JP2004226942A - Optical member, method of manufacturing optical member, and method of manufacturing thin film - Google Patents

Optical member, method of manufacturing optical member, and method of manufacturing thin film Download PDF

Info

Publication number
JP2004226942A
JP2004226942A JP2003066563A JP2003066563A JP2004226942A JP 2004226942 A JP2004226942 A JP 2004226942A JP 2003066563 A JP2003066563 A JP 2003066563A JP 2003066563 A JP2003066563 A JP 2003066563A JP 2004226942 A JP2004226942 A JP 2004226942A
Authority
JP
Japan
Prior art keywords
optical member
organosilicon compound
water
fluorine
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003066563A
Other languages
Japanese (ja)
Inventor
Yukihiro Takahashi
幸弘 高橋
Masakazu Matsumoto
雅一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003066563A priority Critical patent/JP2004226942A/en
Publication of JP2004226942A publication Critical patent/JP2004226942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member whose durability characteristic is improved higher than the durability characteristic of a conventional water-repellent film and a method of manufacturing the optical member. <P>SOLUTION: The optical member has an antireflection film on a substrate, wherein an an outermost layer of the antireflection film is a layer comprising, as a major component, vapor-deposited silicon dioxide deposited by a vapor-depositing method. The outermost layer is further externally provided with a fluorine-containing water-repellent layer. The optical member has characteristics (1) and (2). Namely, (1) the angle of stationary contact with water (stationary contact angle before rubbing) when the water-repellent layer is provided is ≥104°. (2) The angle of stationary contact (stationary contact angle after rubbing) when chamois skin is dipped in water of 25°C for five minutes and the surface of the water-repellent layer is then rubbed 10,000 times by the chamois skin while applying a load of 500g, is 0 to 10° smaller than the stationary contact angle before rubbing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐久性に優れた撥水性薄膜を有する光学部材及び光学部材の製造方法に関する。
【0002】
【従来の技術】
レンズ等の光学部材上に施された反射防止膜は、一般にZrO,SiOなどの無機酸化物により形成されている。そのため、汗、指紋などによる汚れが付着しやすく、かつこれらの汚れを除去することが困難であった。こうした問題を解決するために、反射防止膜上に撥水膜を施すことはよく知られている。
かかる撥水膜において、近年、撥水性が時間とともに、できるだけ低下しない性能が求められている。その性能を得る方法として、真空下、有機ケイ素化合物を加熱蒸着させて反射防止膜上に撥水膜を形成する方法が提案されている(例えば特許文献1参照)。
しかしながら、特許文献1に開示される方法は、段落番号[0031]に記載された耐久性の促進処理を行う前と行った後の水に対する静止接触角の差が10度〜13度であり、更なる性能の向上が望まれていた。
【特許文献1】
特開平5−215905号公報
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来の撥水膜の耐久性特性よりも、さらに耐久性の特性を向上させた光学部材及び光学部材の製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、前記の課題を解決すべく鋭意努力した結果、以下の手段によりその目的を達成することを見出し、本発明を完成するに至った。
すなわち、基材上に反射防止膜を有する光学部材において、前記反射防止膜の最外層が蒸着法によって蒸着された二酸化ケイ素を主成分とする層であり、さらに該層の外側にフッ素を含有した撥水層を有し、かつ、(1)撥水層を施したときの水に対する静止接触角(摩擦前静止接触角)が104度以上であり、(2)セ−ム皮を25℃の水に5分間漬浸した後、該セ−ム皮で500グラム重の加重をかけて撥水層表面を10000回擦ったときの静止接触角(摩擦後静止接触角)が、前記摩擦前静止接触角よりも0〜10度小さいという特性を有する光学部材、及び、必要に応じて溶媒で希釈したフッ素置換アルキル基含有有機ケイ素化合物を減圧下、加熱して基材上に該物質を蒸着させ、基材上に薄膜を形成する工程を含む光学部材の製造方法において、該有機ケイ素化合物の加熱温度が、該有機ケイ素化合物の蒸発開始温度から該有機ケイ素化合物の分解温度までの範囲であって、かつ該有機ケイ素化合物の加熱開始から加熱蒸発の完結までの時間(加熱開始から該有機ケイ素化合物の蒸発開始温度に達するまでの時間を含む)が90秒以内であることを特徴とする光学部材の製造方法、がその目的を達成することを見出し、本発明を完成するに至った。
【0005】
【発明の実施の形態】
以下、本発明について詳述する。
本発明に係る光学部材は、基材上に反射防止膜を有する光学部材であって、前記反射防止膜の最外層が蒸着法によって蒸着された二酸化ケイ素を主成分とする層であり、さらに該層の外側にフッ素を含有した撥水層を有することを特徴とする。ここで主成分とは該層中の二酸化ケイ素の含有量が50質量%以上であることをいい、さらには70質量%以上であることが好ましい。
フッ素を含有した撥水層は、加熱蒸着可能な撥水組成物から得られたものが用いられる。その撥水組成物の例としては、特開昭61−130902号公報、特開昭58−172246号公報、特開昭58−122979号公報、特開昭58−172242、特開昭60−40254号公報、特開昭50−6615号公報、特開昭60−221470号公報、特開昭62−148902号公報、特開平9−157582号公報、特開平9−202648号公報、特開平9−263728号公報に開示されるものが挙げられる。
好ましい組成物としては、フッ素置換アルキル基含有有機ケイ素化合物が挙げられ、これを原料として前記撥水層が形成されることが好ましい。フッ素置換アルキル基含有有機ケイ素化合物の中でも、特に以下の一般式(I)で表せる化合物が好ましく用いられる。
【化3】

Figure 2004226942
(式中、Rfは炭素数1〜16の直鎖状のパーフルオロアルキル基、Xは水素または炭素数1〜5の低級アルキル基、R1は加水分解可能な基、mは1〜50の整数、nは0〜2の整数、pは1〜10の整数)
上記R1で示される加水分解可能な基としてはアミノ基、アルコキシ基、塩素原子等が挙げられ、アルコキシ基の場合は、そのアルキル部分が炭素数1または2のものが好ましい。
また、上記フッ素置換アルキル基含有有機ケイ素化合物の分子量は、良好な薄膜を得るとの観点から3500〜6500であることが好ましい。
【0006】
また前記フッ素置換アルキル基含有有機ケイ素化合物としては、下記単位式(II):
+1CHCHSi(NH ・・・(II)
(ただし、qは1以上の整数である)で表される化合物も好適に用いられる。ここでqは6〜10の範囲であることが好ましい。またかかる化合物は、特に良好な物性を得るとの観点から、その分子量が300〜700であるものが特に好ましい。
具体的には、n−CFCHCHSi(NH;n−トリフロロ(1,1,2,2−テトラヒドロ)プロピルシラザン、n−CCHCHSi(NH;n−ヘプタフロロ(1,1,2,2−テトラヒドロ)ペンチルシラザン、n−CCHCHSi(NH;n−ノナフロロ(1,1,2,2−テトラヒドロ)ヘキシルシラザン、n−C13CHCHSi(NH;n−トリデオフロロ(1,1,2,2−テトラヒドロ)オクチルシラザン、n−C17CHCHSi(NH;n−ヘプタデカフロロ(1,1,2,2−テトラヒドロ)デシルシラザン等を例示することができる。
尚、市販されている撥水処理剤として好ましいものとしては、KP−801(商品名、信越化学工業(株)製)、X−71−130(商品名、信越化学工業(株)製)、オプツ−ルDSX(商品名、ダイキン工業(株)製)などが挙げられる。
【0007】
本発明の光学部材は、撥水層を施したときの水に対する静止接触角(摩擦前静止接触角)が104度以上であることを必須とし、十分な撥水性を得るためにはさらに104度〜120度の範囲であることが好ましい。
また、セ−ム皮を25℃の水に5分間漬浸した後、該セ−ム皮で500グラム重の加重をかけて撥水層表面を前後に10000回擦ったときの静止接触角(摩擦後静止接触角)が、前記摩擦前静止接触角よりも0〜10度小さいという性能を有することを必須とする。この範囲であると耐久性を確保できるためであるが、さらに十分な耐久性を確保するとの観点から、この静止接触角の減少の程度は、0〜8度であることが好ましく、さらには0〜6度、1〜4度、最も好ましくは2〜3度である。尚、セーム皮を用いた耐久性試験は図1に示す装置を用いて行うことができる。
また、本発明の光学部材において、撥水層を施す前と施した後の視感反射率及び視感透過率が実質的に同一であることが好ましい。ここで実質的に同一とはその差が±1%以内、さらに好ましくは±0.1%以内であることをいう。実質的に同一であれば、撥水層が光学部材の反射防止性能を低下させないからである。
【0008】
前記フッ素を含有した撥水層を形成する薄膜の膜厚は、基本的にフッ素置換アルキル基含有有機ケイ素化合物の蒸発量に依存して変化する。従って、該薄膜の膜厚をオングストロ−ムオ−ダ−で制御する際には、フッ素置換アルキル基含有有機ケイ素化合物を、溶媒で希釈した溶液を用いることが好ましい。かかる溶媒としては、m−キシレンヘキサフロライド、パーフルオロヘキサン、ハイドロフロロエーテルなどのフッ素系溶媒およびオクタフロロブチルエーテル、メチルノナフロロブチルエーテル、メチルデカフロロブチルエーテルなどのハイドロフロロエーテル等が挙げられる。
また、溶液中のフッ素置換アルキル基含有有機ケイ素化合物の濃度は、所望の目的を果たせれば特に制限はなく、フッ素置換アルキル基含有有機ケイ素化合物の種類及び所望する薄膜の膜厚などを考慮して、当業者が通常の知識をもって適宜決めることができる。
本発明において、表面の滑り性を向上させるために、上記フッ素置換アルキル基含有有機ケイ素化合物に、ケイ素非含有のパ−フルオロポリエ−テルを混合することが好ましい。このケイ素非含有のパ−フルオロポリエ−テルとしては、種々の構造のものを用いることができるが、本発明においては、下記の一般式(III)
−(RO)− ・・・(III)
(式中、Rは炭素数1〜3のパーフルオロアルキレン基である)
で表される単位からなるものが好ましく用いられ、重量平均分子量が1000〜10000、特に2000〜10000のものが好ましい。Rは具体的には、CF,CFCF,CFCFCF,CF(CF)CF等の基が挙げられる。これらのパ−フルオロポリエ−テル(以下「PFPE」ということがある)は常温で液状であり、いわゆるフッ素オイルと称されるものである。
本発明に使用可能なPFPEとしては、例えばダイキン工業(株)製の商品名デムナムシリーズ(S−20(平均分子量2700)、S−65(平均分子量4500)、S−100(平均分子量5600)、S−200(平均分子量8400))、NOKクリューバー社製の商品名バリエルタシリーズ、旭硝子(株)製の商品名フォンブリンシリーズ、デュポン社製の商品名KRYTOXシリーズ、ダウコ−ニング社製の商品名モリコ−トHF−30オイルなどが挙げられる。
本発明では上記フッ素置換アルキル基含有有機ケイ素化合物とケイ素非含有のパ−フルオロポリエ−テルとの2成分を混合し、これを主成分とする原料を用いて撥水層を設けることが好ましいが、その混合割合は混合溶液中の重量換算として、フッ素置換アルキル基含有有機ケイ素化合物1に対して、ケイ素非含有のパ−フルオロポリエ−テルが0.01〜100の範囲内であることが好ましい。
【0009】
上記フッ素置換アルキル基含有有機ケイ素化合物溶液および必要に応じて溶媒やケイ素非含有のパ−フルオロポリエ−テルを混合した溶液はそのまま容器に入れて加熱しても良いが、均一した蒸着膜を多く得られるとの観点から、多孔性材料に含浸させることがより好ましく、多孔性材料としては、銅やステンレスなどの熱伝導性の高い金属粉末を焼結した焼結フィルターを用いることが好ましい。
又、多孔性材料は、適度な蒸着速度を得るという観点からそのメッシュを40〜200ミクロン、好ましくは、80〜120ミクロンとすることが適当である。
【0010】
本発明において、フッ素置換アルキル基含有有機ケイ素化合物は、加熱蒸着によって反射防止膜を有する基材上に蒸着されるが、かかる場合に減圧下、原料を加熱して蒸着することが好ましい。その場合の真空蒸着装置内の真空度としては、特に限定はないが、均質の撥水膜を得るとの観点から、好ましくは、1.33×10−1Pa〜1.33×10−6Pa(10−3〜10−8Torr)、特に好ましくは、6.66×10−1Pa〜8.00×10−4Pa(5.0×10−3〜6.0×10−6Torr)である。
フッ素置換アルキル基含有有機ケイ素化合物を加熱する際の具体的温度は、有機ケイ素化合物の種類、蒸着する真空条件により異なるが、所望の真空度における該有機ケイ素化合物の蒸着開始温度以上から該有機ケイ素化合物の分解温度を超えない範囲で行うことが好ましい。ここで蒸着開始温度とは該有機ケイ素化合物を含む溶液の蒸気圧が真空度と等しくなったときの温度をいい、また有機ケイ素化合物の分解温度とは1分間の間に該化合物の50%が分解する温度(窒素雰囲気下、該化合物と反応性のある物質が存在しない条件で)をいう。
【0011】
蒸着速度は、上記温度範囲に保つことを条件に、前記有機ケイ素化合物加熱開始から蒸着を完結させるまでの時間を90秒以内とすることが好ましく、さらには50秒以内、40秒以内、30秒以内、20秒以内、10秒以内と短くするほど好ましく、特には5秒以内とすることが好ましい。該加熱時間の下限については特に制限はないが5秒程度である。上記加熱温度範囲で、且つ短時間で蒸着を完結させること、即ち、前記有機ケイ素化合物に短時間で高エネルギ−を与えることにより、耐久性に優れた撥水膜を有する光学部材を提供することができる。また、蒸着開始温度が多少異なる2成分の撥水剤を用いても、蒸発開始温度の高い原料の蒸発開始温度から分解温度の低い原料の分解温度の範囲で蒸着温度を選択することにより、ほぼ同時に蒸着でき、均一な膜を得ることができる。
【0012】
前記蒸着速度を達成する方法としては、前記有機ケイ素化合物に電子ビ−ムを照射する方法が好ましく挙げられる。電子ビ−ムを発生する方法は、従来、蒸着装置で用いられている電子銃を用いることができる。電子銃を用いれば、前記有機ケイ素化合物全体に、均一のエネルギ−を照射することができ均一な撥水膜を施しやすくなる。
電子銃のパワーについては、使用物質、蒸着装置、真空度、照射面積によって異なるが、好ましい条件は、加速電圧が6kV前後で、印加電流5〜80mA程度である。
かかる方法で光学部材を製造すると、撥水層を施したときの水に対する静止接触角(摩擦前静止接触角)が104度以上で、セ−ム皮を25℃の水で5分間漬浸した後、このセ−ム皮で500グラム重の加重をかけて撥水層表面を10000回擦ったときの静止接触角(摩擦後静止接触角)が、前記摩擦前静止接触角よりも0〜10度程度、好ましくは0〜5度程度小さくなるという特性が得られ、従来の製法に比べ、耐久性に優れた撥水膜を有する光学部材を提供することができる。
さらに、本方法では撥水膜の膜厚を制御することができ、撥水層を施す前と施した後の光学部材の視感反射率及び視感透過率を実質的に同一にすることができる。ここで視感反射率とはISO(International Organization for Standardization)によって2000年に発行された国際規格8980−4に準拠して測定したものをいい、視感透過率とはISOによって1999年に発行された国際規格8980−3に準拠して測定したものをいう。
尚、セ−ム皮は、米国連邦規格(Federal Specifications and Standards)KK−C−300(米国政府印刷局発行No. 1963‐653355/340, 1969 0−395−523 (4077) およびNo. 1972 0−482−195 (3363))で規定されているグレ−ドAまたはBが用いられる。
また、本発明において光学部材とは、眼鏡レンズのみならず、カメラレンズ、ワードプロセッテーのディスプレー等に付設する光学フィルター、自動車の窓ガラス等に用いられる広義の光学部材を意味する。
【0013】
本発明に用いる光学基板としては、メチルメタクリレート単独重合体、メチルメタクリレートと1種以上の他のモノマーとをモノマー成分とする共重合体、ジエチレングリコールビスアリルカーボネート単独重合体、ジエチレングリコールビスアリルカーボネートと1種以上の他のモノマーとをモノマー成分とする共重合体、イオウ含有共重合体、ハロゲン含有共重合体、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、不飽和ポリエステル、ポリエチレンテレフタレート、ポリウレタンなどのプラスチック製光学基板、あるいは無機ガラス製光学基板などが挙げられる。尚、上記基板は基板上にハードコード層を有するものであってもよい。ハードコード層としては、有機ケイ素化合物、アクリル化合物等を含んだ硬化膜を例示できる。
【0014】
また、反射防止膜(蒸着膜)とは、例えばレンズ等の光学基板表面の反射を減少させるために設けられた ZrO、SiO、TiO、Ta、Y、MgF、Alなどから形成される単層または多層膜(但し、最外層にSiO膜を有する)またCrOなどの着色膜(但し、最外層にSiO膜を有する)を言う。本発明においては、反射防止膜の最外層に二酸化ケイ素を主成分とする層が用いられることを必須とする。ここで二酸化ケイ素を主成分とするとは、実質的に二酸化ケイ素からなる層、あるいは二酸化ケイ素、酸化アルミニウム及び有機化合物からなるハイブリッド層をいう。
【0015】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.反射防止膜付プラスチックレンズの作成
プラスチックレンズとして、ジエチレングリコ−ルビスアリルカ−ボネ−ト重合体系レンズ(HOYA(株)製Hi−Lux(商品名)、屈折率1.499、度数0.00)を用い、かかるプラスチックレンズ基材上に、特開昭63−10640号公報に開示されている硬化膜を施した。具体的には、SiO濃度40%のコロイダルシリカ(スノーテックス−40、水分散シリカ、日産化学(株)製)240質量部に、0.5N塩酸2.0質量部、酢酸20質量部を加えた溶液を、35℃にして攪拌しながら、γ−グリシドキシプロピルトリメトキシシラン(3官能有機ケイ素化合物)95質量部を滴下し、室温にて8時間攪拌し、室温にて16時間放置した。この加水分解溶液に、メチルセロソルブ80質量部、イソプロピルアルコール120質量部、ブチルアルコール40質量部、アルミニウムアセチルアセトン16質量部、シリコーン系界面活性剤(NUCシルウェットY−7006(商品名)、日本ウニカ(株)製)0.2質量部、紫外線吸収剤(チヌビンP(商品名)、チバガイギー製)0.1質量部を加えて、8時間攪拌後、室温にて24時間熟成させコーティング組成物を得た。該組成物を、引き上げ速度15cm/minで浸漬法により塗布、室温にて15分放置後、120℃で2時間加熱硬化して硬化膜を施した。
次に、前記硬化膜上に真空蒸着法(真空度2.67×10 Pa(2×10−5Torr) )により、二酸化ケイ素からなる下地層〔屈折率1.46、膜厚0.5λ(λは550nmである)〕を形成し、該下地層の上に、プラスチックレンズに酸素イオンビームを照射するイオンビームアシスト法で得られる二酸化チタンからなる層(膜厚0.06λ)、真空蒸着法で得られる二酸化ケイ素からなる層(膜厚0.12λ)、さらにイオンビームアシスト法で得られる二酸化チタンからなる層(膜厚0.06λ)よりなる3層等価膜である第1層〔屈折率1.70、膜厚0.24λ〕を形成した。この第1層の上に、イオンビームアシスト法により二酸化チタンからなる第2層(屈折率2.40、膜厚0.5λ)を形成し、該第2層の上に、真空蒸着法(真空度2.67×10 Pa(2×10−5Torr) )により二酸化ケイ素からなる第3層〔屈折率1.46、膜厚0.25λ〕を形成して、反射防止膜付きプラスチックレンズを得た。このレンズの視感反射率は0.4%であった。
【0016】
2.使用撥水剤
(1)撥水処理剤1
フッ素置換アルキル基含有有機ケイ素化合物であるオプツ−ルDSX(商品名、ダイキン工業(株)製)を撥水処理剤1とした。
(2)撥水処理剤2
単位式C−(OCFCFCF24−O(CF−[CHCH(Si−(OCH)]1−10で表されるフッ素含有有機ケイ素化合物(平均分子量約5000)をパーフルオロヘキサンで3重量%に希釈した溶液を撥水処理剤2とした。
(3)撥水処理剤3
単位式C−(OCFCFCF−O(CF−[CHCH(Si−(OCH)]1−10で表されるフッ素含有有機ケイ素化合物(平均分子量約2000)をパーフルオロヘキサンで3重量%に希釈した溶液を撥水処理剤3とした。
(4)撥水処理剤4
単位式C17CHCHSi(NHで表されるフッ素含有有機ケイ素化合物をm−キシレンヘキサクロライドで3重量%に希釈した溶液(商品名:KP−801,信越化学工業(株)製)を撥水処理剤4とした。
(5)撥水処理剤5
フッ素置換アルキル基含有有機ケイ素化合物であるオプツ−ルDSX(商品名、ダイキン工業(株)製)とケイ素非含有のパ−フルオロポリエ−テル(商品名:デムナムシリ−ズS−100、ダイキン工業(株)製、平均分子量5600)の混合物を撥水処理剤5とした。
(6)撥水処理剤6
フッ素置換アルキル基含有有機ケイ素化合物であるX−71−130(商品名、信越化学(株)製)を撥水処理剤6とした。
(7)撥水処理剤7
フッ素置換アルキル基含有有機ケイ素化合物であるX−71−130(商品名、信越化学(株)製)と、ケイ素非含有のパ−フルオロポリエ−テル(商品名:デムナムシリ−ズS−20、平均分子量2700,ダイキン工業(株)製)の混合物を撥水処理剤7とした。
【0017】
3.物性評価
本実施例及び比較例で得られたプラスチックレンズは以下に示す評価方法により諸物性を評価した。
(1)水に対する静止接触角
接触角計(協和界面科学(株)製品、CA−D型)を使用し、25℃において直径2mmの水滴を針先に作り、これをレンズの凸面の最上部に触れさせて、液滴を作った。この時に生ずる液滴と面との角度を測定し静止接触角とした。静止接触角θは水滴の半径(水滴がレンズ表面に接触している部分の半径)をrとし、水滴の高さをhとしたときに、以下の式で求められる。
θ=2×tan (h/r)
なお、静止接触角の測定は水の蒸発による測定誤差を最小限にするために水滴をレンズに触れさせた後10秒以内に行った。
(2)外観
目視にて干渉色の色ムラ及び干渉色変化があるかどうかを調べ、眼鏡レンズとして使用できる外観かどうか評価した。
(3)耐久性
セーム皮を25℃の水に5分間浸漬し、その後空気中に取出した。空気中で(25℃、相対湿度50〜60%)、1分間放置した後、該セーム皮で500gの荷重をかけて撥水膜を有するプラスチックレンズ表面を5000回及び10000回前後に擦り(25℃、相対湿度50〜60%)、その後(1) に記載した方法でそれぞれの水に対する静止接触角を測定した。5000回および10000回擦るための時間は、それぞれ65分、130分をかけた。なお、セ−ム皮は、米国連邦規格(Federal Specifications and Standards)KK−C−300Cのグレ−ドBを用いた。またセーム皮は久保田鹿皮(株)製のものを用い、耐久性試験は図1に示す装置を用いて行った。
(4)視感反射率(片面)
日立製作所製U−3410型自記分光高度型を用い、視感反射率を測定した。
【0018】
実施例1
撥水処理剤1を0.15mlしみ込ませたステンレス製焼結フィルタ−(細孔径80〜100μm、直径18mmφ、厚さ3mm)を真空蒸着装置内にセットし、以下の条件で電子銃を用いて該焼結フィルタ−全体を加熱して、上記反射防止膜付プラスチックレンズに撥水膜を形成した。
▲1▼真空度:3.1×10 〜 8.0×10 Pa(2.3×10−6 〜 6.0×10−6Torr)
▲2▼電子銃の条件
加速電圧:6kV、印加電流:40mA、照射面積:3.5×3.5cm、蒸着時間:5秒
【0019】
実施例2〜10
表1に示す条件で、実施例1と同様に撥水膜を形成した。実施例2〜4は、実施例1に対して撥水剤をそれぞれ代え、実施例5〜10は、実施例1と同様の撥水剤を用い、蒸着時間を変えて実験を行った。評価結果を表2に示す。
実施例11〜13
表1に示す条件で、フッ素置換アルキル基含有有機ケイ素化合物またはフッ素置換アルキル基含有有機ケイ素化合物及びケイ素非含有のパ−フルオロポリエ−テルの混合液を原料として撥水膜を形成し、評価を行った。使用液量を表1に、評価結果を表2に示す。
また、表3には、実施例10〜13で得られたレンズを、新東科学(株)製の連続加重式表面性測定機TYPE:22Hを使用して動摩擦係数を各々3回測定した結果を示す。
【0020】
比較例1
撥水処理剤をしみ込ませたステンレス製焼結フィルターの加熱方法としてハロゲンヒ−タを用い、蒸着時間を360秒としたこと以外は実施例1と同様に撥水膜を形成した。結果を表2に示す。
【0021】
比較例2
表1に示す撥水処理剤及び撥水剤液量とし、蒸着時間を300秒とした以外は比較例1と同様の方法で撥水膜を形成した。結果を表2に示す。これら比較例の実験結果から、表2に示すように撥水性の耐久性が、実施例で示した撥水膜の耐久性に比べ劣ることが判る。
【0022】
【表1】
Figure 2004226942
注:蒸着時間は、加熱開始時間から蒸着完了時間を意味する。
真空度:3.1×10 〜 8.0×10 Pa (2.3×10−6 〜 6.0×10−6Torr)
加速電圧:6kV
【0023】
【表2】
Figure 2004226942
【表3】
Figure 2004226942
【0024】
【発明の効果】
以上詳細に説明したように、本発明の光学部材は、耐久性特性が高く、また本発明の製造方法によれば、耐久特性の高い光学部材を製造することができる。
【図面の簡単な説明】
【図1】本発明における耐久性試験を行う装置を示す概略図である。
【符号の説明】
1:レンズ
2:セーム皮
3:六面体板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical member having a water-repellent thin film having excellent durability and a method for manufacturing the optical member.
[0002]
[Prior art]
The antireflection film provided on an optical member such as a lens is generally formed of an inorganic oxide such as ZrO 2 or SiO 2 . Therefore, dirt due to sweat, fingerprints, and the like easily adheres, and it is difficult to remove these dirt. It is well known that a water-repellent film is formed on an antireflection film in order to solve such a problem.
In recent years, such a water-repellent film has been required to have a performance in which the water repellency does not decrease as much as possible over time. As a method of obtaining the performance, there has been proposed a method of forming a water-repellent film on an antireflection film by heating and depositing an organosilicon compound under vacuum (for example, see Patent Document 1).
However, in the method disclosed in Patent Document 1, the difference in the static contact angle with water before and after performing the durability promotion treatment described in paragraph [0031] is 10 degrees to 13 degrees, Further improvement in performance was desired.
[Patent Document 1]
JP-A-5-215905 [0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical member and a method for manufacturing an optical member in which the durability characteristics of the conventional water-repellent film are further improved as compared with the durability characteristics of the conventional water-repellent film.
[0004]
[Means for Solving the Problems]
The present inventors have made intensive efforts to solve the above-mentioned problems, and as a result, have found that the object is achieved by the following means, and have completed the present invention.
That is, in an optical member having an antireflection film on a substrate, the outermost layer of the antireflection film is a layer containing silicon dioxide as a main component deposited by a vapor deposition method, and further contains fluorine on the outside of the layer. It has a water-repellent layer, and (1) the static contact angle to water (static contact angle before friction) when the water-repellent layer is applied is 104 degrees or more; After being immersed in water for 5 minutes, a static contact angle (static contact angle after friction) when the surface of the water-repellent layer was rubbed 10,000 times by applying a weight of 500 g with the same skin, the static contact angle before friction was determined. An optical member having a property of being smaller than the contact angle by 0 to 10 degrees, and a fluorine-substituted alkyl group-containing organosilicon compound diluted with a solvent, if necessary, is heated under reduced pressure to deposit the substance on a substrate. Manufacturing an optical member including a step of forming a thin film on a substrate In the method, the heating temperature of the organosilicon compound is in a range from the temperature at which the organosilicon compound starts to evaporate to the decomposition temperature of the organosilicon compound, and the temperature from the start of the heating of the organosilicon compound to the completion of the heating evaporation. It has been found that a method for producing an optical member, characterized in that the time (including the time from the start of heating to the temperature at which the organosilicon compound starts to evaporate) is 90 seconds or less, achieves the object. Was completed.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The optical member according to the present invention is an optical member having an antireflection film on a substrate, wherein the outermost layer of the antireflection film is a layer containing silicon dioxide as a main component deposited by a vapor deposition method, It is characterized by having a water-repellent layer containing fluorine on the outside of the layer. Here, the main component means that the content of silicon dioxide in the layer is 50% by mass or more, more preferably 70% by mass or more.
As the water-repellent layer containing fluorine, a layer obtained from a water-repellent composition that can be deposited by heating is used. Examples of the water-repellent composition include JP-A-61-130902, JP-A-58-172246, JP-A-58-122979, JP-A-58-172242, and JP-A-60-40254. JP, JP-A-50-6615, JP-A-60-221470, JP-A-62-148902, JP-A-9-157572, JP-A-9-202648, JP-A-9-209 263728.
Preferred examples of the composition include a fluorine-substituted alkyl group-containing organosilicon compound, and the water-repellent layer is preferably formed using the compound as a raw material. Among the fluorine-substituted alkyl group-containing organosilicon compounds, compounds represented by the following general formula (I) are particularly preferably used.
Embedded image
Figure 2004226942
(Wherein, Rf is a linear perfluoroalkyl group having 1 to 16 carbon atoms, X is hydrogen or a lower alkyl group having 1 to 5 carbon atoms, R1 is a hydrolyzable group, and m is an integer of 1 to 50. , N is an integer of 0 to 2, p is an integer of 1 to 10)
Examples of the hydrolyzable group represented by R1 include an amino group, an alkoxy group, and a chlorine atom. In the case of an alkoxy group, those having an alkyl moiety of 1 or 2 carbon atoms are preferred.
Further, the molecular weight of the fluorine-substituted alkyl group-containing organosilicon compound is preferably from 3500 to 6500 from the viewpoint of obtaining a good thin film.
[0006]
The fluorine-substituted alkyl group-containing organosilicon compound includes the following unit formula (II):
C q F 2 q +1 CH 2 CH 2 Si (NH 2) 3 ... (II)
(Where q is an integer of 1 or more) is also preferably used. Here, q is preferably in the range of 6 to 10. In addition, from the viewpoint of obtaining particularly good physical properties, such a compound having a molecular weight of 300 to 700 is particularly preferable.
Specifically, n-CF 3 CH 2 CH 2 Si (NH 2) 3; n- trifluoro (1,1,2,2-tetrahydro) propyl disilazane, n-C 3 F 7 CH 2 CH 2 Si (NH 2 ) 3 ; n-heptafluoro (1,1,2,2-tetrahydro) pentylsilazane, nC 4 F 9 CH 2 CH 2 Si (NH 2 ) 3 ; n-nonafluoro (1,1,2,2- tetrahydro) hexyl disilazane, n-C 6 F 13 CH 2 CH 2 Si (NH 2) 3; n- Torideofuroro (1,1,2,2-tetrahydro) octyl disilazane, n-C 8 F 17 CH 2 CH 2 Si (NH 2) 3; n-Heputadekafuroro (1,1,2,2-tetrahydro) Deshirushirazan like can be exemplified.
Preferred examples of commercially available water-repellent agents include KP-801 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), X-71-130 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Optole DSX (trade name, manufactured by Daikin Industries, Ltd.) and the like.
[0007]
The optical member of the present invention is required to have a static contact angle with water (static contact angle before friction) of 104 ° or more when the water-repellent layer is formed, and further 104 ° to obtain sufficient water repellency. It is preferable that it is in the range of 120 degrees.
Further, after immersing the skin in water at 25 ° C. for 5 minutes, the static contact angle when the surface of the water-repellent layer was rubbed back and forth 10,000 times by applying a weight of 500 g with the same skin ( The static contact angle after friction) is required to be 0 to 10 degrees smaller than the static contact angle before friction. The reason for this is that the durability can be ensured within this range. However, from the viewpoint of ensuring sufficient durability, the degree of the decrease in the static contact angle is preferably 0 to 8 degrees, and more preferably 0 to 8 degrees. -6 degrees, 1-4 degrees, most preferably 2-3 degrees. The durability test using chamois can be performed using the apparatus shown in FIG.
In the optical member of the present invention, it is preferable that the luminous reflectance and the luminous transmittance before and after the water-repellent layer is applied are substantially the same. Here, “substantially the same” means that the difference is within ± 1%, more preferably ± 0.1%. This is because, if they are substantially the same, the water-repellent layer does not reduce the antireflection performance of the optical member.
[0008]
The thickness of the thin film forming the fluorine-containing water-repellent layer basically changes depending on the evaporation amount of the fluorine-substituted alkyl group-containing organosilicon compound. Therefore, when controlling the thickness of the thin film by angstrom order, it is preferable to use a solution obtained by diluting a fluorine-substituted alkyl group-containing organosilicon compound with a solvent. Examples of such a solvent include fluorinated solvents such as m-xylene hexafluoride, perfluorohexane, and hydrofluoroether, and hydrofluoroethers such as octafluorobutyl ether, methyl nonafluorobutyl ether, and methyl decafluorobutyl ether.
Further, the concentration of the fluorine-substituted alkyl group-containing organosilicon compound in the solution is not particularly limited as long as the desired purpose can be achieved, and the type of the fluorine-substituted alkyl group-containing organosilicon compound and the desired thin film thickness are taken into consideration. Thus, a person skilled in the art can appropriately determine it with ordinary knowledge.
In the present invention, it is preferable to mix silicon-free perfluoropolyether with the fluorine-substituted alkyl group-containing organosilicon compound in order to improve the surface slipperiness. Various structures can be used as the silicon-free perfluoropolyether. In the present invention, the following general formula (III):
-(RO)-... (III)
(Wherein, R is a perfluoroalkylene group having 1 to 3 carbon atoms)
A unit consisting of a unit represented by the following formula is preferably used, and a compound having a weight average molecular weight of 1,000 to 10,000, particularly preferably 2,000 to 10,000, is preferred. Specific examples of R include groups such as CF 2 , CF 2 CF 2 , CF 2 CF 2 CF 2 , and CF (CF 3 ) CF 2 . These perfluoropolyethers (hereinafter sometimes referred to as “PFPE”) are liquid at ordinary temperature and are so-called fluorine oils.
Examples of the PFPE usable in the present invention include Demnum series (S-20 (average molecular weight 2700), S-65 (average molecular weight 4500), and S-100 (average molecular weight 5600) manufactured by Daikin Industries, Ltd. , S-200 (average molecular weight 8400)), product name Varierta series manufactured by NOK Kluber, product name Fomblin series manufactured by Asahi Glass Co., Ltd., product name KRYTOX series manufactured by DuPont, manufactured by Dow Corning Trade name: Moricoat HF-30 oil.
In the present invention, it is preferable to mix two components of the above-mentioned fluorine-substituted alkyl group-containing organosilicon compound and silicon-free perfluoropolyether, and to provide a water-repellent layer using a raw material containing this as a main component. The mixing ratio of the silicon-free perfluoropolyether with respect to the fluorine-substituted alkyl group-containing organosilicon compound 1 is preferably in the range of 0.01 to 100 in terms of weight in the mixed solution. .
[0009]
The above-mentioned fluorine-substituted alkyl group-containing organosilicon compound solution and, if necessary, a solution obtained by mixing a solvent or silicon-free perfluoropolyether may be directly placed in a container and heated. From the viewpoint of being obtained, it is more preferable to impregnate the porous material, and as the porous material, it is preferable to use a sintered filter obtained by sintering a metal powder having high thermal conductivity such as copper or stainless steel.
The mesh of the porous material is suitably from 40 to 200 microns, preferably from 80 to 120 microns, from the viewpoint of obtaining an appropriate deposition rate.
[0010]
In the present invention, the fluorine-substituted alkyl group-containing organosilicon compound is deposited on a substrate having an antireflection film by heat evaporation. In such a case, it is preferable to heat and evaporate the raw material under reduced pressure. The degree of vacuum in the vacuum evaporation apparatus in this case is not particularly limited, but is preferably 1.33 × 10 −1 Pa to 1.33 × 10 −6 from the viewpoint of obtaining a uniform water-repellent film. Pa (10 −3 to 10 −8 Torr), particularly preferably 6.66 × 10 −1 Pa to 8.00 × 10 −4 Pa (5.0 × 10 −3 to 6.0 × 10 −6 Torr). ).
The specific temperature at which the fluorine-substituted alkyl group-containing organosilicon compound is heated depends on the type of the organosilicon compound and the vacuum conditions for vapor deposition. It is preferable to carry out the reaction within a range not exceeding the decomposition temperature of the compound. Here, the deposition start temperature refers to the temperature at which the vapor pressure of the solution containing the organosilicon compound becomes equal to the degree of vacuum, and the decomposition temperature of the organosilicon compound is 50% of the compound within one minute. Decomposition temperature (under a nitrogen atmosphere under the condition that there is no substance reactive with the compound).
[0011]
The deposition rate is preferably 90 seconds or less from the start of the heating of the organosilicon compound to the completion of the deposition, provided that the temperature is maintained within the above temperature range, and further within 50 seconds, within 40 seconds, and 30 seconds. It is more preferable to make the time shorter than 20 seconds, less than 20 seconds, and less than 10 seconds, and particularly preferable to be less than 5 seconds. The lower limit of the heating time is not particularly limited, but is about 5 seconds. To provide an optical member having a water-repellent film excellent in durability by completing vapor deposition in the above heating temperature range and in a short time, that is, by applying high energy to the organosilicon compound in a short time. Can be. Also, even when two components water repellents having slightly different vapor deposition start temperatures are used, the vapor deposition temperature is selected from the range of the vapor deposition start temperature of the raw material having a high vaporization start temperature to the decomposition temperature of the raw material having a low decomposition temperature. Simultaneous deposition can be performed, and a uniform film can be obtained.
[0012]
As a method of achieving the deposition rate, a method of irradiating the organic silicon compound with an electron beam is preferable. As a method of generating an electron beam, an electron gun conventionally used in a vapor deposition apparatus can be used. When an electron gun is used, uniform energy can be applied to the entire organosilicon compound, and a uniform water-repellent film can be easily formed.
The power of the electron gun varies depending on the substance to be used, the vapor deposition device, the degree of vacuum, and the irradiation area, but preferable conditions are an acceleration voltage of about 6 kV and an applied current of about 5 to 80 mA.
When an optical member is manufactured by such a method, the static contact angle with water (static contact angle before friction) when the water-repellent layer is applied is 104 degrees or more, and the sham skin is immersed in water at 25 ° C. for 5 minutes. Thereafter, the static contact angle (static contact angle after friction) when the surface of the water-repellent layer was rubbed 10,000 times by applying a weight of 500 g with the same skin is 0 to 10 times smaller than the static contact angle before friction. Degree, preferably about 0 to 5 degrees, so that an optical member having a water-repellent film having excellent durability compared to the conventional manufacturing method can be provided.
Further, in the present method, the thickness of the water-repellent film can be controlled, and the luminous reflectance and luminous transmittance of the optical member before and after the water-repellent layer is applied can be made substantially the same. it can. Here, the luminous reflectance refers to a value measured according to International Standard 8980-4 issued by ISO (International Organization for Standardization) in 2000, and the luminous transmittance is issued by ISO in 1999. Measured according to International Standard 8980-3.
It should be noted that the sham bar is made of US Federal Specifications and Standards KK-C-300 (US Government Printing Bureau No. 1963-635355 / 340, 1969-395-523 (4077) and No. 197200). -482-195 (3363)) is used.
Further, in the present invention, the optical member means not only spectacle lenses but also optical lenses attached to camera lenses, word processor displays and the like, and optical members in a broad sense used for window glasses of automobiles and the like.
[0013]
Examples of the optical substrate used in the present invention include methyl methacrylate homopolymer, a copolymer containing methyl methacrylate and one or more other monomers as monomer components, diethylene glycol bisallyl carbonate homopolymer, and diethylene glycol bisallyl carbonate. Copolymers containing the above other monomers as monomer components, sulfur-containing copolymers, halogen-containing copolymers, polycarbonate, polystyrene, polyvinyl chloride, unsaturated polyester, polyethylene terephthalate, plastic optical substrates such as polyurethane, Alternatively, an inorganic glass optical substrate may be used. The substrate may have a hard code layer on the substrate. As the hard code layer, a cured film containing an organic silicon compound, an acrylic compound, or the like can be exemplified.
[0014]
The antireflection film (evaporated film) is, for example, ZrO 2 , SiO 2 , TiO 2 , Ta 2 O 5 , Y 2 O 3 , and MgF 2 provided to reduce reflection on the surface of an optical substrate such as a lens. , Al 2 O 3 or the like, a single-layer or multilayer film (provided that the outermost layer has a SiO 2 film) or a colored film such as CrO 2 (provided that the outermost layer has a SiO 2 film). In the present invention, it is essential that a layer containing silicon dioxide as a main component is used as the outermost layer of the antireflection film. Here, the term "mainly composed of silicon dioxide" means a layer substantially composed of silicon dioxide or a hybrid layer composed of silicon dioxide, aluminum oxide and an organic compound.
[0015]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
1. Preparation of a plastic lens with an antireflection film As a plastic lens, a diethylene glycol bisallyl carbonate-based polymer lens (Hi-Lux (trade name, manufactured by HOYA Co., Ltd., refractive index: 1.499, frequency: 0.00)) was used. On such a plastic lens substrate, a cured film disclosed in JP-A-63-10640 was applied. Specifically, 2.0 parts by mass of 0.5N hydrochloric acid and 20 parts by mass of acetic acid were added to 240 parts by mass of colloidal silica (Snowtex-40, water-dispersed silica, manufactured by Nissan Chemical Industries, Ltd.) having a SiO 2 concentration of 40%. While stirring the added solution at 35 ° C., 95 parts by mass of γ-glycidoxypropyltrimethoxysilane (trifunctional organosilicon compound) was added dropwise, stirred at room temperature for 8 hours, and left at room temperature for 16 hours. did. To this hydrolysis solution, 80 parts by mass of methyl cellosolve, 120 parts by mass of isopropyl alcohol, 40 parts by mass of butyl alcohol, 16 parts by mass of aluminum acetylacetone, a silicone-based surfactant (NUC Silwet Y-7006 (trade name), Nippon Unica ( 0.2 parts by mass) and 0.1 parts by mass of an ultraviolet absorber (Tinuvin P (trade name), manufactured by Ciba Geigy) are added, and after stirring for 8 hours, the mixture is aged at room temperature for 24 hours to obtain a coating composition. Was. The composition was applied by a dipping method at a pulling rate of 15 cm / min, left at room temperature for 15 minutes, and then heated and cured at 120 ° C. for 2 hours to form a cured film.
Next, an underlayer made of silicon dioxide (refractive index: 1.46, film thickness : 0.46 mm) was formed on the cured film by a vacuum evaporation method (degree of vacuum: 2.67 × 10 −3 Pa (2 × 10 −5 Torr)). 5λ (λ is 550 nm)], and a layer (thickness 0.06λ) made of titanium dioxide obtained by an ion beam assist method of irradiating an oxygen ion beam to a plastic lens on the underlayer. The first layer which is a three-layer equivalent film composed of a layer (thickness 0.12λ) of silicon dioxide obtained by vapor deposition and a layer (thickness 0.06λ) of titanium dioxide obtained by ion beam assisting [ The refractive index was 1.70 and the film thickness was 0.24λ]. On the first layer, a second layer (refractive index: 2.40, film thickness: 0.5λ) made of titanium dioxide is formed by an ion beam assist method, and a vacuum evaporation method (vacuum) is formed on the second layer. degrees 2.67 × 10 - 3 Pa (2 × 10 -5 Torr)) by the third layer [refractive index 1.46, film thickness 0.25λ] consisting of silicon dioxide to form a antireflection film coated plastic lens Got. The luminous reflectance of this lens was 0.4%.
[0016]
2. Water repellent used (1) Water repellent 1
Optolu DSX (trade name, manufactured by Daikin Industries, Ltd.), which is a fluorine-substituted alkyl group-containing organosilicon compound, was used as the water repellent agent 1.
(2) Water repellent agent 2
Fluorine-containing organosilicon compound represented by the unit formula C 3 F 7 — (OCF 2 CF 2 CF 2 ) 24 —O (CF 2 ) 2 — [CH 2 CH (Si— (OCH 3 ) 3 )] 1-10 A solution of (average molecular weight: about 5000) diluted to 3% by weight with perfluorohexane was used as a water repellent agent 2.
(3) Water repellent agent 3
Unit formula C 3 F 7 - (OCF 2 CF 2 CF 2) 6 -O (CF 2) 2 - [CH 2 CH (Si- (OCH 3) 3)] fluorine-containing organic silicon compound represented by the 1-10 A solution obtained by diluting (average molecular weight: about 2000) 3% by weight with perfluorohexane was used as a water-repellent agent 3.
(4) Water repellent agent 4
A solution obtained by diluting a fluorine-containing organosilicon compound represented by the unit formula C 8 F 17 CH 2 CH 2 Si (NH 2 ) 3 to 3% by weight with m-xylene hexachloride (trade name: KP-801, Shin-Etsu Chemical Co., Ltd.) (Manufactured by Co., Ltd.).
(5) Water repellent agent 5
Optol DSX (trade name, manufactured by Daikin Industries, Ltd.), which is a fluorine-substituted alkyl group-containing organosilicon compound, and silicon-free perfluoropolyether (trade name: Demnum Series S-100, Daikin Industries, Ltd.) The mixture having an average molecular weight of 5600) was used as a water repellent agent 5.
(6) Water repellent agent 6
X-71-130 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a fluorine-substituted alkyl group-containing organosilicon compound, was used as the water repellent agent 6.
(7) Water repellent agent 7
X-71-130 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) which is a fluorine-substituted alkyl group-containing organosilicon compound, and silicon-free perfluoropolyether (trade name: Demnum Series S-20, average A mixture having a molecular weight of 2,700 (manufactured by Daikin Industries, Ltd.) was used as a water repellent agent 7.
[0017]
3. Evaluation of Physical Properties The plastic lenses obtained in this example and comparative examples were evaluated for various physical properties by the following evaluation methods.
(1) Static contact angle to water Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., CA-D type), a water drop having a diameter of 2 mm is formed at a needle tip at 25 ° C. To make a droplet. The angle between the droplet and the surface generated at this time was measured and defined as the static contact angle. The stationary contact angle θ is determined by the following equation, where r is the radius of the water droplet (the radius of the portion where the water droplet is in contact with the lens surface) and h is the height of the water droplet.
θ = 2 × tan - 1 ( h / r)
The static contact angle was measured within 10 seconds after the water droplet was brought into contact with the lens in order to minimize a measurement error due to water evaporation.
(2) Appearance The presence or absence of interference color unevenness and interference color change was visually inspected to evaluate whether or not the appearance could be used as a spectacle lens.
(3) Durability Chamois skin was immersed in water at 25 ° C. for 5 minutes, and then taken out into the air. After leaving in air (25 ° C., relative humidity 50 to 60%) for 1 minute, the surface of the plastic lens having the water-repellent film was rubbed with the chamois skin by applying a load of 500 g about 5,000 times and 10,000 times (25 times). C., relative humidity 50-60%), and then the static contact angle with respect to each water was measured by the method described in (1). The time for rubbing 5000 times and 10,000 times was 65 minutes and 130 minutes, respectively. In addition, grade B of United States federal standards (Federal Specifications and Standards) KK-C-300C was used for the same. The chamois was made by Kubota Kaseki Co., Ltd., and the durability test was performed using the apparatus shown in FIG.
(4) Luminous reflectance (one side)
The luminous reflectance was measured using a Hitachi U-3410 type self-recording spectral height type.
[0018]
Example 1
A stainless steel sintered filter (pore diameter: 80 to 100 μm, diameter: 18 mmφ, thickness: 3 mm) impregnated with 0.15 ml of the water repellent agent 1 was set in a vacuum evaporation apparatus, and an electron gun was used under the following conditions. The whole sintered filter was heated to form a water-repellent film on the plastic lens with the antireflection film.
▲ 1 ▼ vacuum: 3.1 × 10 - 4 ~ 8.0 × 10 - 4 Pa (2.3 × 10 -6 ~ 6.0 × 10 -6 Torr)
{Circle over (2)} Conditions of electron gun Acceleration voltage: 6 kV, applied current: 40 mA, irradiation area: 3.5 × 3.5 cm 2 , deposition time: 5 seconds
Examples 2 to 10
Under the conditions shown in Table 1, a water-repellent film was formed in the same manner as in Example 1. In Examples 2 to 4, the water repellent was replaced with that of Example 1, and in Examples 5 to 10, experiments were performed using the same water repellent as in Example 1 and changing the deposition time. Table 2 shows the evaluation results.
Examples 11 to 13
Under the conditions shown in Table 1, a water-repellent film was formed using a fluorine-substituted alkyl group-containing organosilicon compound or a mixed solution of a fluorine-substituted alkyl group-containing organosilicon compound and silicon-free perfluoropolyether as a raw material, and evaluated. went. Table 1 shows the amount of liquid used, and Table 2 shows the evaluation results.
Table 3 shows the results obtained by measuring the dynamic friction coefficient of the lenses obtained in Examples 10 to 13 three times using a continuous weighted surface property measuring device TYPE: 22H manufactured by Shinto Kagaku Co., Ltd. Is shown.
[0020]
Comparative Example 1
A water-repellent film was formed in the same manner as in Example 1 except that a halogen heater was used as a heating method of the stainless steel sintered filter impregnated with the water-repellent agent, and the vapor deposition time was 360 seconds. Table 2 shows the results.
[0021]
Comparative Example 2
A water-repellent film was formed in the same manner as in Comparative Example 1 except that the amounts of the water-repellent treatment agent and the water-repellent agent shown in Table 1 were used and the vapor deposition time was 300 seconds. Table 2 shows the results. From the experimental results of these comparative examples, as shown in Table 2, it is understood that the durability of the water-repellent film is inferior to the durability of the water-repellent film shown in the examples.
[0022]
[Table 1]
Figure 2004226942
Note: The deposition time means the time from the start of heating to the completion of deposition.
Vacuum: 3.1 × 10 - 4 ~ 8.0 × 10 - 4 Pa (2.3 × 10 -6 ~ 6.0 × 10 -6 Torr)
Acceleration voltage: 6 kV
[0023]
[Table 2]
Figure 2004226942
[Table 3]
Figure 2004226942
[0024]
【The invention's effect】
As described above in detail, the optical member of the present invention has high durability characteristics, and according to the manufacturing method of the present invention, an optical member having high durability characteristics can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus for performing a durability test in the present invention.
[Explanation of symbols]
1: lens 2: chamois skin 3: hexahedral plate

Claims (18)

基材上に反射防止膜を有する光学部材において、前記反射防止膜の最外層が蒸着法によって蒸着された二酸化ケイ素を主成分とする層であり、さらに該層の外側にフッ素を含有した撥水層を有し、かつ、以下の(1)及び(2)の特性を有する光学部材。
(1)撥水層を施したときの水に対する静止接触角(摩擦前静止接触角)が104度以上である。
(2)セ−ム皮を25℃の水に5分間漬浸した後、該セ−ム皮で500グラム重の加重をかけて撥水層表面を10000回擦ったときの静止接触角(摩擦後静止接触角)が、前記摩擦前静止接触角よりも0〜10度小さい。
In an optical member having an anti-reflection film on a substrate, the outermost layer of the anti-reflection film is a layer containing silicon dioxide as a main component deposited by a vapor deposition method, and a water repellent containing fluorine on the outside of the layer. An optical member having a layer and having the following characteristics (1) and (2).
(1) The static contact angle with water (static contact angle before friction) with the water-repellent layer is 104 degrees or more.
(2) After immersing the skin in water at 25 ° C. for 5 minutes, a static contact angle (friction) when the surface of the water-repellent layer was rubbed 10,000 times by applying a weight of 500 gram weight with the skin. Post-static contact angle) is 0 to 10 degrees smaller than the pre-friction static contact angle.
撥水層を施す前と施した後の光学部材の視感反射率及び視感透過率が実質的に同一である請求項1に記載の光学部材。The optical member according to claim 1, wherein the luminous reflectance and the luminous transmittance of the optical member before and after applying the water-repellent layer are substantially the same. 前記撥水層が、フッ素置換アルキル基含有有機ケイ素化合物を原料として形成される請求項1または2に記載の光学部材。The optical member according to claim 1, wherein the water-repellent layer is formed using a fluorine-substituted alkyl group-containing organosilicon compound as a raw material. 前記撥水層が、フッ素置換アルキル基含有有機ケイ素化合物及びケイ素非含有のパ−フルオロポリエ−テルを原料として形成される請求項3に記載の光学部材。The optical member according to claim 3, wherein the water-repellent layer is formed using a fluorine-substituted alkyl group-containing organosilicon compound and silicon-free perfluoropolyether as raw materials. 前記フッ素置換アルキル基含有有機ケイ素化合物が、下記一般式(I)
Figure 2004226942
(式中、Rfは炭素数1〜16の直鎖状のパーフルオロアルキル基、Xは水素または炭素数1〜5の低級アルキル基、R1は加水分解可能な基、mは1〜50の整数、nは0〜2の整数、pは1〜10の整数)
で表される請求項3または4に記載の光学部材。
The fluorine-substituted alkyl group-containing organosilicon compound has the following general formula (I)
Figure 2004226942
(Wherein, Rf is a linear perfluoroalkyl group having 1 to 16 carbon atoms, X is hydrogen or a lower alkyl group having 1 to 5 carbon atoms, R1 is a hydrolyzable group, and m is an integer of 1 to 50. , N is an integer of 0 to 2, p is an integer of 1 to 10)
The optical member according to claim 3, wherein:
前記フッ素置換アルキル基含有有機ケイ素化合物が、下記単位式(II):
+1CHCHSi(NH ・・・(II)
(ただし、qは1以上の整数である)で表される請求項3または4に記載の光学部材。
The fluorine-substituted alkyl group-containing organosilicon compound has the following unit formula (II):
C q F 2 q +1 CH 2 CH 2 Si (NH 2) 3 ... (II)
The optical member according to claim 3, wherein q is an integer of 1 or more.
前記ケイ素非含有のパ−フルオロポリエ−テルが、下記一般式(III):
−(RO)− ・・・・・・(III)
(式中、Rは炭素数1〜3のパ−フルオロアルキレン基である)で表される単位からなる請求項4〜6のいずれか1項に記載の光学部材。
The silicon-free perfluoropolyether is represented by the following general formula (III):
-(RO)-... (III)
The optical member according to any one of claims 4 to 6, comprising a unit represented by the formula: wherein R is a perfluoroalkylene group having 1 to 3 carbon atoms.
前記ケイ素非含有のパ−フルオロポリエ−テルの重量平均分子量が1000〜10000である請求項7記載の光学部材。The optical member according to claim 7, wherein the weight average molecular weight of the silicon-free perfluoropolyether is 1,000 to 10,000. フッ素置換アルキル基含有有機ケイ素化合物含有溶液を減圧下、加熱して基材上に該物質を蒸着させ、基材上に薄膜を形成する工程を含む光学部材の製造方法において、該有機ケイ素化合物の加熱温度が、該有機ケイ素化合物の蒸発開始温度から該有機ケイ素化合物の分解温度までの範囲であって、かつ該有機ケイ素化合物の加熱開始から加熱蒸発の完結までの時間が90秒以内である光学部材の製造方法。A method for producing an optical member including a step of heating a solution containing a fluorine-substituted alkyl group-containing organosilicon compound under reduced pressure to deposit the substance on a substrate by heating, and forming a thin film on the substrate. An optical system wherein the heating temperature is in the range from the temperature at which evaporation of the organosilicon compound starts to the decomposition temperature of the organosilicon compound, and the time from the start of heating of the organosilicon compound to the completion of heating and evaporation is within 90 seconds. Manufacturing method of the member. 前記フッ素置換アルキル基含有有機ケイ素化合物含有溶液にさらにケイ素非含有のパ−フルオロポリエ−テルを含むことを特徴とする請求項9に記載の光学部材の製造方法。The method for producing an optical member according to claim 9, wherein the solution containing the fluorine-substituted alkyl group-containing organosilicon compound further contains silicon-free perfluoropolyether. 前記フッ素置換アルキル基含有有機ケイ素化合物が、下記一般式(I)
Figure 2004226942
(式中、Rfは炭素数1〜16の直鎖状のパーフルオロアルキル基、Xは水素または炭素数1〜5の低級アルキル基、R1は加水分解可能な基、mは1〜50の整数、nは0〜2の整数、pは1〜10の整数)
で表される請求項9または10に記載の光学部材の製造方法。
The fluorine-substituted alkyl group-containing organosilicon compound has the following general formula (I)
Figure 2004226942
(Wherein, Rf is a linear perfluoroalkyl group having 1 to 16 carbon atoms, X is hydrogen or a lower alkyl group having 1 to 5 carbon atoms, R1 is a hydrolyzable group, and m is an integer of 1 to 50. , N is an integer of 0 to 2, p is an integer of 1 to 10)
The method for manufacturing an optical member according to claim 9, wherein:
前記フッ素置換アルキル基含有有機ケイ素化合物が、下記単位式(II):
+1CHCHSi(NH
(ただし、qは1以上の整数である)で表される請求項9または10に記載の光学部材の製造方法。
The fluorine-substituted alkyl group-containing organosilicon compound has the following unit formula (II):
C q F 2 q +1 CH 2 CH 2 Si (NH 2) 3
The method of manufacturing an optical member according to claim 9, wherein q is an integer of 1 or more.
前記ケイ素非含有のパ−フルオロポリエ−テルが、一般式(III):
−(RO)− ・・・・・・(III)
(式中、Rは炭素数1〜3のパ−フルオロアルキレン基である)で表される単位からなる請求項10〜12のいずれか1項記載の光学部材の製造方法。
The silicon-free perfluoropolyether has a general formula (III):
-(RO)-... (III)
The method for producing an optical member according to any one of claims 10 to 12, comprising a unit represented by the formula: wherein R is a perfluoroalkylene group having 1 to 3 carbon atoms.
前記ケイ素非含有のパ−フルオロポリエ−テルの平均分子量が1000〜10000である請求項13に記載の光学部材の製造方法。The method for producing an optical member according to claim 13, wherein the silicon-free perfluoropolyether has an average molecular weight of 1,000 to 10,000. 前記フッ素置換アルキル基含有有機ケイ素化合物含有溶液を電子銃で加熱することを特徴とする請求項9〜14のいずれか1項に記載の光学部材の製造方法。The method for producing an optical member according to any one of claims 9 to 14, wherein the solution containing the fluorine-substituted alkyl group-containing organosilicon compound is heated with an electron gun. 請求項9〜15のいずれか1項に記載の製造方法により得られる光学部材。An optical member obtained by the manufacturing method according to claim 9. 溶媒で希釈したフッ素置換アルキル基含有有機ケイ素化合物含有溶液を減圧下、加熱して基材上に該化合物を蒸着させ、基材上に薄膜を形成する薄膜の製造方法において、該有機ケイ素化合物の温度が、該有機ケイ素化合物の蒸発開始温度から該有機ケイ素化合物の分解温度までの温度範囲であり、該有機ケイ素化合物の蒸発開始後、蒸着完了まで、該有機ケイ素化合物の温度が分解温度を超えることがなく、かつ、該有機ケイ素化合物の加熱開始から90秒以内に該有機ケイ素化合物の加熱蒸発を完結させることを特徴とする薄膜の製造方法。A method for producing a thin film in which a fluorine-substituted alkyl group-containing organosilicon compound-containing solution diluted with a solvent is heated under reduced pressure to deposit the compound on a substrate and form a thin film on the substrate, The temperature is a temperature range from the evaporation start temperature of the organosilicon compound to the decomposition temperature of the organosilicon compound, and after the start of evaporation of the organosilicon compound, until the deposition is completed, the temperature of the organosilicon compound exceeds the decomposition temperature. A method for producing a thin film, wherein the evaporation of the organosilicon compound is completed within 90 seconds from the start of heating the organosilicon compound. 前記有機ケイ素化合物含有溶液を電子ビ−ムで照射して加熱することを特徴とする請求項17記載の薄膜の製造方法。18. The method according to claim 17, wherein the organic silicon compound-containing solution is irradiated with an electron beam and heated.
JP2003066563A 2002-03-18 2003-03-12 Optical member, method of manufacturing optical member, and method of manufacturing thin film Pending JP2004226942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066563A JP2004226942A (en) 2002-03-18 2003-03-12 Optical member, method of manufacturing optical member, and method of manufacturing thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002073853 2002-03-18
JP2002342485 2002-11-26
JP2003066563A JP2004226942A (en) 2002-03-18 2003-03-12 Optical member, method of manufacturing optical member, and method of manufacturing thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007297707A Division JP2008107836A (en) 2002-03-18 2007-11-16 Process for producing optical member and thin film

Publications (1)

Publication Number Publication Date
JP2004226942A true JP2004226942A (en) 2004-08-12

Family

ID=32912782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066563A Pending JP2004226942A (en) 2002-03-18 2003-03-12 Optical member, method of manufacturing optical member, and method of manufacturing thin film

Country Status (1)

Country Link
JP (1) JP2004226942A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061273A (en) * 2004-08-25 2006-03-09 Olympus Corp Optical system of endoscope
JP2006284855A (en) * 2005-03-31 2006-10-19 Hoya Corp Method for manufacturing thin film and optical member
JP2008152085A (en) * 2006-12-19 2008-07-03 Hoya Corp Method for manufacturing spectacle lens, film deposition apparatus for spectacle lens, and spectacle lens
JP2015007235A (en) * 2012-03-29 2015-01-15 ダイキン工業株式会社 Surface treatment composition and article obtained by using the same
US9134461B2 (en) 2006-03-27 2015-09-15 Essilor International (Compagnie Generale D'optique) Edging process of lens using transparent coating layer for protecting lens
WO2018193742A1 (en) * 2017-04-20 2018-10-25 信越化学工業株式会社 Antireflective member and method of manufacture therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061273A (en) * 2004-08-25 2006-03-09 Olympus Corp Optical system of endoscope
JP2006284855A (en) * 2005-03-31 2006-10-19 Hoya Corp Method for manufacturing thin film and optical member
US9134461B2 (en) 2006-03-27 2015-09-15 Essilor International (Compagnie Generale D'optique) Edging process of lens using transparent coating layer for protecting lens
JP2008152085A (en) * 2006-12-19 2008-07-03 Hoya Corp Method for manufacturing spectacle lens, film deposition apparatus for spectacle lens, and spectacle lens
JP2015007235A (en) * 2012-03-29 2015-01-15 ダイキン工業株式会社 Surface treatment composition and article obtained by using the same
US9745493B2 (en) 2012-03-29 2017-08-29 Daikin Industries, Ltd. Surface treatment composition and article obtained using same
WO2018193742A1 (en) * 2017-04-20 2018-10-25 信越化学工業株式会社 Antireflective member and method of manufacture therefor
CN110537116A (en) * 2017-04-20 2019-12-03 信越化学工业株式会社 Anti-reflection member and its manufacturing method
KR20190137117A (en) * 2017-04-20 2019-12-10 신에쓰 가가꾸 고교 가부시끼가이샤 Anti-reflection member and manufacturing method thereof
JPWO2018193742A1 (en) * 2017-04-20 2020-05-21 信越化学工業株式会社 Antireflection member and manufacturing method thereof
CN110537116B (en) * 2017-04-20 2021-10-29 信越化学工业株式会社 Antireflection member and method for producing same
TWI772388B (en) * 2017-04-20 2022-08-01 日商信越化學工業股份有限公司 Anti-reflection member and its manufacturing method
US11624858B2 (en) 2017-04-20 2023-04-11 Shin-Etsu Chemical Co., Ltd. Antireflective member and method of manufacture therefor
KR102569079B1 (en) * 2017-04-20 2023-08-22 신에쓰 가가꾸 고교 가부시끼가이샤 Antireflection member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6582823B1 (en) Wear-resistant polymeric articles and methods of making the same
JP2561395B2 (en) Optical member having water-repellent thin film and method for manufacturing the same
JP5135753B2 (en) Optical article
CN111163936B (en) Water-and oil-repellent member and method for producing water-and oil-repellent member
JP5043851B2 (en) Vapor deposition material, optical member using the same, method for producing plastic lens for spectacles, and plastic lens for spectacles
JP2009175500A (en) Method for manufacturing optical member
KR100543222B1 (en) Optical member and process of producing the same
EP2928616B1 (en) Method for coating an optical article with a topcoat using vacuum air plasma treatment
KR20240052997A (en) surface treatment agent
US20080038483A1 (en) Adhesion of hydrophobic coatings on eyeglass lenses
AU2003200951B2 (en) Optical member, process of producing optical member, and process of producing thin film
JP4279074B2 (en) Optical member
JP2008107836A (en) Process for producing optical member and thin film
JP2004226942A (en) Optical member, method of manufacturing optical member, and method of manufacturing thin film
JP2020204736A (en) Spectacle lens fabrication method, spectacle lens, and water-repellent material composition
JP2009251008A (en) Optical product and method for producing the same
JP2003014904A (en) Method for manufacturing optical member having water- repellent thin film
JP2003329802A (en) Method for manufacturing spectacle lens
WO2020241751A1 (en) Transparent substrate with antifouling layer
AU2005200563B2 (en) Optical member, process of producing optical member, and process of producing thin film
KR100693656B1 (en) Stain-proofing spectacle lens and manufacturing method thereof
JP4744176B2 (en) Method for manufacturing thin film and optical member
WO2024122620A1 (en) Eyeglass lens
JP7325241B2 (en) Spectacle lens manufacturing method
KR20240046795A (en) Spectacle lenses, antifouling compositions, and methods for producing spectacle lenses

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603