes a floating potential. As described above, when the control power supply is at the floating potential, a solution cannot be obtained by the simulation method when the control power supply is grounded as shown in FIG. 5 and FIG. In FIG. 6, reference numerals 34 to 36 denote a gate power supply (control power supply), HV denotes a high potential side potential of a high voltage power supply, and 37 to 39 denote wiring inductances. 7, 45 to 48 are freewheeling diodes, 49 to 52 are gate power supplies (control power supplies), 53 to 56 are wiring inductances, and 57 and 58 are reference potential side terminals of the gate power supplies.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, and to accurately and stably adjust dynamic characteristics of a control semiconductor element in a semiconductor element-circuit system even when a potential of a control power supply for controlling the control semiconductor element floats. An object of the present invention is to provide a method for simulating dynamic characteristics of a semiconductor device which can be solved.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in a semiconductor element-circuit system in which a plurality of semiconductor elements and an external circuit are connected, an orthogonal difference lattice in which a plurality of semiconductor elements are independently divided from each other, and an irregular quadrilateral. And a circuit lattice comprising a matrix composed of a matrix and a matrix arranged in the entire lattice while maintaining the diagonality of the matrix, and solving the dynamic characteristics of the semiconductor element-circuit system from a single overall matrix derived from the overall lattice. In the method for simulating dynamic characteristics, the semiconductor element includes a control semiconductor element having a control electrode, and the first lattice point corresponding to one terminal of a control power supply for controlling the control semiconductor element corresponds to the other terminal of the control power supply. By disposing a capacitor between the second lattice points and simultaneously injecting electric charges having the same magnitude and different signs into the first and second lattice points, the dynamic characteristics of the control semiconductor element are solved. And simulation methods that can be.
[0007]
Also, in a semiconductor element-circuit system in which a plurality of semiconductor elements and an external circuit are connected, the semiconductor element is defined by an orthogonal differential lattice in which the plurality of semiconductor elements are divided independently from each other and a two-dimensional array (i, j) of lattice numbers. And a virtual circuit lattice are arranged in the overall lattice while maintaining the five-diagonality of the matrix, and the dynamic characteristics of the semiconductor element-circuit system are collectively collected from a single overall matrix derived from the overall lattice. In the method for simulating dynamic characteristics of a semiconductor device, a control semiconductor element having a control electrode is included in the semiconductor element, a first grid point corresponding to one terminal of a control power supply for controlling the control semiconductor element, and a control grid of the control power supply. A capacitor is disposed between the second lattice points corresponding to the other terminals, and charges having the same magnitude and different signs are simultaneously injected into the first and second lattice points to thereby control the control semiconductor element. The simulation method for solving the dynamic characteristics.
[0008]
Further, it is preferable that the operation equation of the external circuit is converted into an integral form, the converted operation equation of the external circuit and the state equation inside the semiconductor element are simultaneously established, and the dynamic characteristics of the semiconductor element-circuit system are collectively solved. .
As described above, by arranging a capacitor in an external circuit and injecting or discharging charges having the same sign and different signs at lattice points at both ends, even when the potential of the control power supply of the control semiconductor element floats, A predetermined control voltage can be applied between the control power supply terminals.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram for explaining a method for simulating dynamic characteristics of a semiconductor device according to one embodiment of the present invention. FIG. 7A is a diagram of a general case without ± Qout, and FIG. 7A is a diagram of a case with ± Qout.
This control semiconductor element is controlled by a control power supply voltage (gate voltage) that changes according to the diagram of FIG. Note that the vertical axis in FIG. 2 represents the voltage Vg (V) of the control power supply (gate power supply), and the horizontal axis represents time t.
In Patent Document 1, grid points connected to one terminal (high potential side terminal) and the other terminal (low potential side terminal: reference potential side terminal) of a control power supply for controlling a control semiconductor element are shown in FIG. ), A grid point (i, j) and a grid point (i + 1, j) are provided, respectively, and a capacitor 1 having a capacitance value C is connected between the grid point (i, j) and the grid point (i + 1, j). A lead wire of a resistor 2 having a resistance value ro is connected to both sides thereof. There are grid points (not shown) corresponding to the control electrode of the control semiconductor element and the low potential side electrode. The contents described below are contents that are not disclosed in Patent Document 1.
[0010]
For simplicity, the two-dimensional grid point (i, j) is represented by a one-dimensional grid point (i). If the currents flowing into or out of the grid point (i) are J (i-1) and J (i), respectively,
(Equation 1)
J (i) = − (C / Δt) × [(φ (i + 1) −φ (i)) − (φ 0 (i + 1) −φ 0 (i))] (1)
[0012]
(Equation 2)
J (i−1) = − r 0 × (φ (i) −φ (i−1)) (2)
Here Delta] t is the potential of the grid points in the short time, phi is the grid point at time t + Delta] t potential, phi 0 is the time t. J (i) represents a displacement current flowing in the capacitor. If this is expressed in terms of charge,
[0013]
[Equation 3]
Q (i) = − C × [(φ (i + 1) −φ (i)) − (φ 0 (i + 1) −φ 0 (i))] (3)
[0014]
(Equation 4)
Q (i−1) = − r 0 × (φ (i) −φ (i−1)) × Δt (4)
According to Kirchhoff's law,
(Equation 5)
Q (i) −Q (i−1) = 0 (5)
It becomes.
Here, if Q (i) and Q (i-1) are represented by trial values <Q (i)> and <Q (i-1)> and correction values δQ (i) and δQ (i−1),
[0016]
(Equation 6)
(<Q (i)> + δQ (i)) − (<Q (i−1)> + δQ (i−1)) = 0 (6)
[0017]
(Equation 7)
δQ (i) −δQ (i−1) = − (<Q (i)> − <Q (i−1)>) (7)
If this is expressed by partial differentiation,
(Equation 8)
[(∂Q (i) / ∂φ (i)) ∂φ (i) + (∂Q (i) / ∂φ (i + 1)) ∂φ (i + 1)] − [(∂Q (i−1) / ∂φ (i)) ∂φ (i) + (∂Q (i-1) / ∂φ (i-1)) ∂φ (i-1)] = − (<Q (i)> − <Q ( i-1)>) (8)
Rearranging the equation (8)
(Equation 9)
A (i) δφ (i−1) + B (i) δφ (i) + C (i) δφ (i + 1) = F (i) (9)
This is the matrix equation for the grid point (i) of the capacitor.
Each Jacobian is [0020]
(Equation 10)
A (i) = - (∂Q (i-1) / ∂φ (i-1)) = - r 0 × Δt ··· (10)
[0021]
[Equation 11]
B (i) = (∂Q (i) / ∂φ (i)) − (∂Q (i−1) / ∂φ (i)) = C + r 0 × Δt (11)
[0022]
(Equation 12)
C (i) = ∂Q i / ∂φ (i + 1) = C (12)
[0023]
(Equation 13)
F (i) =-(<Q (i)>-<Q (i-1)>) (13)
Similarly, Jacobians A (i + 1), B (i + 1), C (i + 1), and F (i + 1) for the lattice point (i + 1) are obtained.
Here, consider changing the voltage between the terminals of the capacitor along the diagram of FIG. As shown in FIG. 2B, if the voltages + Q out and −Q out are simultaneously injected from the outside to the lattice points (i) and (i + 1), respectively, and the voltage changes by ΔV during Δt,
[0024]
[Equation 14]
Q out = C × ΔV (14)
When Q out is injected into the grid point (i), the equation corresponding to the equation (5) has a minus sign when flowing into the grid point (i) and flows out from the grid point (i) according to Kirchhoff's law. If the case is a + sign,
[0025]
(Equation 15)
Q (i) −Q (i−1) −Q out = 0 (15)
It becomes. Q out (+ Q out ) is regarded as a constant that does not depend on the potential φ of the semiconductor element-circuit system connected to the plurality of semiconductor elements and the external circuit, so that only the right side of the matrix equation (9) is used. Changed to [0026]
(Equation 16)
F (i) = − (<Q (i)> − <Q (i−1)>) + Q out (16)
It becomes.
Similarly, for the grid point (i + 1),
[Equation 17]
F (i + 1) =-(<Q (i + 1)>-<Q (i)>)- Qout (17)
It becomes.
In this way, the voltage between the lattice points (i) and (i + 1) can be freely controlled only by adding the term of the externally injected charge to the right side of the matrix equation. At this time, since Jacobians A, B, and C are invariant, there is no problem in the convergence of the solution.
By changing the amount of charge injected into the capacitor or the amount of charge discharged therefrom, a predetermined control voltage waveform is applied to the control semiconductor element even when the potential of the control power supply for controlling the control semiconductor element is floating. it can.
[0028]
In addition, by operating the converter, a predetermined control voltage waveform can be accurately applied to the control semiconductor element even when the floating potential of the control power supply fluctuates drastically.
In addition, even when the potential of the control power supply is grounded, the floating potential is regarded as 0 V, so that a solution can be obtained by this simulation method.
FIG. 3 is a diagram illustrating an example to which the present invention is applied, in a case where two MOSFETs are connected in series.
VD is applied to the drain electrode 13 b of the MOSFET 102 on the high potential side (upper side) by the drain power supply 14. In a static state, VD is almost equally shared by the two MOSFETs 101 and 102, so that the potential of the reference potential side terminal 15b of the gate power supply EG2 of the upper MOSFET 102 becomes VD / 2. Gate power sources EG1 and EG2 are connected between the gate and source electrodes of the two MOSFETs (between 11a and 12a and between 11b and 12b) via wiring inductances L1 and L2 and wiring resistance (not shown). The gate power supplies EG1 and EG2 control the MOSFETs 101 and 102 by a control voltage (gate voltage) that changes in a common diagram as shown in FIG.
[0029]
FIG. 4 is a diagram showing an example of a voltage waveform and a drain current waveform of the gate power supply of the two MOSFETs in FIG. VD = 57V as the drain voltage, and the capacitance value C of the capacitor acting as the gate power supplies EG1 and EG2 (the capacitance value C of the capacitor 1 connected to the lattice point (i) and the lattice point (i + 1) in FIG. 1) is 1.2F (This capacitance value may be arbitrarily determined). Although the potential of the reference potential side terminal 15b of the gate power supply EG2 for controlling the upper MOSFET 102 fluctuates in a floating manner, the waveforms of the voltages Vg1 and Vg2 of the gate power supply for controlling the two MOSFETs 101 and 102 substantially overlap. Gate control is performed accurately. ID indicated by a dotted line is a drain current. This simulation method is also applicable to three dimensions.
[0030]
【The invention's effect】
According to the present invention, in a semiconductor element-circuit system in which a large number of semiconductor elements including a control semiconductor element and a circuit are freely combined, they correspond to a reference potential side terminal and a high potential side terminal of a control power supply for controlling the control semiconductor element. By arranging a capacitor between lattice points and injecting electric charges of different signs into the lattice points, even if the potential of the control power supply fluctuates, the dynamic characteristics of the semiconductor device can be accurately and without impairing the convergence, and Can be solved stably.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams for explaining a method of simulating dynamic characteristics of a semiconductor device according to an embodiment of the present invention; FIG. 1A is a diagram of a general case without ± Qout, and FIG. FIG. 2 is a diagram when there is Qout. FIG. 2 is a diagram of a control power supply for controlling the control semiconductor device (a voltage waveform diagram of a gate power supply).
FIG. 3 is a diagram showing an example to which the present invention is applied, in which two MOSFETs are connected in series; FIG. 4 is a diagram showing an example of a gate voltage waveform and a drain current waveform of the two MOSFETs in FIG. 3; 5 is a diagram of an actual circuit when the low potential main electrode (emitter electrode) of the control semiconductor element (IGBT) is all grounded. FIG. 6 is a high voltage circuit diagram in which control semiconductor elements are connected in series. FIG. 7 is an inverter circuit. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor 2 Resistance 11a, 11b Source electrode 12a, 12b Gate electrode 13a, 13b Drain electrode 14 Drain voltage 101, 102 MOSFET
EG1, EG2 Gate power supply Vg1, Vg2 Gate power supply voltage (gate voltage)
VD drain voltage

Claims (3)

複数の半導体素子と外部回路とが接続された半導体素子−回路系で、複数の半導体素子が互いに独立に分割された直交差分格子と、不規則な四辺形から成る回路格子とがマトリックスの五対角性を維持して全体格子中に配置され、該全体格子から導かれる単一の全体マトリックスから前記半導体素子−回路系の動特性を一括して解く半導体装置の動特性のシミュレーション方法において、
前記半導体素子に制御電極を有する制御半導体素子が含まれ、該制御半導体素子を制御する制御電源の一方の端子に当たる第1格子点と該制御電源の他方の端子に当たる第2格子点の間にコンデンサを配置し、前記第1、第2格子点に大きさが等しく符号の異なる電荷を同時に注入することで該制御半導体素子の動特性を解くことを特徴とする半導体装置の動特性のシミュレーション方法。
In a semiconductor element-circuit system in which a plurality of semiconductor elements and an external circuit are connected, an orthogonal difference lattice in which a plurality of semiconductor elements are divided independently from each other, and a circuit lattice formed of an irregular quadrilateral are five pairs of a matrix. A method for simulating dynamic characteristics of a semiconductor device, wherein the dynamic characteristics of the semiconductor element-circuit system are collectively solved from a single overall matrix derived from the entire lattice while maintaining angularity in a whole lattice,
The semiconductor element includes a control semiconductor element having a control electrode, and a capacitor is provided between a first grid point corresponding to one terminal of a control power supply for controlling the control semiconductor element and a second grid point corresponding to the other terminal of the control power supply. Wherein the dynamic characteristics of the control semiconductor element are solved by simultaneously injecting charges having the same magnitude and different signs into the first and second lattice points.
複数の半導体素子と外部回路とが接続された半導体素子−回路系で、複数の半導体素子が互いに独立に分割された直交差分格子と、格子番号の二次元配列によって定義された仮想的な回路格子とがマトリックスの五対角性を維持して全体格子中に配置され、該全体格子から導かれる単一の全体マトリックスから前記半導体素子−回路系の動特性を一括して解く半導体装置の動特性のシミュレーション方法において、
前記半導体素子に制御電極を有する制御半導体素子が含まれ、該制御半導体素子を制御する制御電源の一方の端子に当たる第1格子点と該制御電源の他方の端子に当たる第2格子点の間にコンデンサを配置し、前記第1、第2格子点に大きさが等しく符号の異なる電荷を同時に注入することで該制御半導体素子の動特性を解くことを特徴とする半導体装置の動特性のシミュレーション方法。
In a semiconductor element-circuit system in which a plurality of semiconductor elements and an external circuit are connected, an orthogonal differential lattice in which a plurality of semiconductor elements are divided independently from each other, and a virtual circuit lattice defined by a two-dimensional array of lattice numbers Are arranged in the entire lattice while maintaining the five-diagonality of the matrix, and the dynamic characteristic of the semiconductor device-circuit system is collectively solved from a single overall matrix derived from the entire lattice. In the simulation method of
The semiconductor element includes a control semiconductor element having a control electrode, and a capacitor is provided between a first grid point corresponding to one terminal of a control power supply for controlling the control semiconductor element and a second grid point corresponding to the other terminal of the control power supply. Wherein the dynamic characteristics of the control semiconductor element are solved by simultaneously injecting charges having the same magnitude and different signs into the first and second lattice points.
外部回路の動作方程式を積分形に変換し、この変換した外部回路の動作方程式と半導体素子内部の状態方程式とを連立させて、半導体素子−回路系の動特性を一括して解くことを特徴とする請求項1又は2に記載の半導体装置の動特性のシミュレーション方法。The method is characterized in that the operation equation of the external circuit is converted into an integral form, the converted operation equation of the external circuit and the state equation inside the semiconductor element are simultaneously established, and the dynamic characteristic of the semiconductor element-circuit system is collectively solved. The method for simulating dynamic characteristics of a semiconductor device according to claim 1.
JP2003017182A 2003-01-27 2003-01-27 Simulation method for dynamic characteristic of semiconductor device Pending JP2004227458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017182A JP2004227458A (en) 2003-01-27 2003-01-27 Simulation method for dynamic characteristic of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017182A JP2004227458A (en) 2003-01-27 2003-01-27 Simulation method for dynamic characteristic of semiconductor device

Publications (1)

Publication Number Publication Date
JP2004227458A true JP2004227458A (en) 2004-08-12

Family

ID=32904400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017182A Pending JP2004227458A (en) 2003-01-27 2003-01-27 Simulation method for dynamic characteristic of semiconductor device

Country Status (1)

Country Link
JP (1) JP2004227458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097524A (en) * 2006-10-16 2008-04-24 Fuji Electric Holdings Co Ltd Circuit simulator, simulation method and simulation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097524A (en) * 2006-10-16 2008-04-24 Fuji Electric Holdings Co Ltd Circuit simulator, simulation method and simulation program

Similar Documents

Publication Publication Date Title
US10892352B2 (en) Power semiconductor device
CN106024854B (en) Semiconductor device and method for manufacturing the same
US6541826B2 (en) Field effect semiconductor device and its production method
Kraus et al. Physics-based models of power semiconductor devices for the circuit simulator SPICE
JP6350301B2 (en) Load drive control device and load drive control method
JP5278490B2 (en) Power converter
JPWO2018109794A1 (en) Semiconductor device driving method and driving circuit
JP4004460B2 (en) Semiconductor device
Azar et al. The current sharing optimization of paralleled IGBTs in a power module tile using a PSpice frequency dependent impedance model
CN108336910A (en) Semiconductor device and inverter system
WO2019146290A1 (en) Negative voltage generation circuit and power conversion device using same
JP2018157084A (en) Semiconductor integrated circuit device
US6727516B2 (en) Semiconductor power conversion apparatus
JP2001308195A (en) Semiconductor device
US7183802B2 (en) Semiconductor output circuit
JP3183020B2 (en) Insulated gate semiconductor device with built-in protection circuit
Palmer et al. Simulation and optimisation of diode and IGBT interaction in a chopper cell using MATLAB and Simulink
JP2004227458A (en) Simulation method for dynamic characteristic of semiconductor device
US11936368B2 (en) Optimization of power module performance via parasitic mutual coupling
CN104221148A (en) Semiconductor device and power conversion apparatus using same
JP2006500780A (en) Semiconductor device with sense structure
JPH0548434U (en) Semiconductor circuit drive circuit
CN113394181B (en) Power switch assembly and method for fixing radiator potential thereof
US20040104718A1 (en) Method and system for non-invasive power transistor die voltage measurement
JP5706238B2 (en) Switching circuit