JP2004226768A - Rewritable image display medium - Google Patents

Rewritable image display medium Download PDF

Info

Publication number
JP2004226768A
JP2004226768A JP2003015479A JP2003015479A JP2004226768A JP 2004226768 A JP2004226768 A JP 2004226768A JP 2003015479 A JP2003015479 A JP 2003015479A JP 2003015479 A JP2003015479 A JP 2003015479A JP 2004226768 A JP2004226768 A JP 2004226768A
Authority
JP
Japan
Prior art keywords
particles
substrate
image
image display
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015479A
Other languages
Japanese (ja)
Other versions
JP4192606B2 (en
Inventor
Hidetoshi Miyamoto
英稔 宮本
Kisho Amarigome
希晶 余米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003015479A priority Critical patent/JP4192606B2/en
Publication of JP2004226768A publication Critical patent/JP2004226768A/en
Application granted granted Critical
Publication of JP4192606B2 publication Critical patent/JP4192606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle moving type rewritable image display medium capable of displaying an image of high quality by suppressing adhesion of development particles to a substrate and the like to suppress generation of an afterimage at the time when an image is rewritten and reduction of the amount of movable development particles. <P>SOLUTION: In the particle moving type rewritable image display medium 11 provided with a pair of substrates 111 and 112, partition walls 113 between the substrates, developer holding cells 114 between the adjacent partition walls and a dry process developer DL held in the cells, developing particles WP and BP which are constituents of the developer DL are made to move to display the image by applying an electric field corresponding to the image to be formed to the developing particles. Fine particles mp for suppressing adhesion of the developing particles having particle sizes smaller than those of the developing particles are made to adhere to the inner surface of the substrate 111 and the side surfaces of the partition walls 113 which are facing the developing particles. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は画像表示媒体、特に再使用できる、書換え可能の画像表示媒体に関する。
【0002】
【従来の技術】
現在ワードプロセッサ、パソコン等の作業における画像表示或いは出力の方法として、ディスプレイによる表示かプリンタによる印字表示の方法がある。ディスプレイによる表示は一般に解像度が低く、文字主体のテキスト文書の表示には不向きであり、また発光型表示のため長時間作業では非常に眼が疲れやすい。一方、プリンタによる印字画像は高解像度で反射型表示のため目にはやさしい。このため一時的に見れば足りるようなドキュメントであってもプリンタで出力することが非常に多い。
【0003】
しかし、プリンタは電気代が高くつき、印字用紙等の消耗品が必要でランニングコストが高くつく。最近では環境負荷低減指向によりプリンタが消費するエネルギーの削減や、紙等の消費量の削減が求められている。にも拘らず、一時的に見れば足りるようなものでも、プリンタ等で用紙に画像が出力表示され、一旦見られるとすぐに不要になり廃棄される場合が多い。
【0004】
そのため最近では再使用できる書換え可能の画像表示媒体が研究され、種々提案されるに至っている。
そのような画像表示媒体として、一対の基板間に乾式現像剤を内包し、該現像剤を構成する現像粒子を現像剤駆動エネルギーを印加することで移動させて画像表示できる粒子移動型の書換え可能の画像表示媒体が提案されている。
【0005】
かかる粒子移動型画像表示媒体として、特開2001−290179号公報及び特開2002−156658号公報は、一対の基板間に乾式現像剤を内包し、該乾式現像剤として互いに帯電極性の異なる、且つ、互いに光学的反射濃度の異なる少なくとも2種類の摩擦帯電性を有する現像粒子を含むものを採用し、画像に対応する電界を印加して該2種類の現像粒子を相対的に反対方向へ移動させることで画像を表示する画像表示媒体を開示している。
【0006】
また、「Japan Hardcopy ’99 論文集 PP249 〜252 」は、電極と電荷輸送層とを積層した2枚の基板を所定間隔をおいて対向させて密封空間を形成し、該空間の中に導電性トナー及びこれと色の異なる絶縁性粒子とを封入し、静電場を付与して導電性トナーに電荷注入して帯電させ、該導電性トナーをクーロン力で移動させて画像表示する画像表示媒体を開示している。
【0007】
一般的に言って、これら粒子移動型の画像表示媒体については、現像に用いる粒子が基板の内面や基板間の部材等に付着しやすく、画像書換え時に、そのように付着した粒子が離れ難く、そのため残像が生じたり、移動可能の現像粒子量が減じて画像品位が低下する、という難点がある。
【0008】
この点、前記特開2002−156658号公報はこのような問題を解決する一つの方法として、画像観察側基板の現像粒子と接触する内面の中心線平均粗さRaを0.2μm〜0.5μmとすることで、該基板内面への現像粒子の付着を抑制し、それにより残像発生を抑制することも開示している。
【特許文献1】特開2001−290179号公報
【特許文献2】特開2002−156658号公報
【非特許文献1】Japan Hardcopy ’99 論文集 PP249 〜252
【0009】
【発明が解決しようとする課題】
特開2002−156658号公報に記載されている基板内面の中心線平均粗さRaの制御はそれなりに現像粒子の基板内面への付着を抑制する効果があると認められるが、本発明もまた、粒子移動型の書換え可能の画像表示媒体であって、現像粒子の基板等への付着を抑制することで、画像書換え時における残像の発生を抑制するとともに移動可能な現像粒子量の低減を抑制して、それだけ高品位の画像を表示できる画像表示媒体を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明者の研究によると、粒子移動型の書換え可能の画像表示媒体において、現像粒子が接触する基板内面や基板間部材面への現像粒子付着力として次のものが考えられる。
【0011】
一般に、粒子とこれが接触する物体面間に働く付着力としては、主に、それら両者間のファンデルワールス力(距離の3乗程度に比例する)や、液架橋力(毛管形成時のみ発生)などの近距離の付着力と、静電気力(距離の2乗に比例)などの遠距離力などに分類される。
【0012】
現像粒子の他の物体面への接触面積は、平坦な物体面に直接接する場合と比べると、物体面上に付設した、現像粒子より粒径の小さい微粒子に接触する場合の方が小さくなる。
現像粒子の他の物体への付着力は、粒径などにも影響を受けるが、ファンデルワールス力などの近接力による付着力に関してみれば、かかる接触面積の大小に大きく左右される。
【0013】
これらのことから、粒子移動型の画像表示媒体の場合、微粒子を基板内面及び基板間部材面のうち少なくとも一部に付着させておくと、現像粒子の接触面積が低下し、付着力を低減できると言える。
【0014】
また、現像粒子と基板等との付着力を抑制するうえで、既述の液架橋力も考慮しなければならない。液架橋力は他の物理的な力と比べ比較的大きく、現像剤粒子の基板等への付着を抑制するうえでこの力の低減は非常に重要である。この力は、接触する二つ物体の間に毛管現象で空気中の水分が凝結し、これにより液架橋が生じることに起因するもので、この液架橋の表面張力により両物体の付着力が発生する。
【0015】
粒子移動型の画像表示媒体の場合、例えば現像粒子に接触する基板内面の表面性を疎水性(界面張力が小)にすると、液架橋力は小さくなるが、媒体製作工程における基板と基板間部材との接着等を考慮すると、基板内面を疎水性にすることには制限がある。
【0016】
しかし、界面張力が大きい基板を採用し、これを基板間部材と接着したのち現像粒子に臨む基板内面及び基板間部材面のうち少なくとも一部に微粒子を付着させることで、該部分表面の界面張力を低下させることが可能であり、これにより現像粒子の該部分への付着を抑制することができる。
【0017】
液架橋力以外にも、表面性の付着力への影響は多々あり、基板等に加えられている様々な添加物や、基板等自体のモルフォロジーなどによりその表面性にばらつきが生じ、これが付着力に影響し、局所的に付着力の強い場所が生じる場合がある。このような場合においも、微粒子を付着させておくことで、現像粒子の付着を抑制することができる。
【0018】
そこで本発明は、前記課題を解決するため、
一対の基板と、該一対の基板間に設けられ、少なくとも一つの現像剤収容セルを提供する基板間部材と、該現像剤収容セルに収容された乾式現像剤とを備えており、現像剤駆動エネルギーを印加することで該乾式現像剤を構成する現像粒子を移動させて画像表示できる粒子移動型の書換え可能の画像表示媒体であって、該現像粒子に臨む基板内面及び基板間部材面のうち少なくとも一部に該現像粒子より粒径が小さい現像粒子付着抑制のための微粒子を付着させた書換え可能の画像表示媒体を提供する。
【0019】
この画像表示媒体によると、現像剤駆動エネルギーを印加することで内包された乾式現像剤を構成する現像粒子を移動させて画像を表示させることができる。また、一旦画像表示させたあと、異なる駆動エネルギーを印加して画像を消去したり、画像を書き換えたりでき、このように再使用できる。
【0020】
現像粒子に臨む基板内面及び基板間部材面のうち少なくとも一部に該現像粒子より粒径が小さい現像粒子付着抑制のための微粒子を付着させてあるので、それだけ、画像書換え時における残像の発生を抑制することができるとともに移動可能な現像粒子量の低減を抑制して、高品位の画像を表示させることができる。
【0021】
【発明の実施の形態】
本発明実施形態に係る書換え可能の画像表示媒体は基本的には、一対の基板と、該一対の基板間に設けられ、少なくとも一つの現像剤収容セルを提供する基板間部材と、該現像剤収容セルに収容された乾式現像剤とを備えており、現像剤に臨む基板内面及び基板間部材面のうち少なくとも一部に該現像剤を構成する現像粒子より粒径が小さい現像粒子付着抑制のための微粒子を付着させてある。
【0022】
基板間部材としては、
(1) 一つの現像剤収容セルを提供する四角形枠等の枠状の壁部材、
(2) 一つの現像剤収容セルを提供する四角形枠等の枠状の壁部材と該枠状壁部材の内側(セル内)に配置された柱状等の現像剤移動抑制部材、
(3) 複数の現像剤収容セルを提供する仕切り壁部材、例えば碁盤目状にセルを提供する仕切り壁部材や複数の溝状のセルを提供する複数本の平行状の仕切り壁部材、
(4) 複数の現像剤収容セルを提供する仕切り壁部材(例えば碁盤目状にセルを提供する仕切り壁部材や複数の溝状のセルを提供する複数本の平行状の仕切り壁部材)と、少なくとも一つのセル内に設けられた柱状等の現像剤移動抑制部材、
等を例示できる。
【0023】
基板としては、ガラス基板、樹脂基板等を採用でき、可撓性を有する樹脂フィルム基板でもよい。いずれにしても、少なくとも画像観察側の基板は媒体内部の画像表示に寄与する現像粒子を視認できるように透光性基板とし、より好ましくは透明基板とすればよい。基板間部材は一対の基板のいずれかと一体的に形成されていてもよい。
【0024】
前記乾式現像剤は代表例として、互いに帯電極性の異なる、且つ、互いに光学的反射濃度の異なる(別の言い方をすれば、「コントラストの異なる」或いは「色の異なる」)少なくとも2種類の摩擦帯電性を有する乾式現像粒子を含んでいるものを挙げることができる。
【0025】
このような現像剤を用いる場合、現像粒子に対し表示しようとする画像に対応する電界を印加することで、該2種類の現像粒子を相対的に反対方向へ移動させて画像を表示させることができる。
【0026】
また、前記基本構成を有する画像表示媒体は、既述の「Japan Hardcopy ’99論文集 PP249 〜252 」において開示されたタイプの媒体であってもよい。
【0027】
前記現像粒子付着抑制のための微粒子は、粒径が大きくなりすぎると、基板等との付着力よりも現像粒子との接触などのストレスが大きくなり、該微粒子を付着させた基板等から脱離し、現像粒子に付着して現像粒子の帯電性などに悪影響を与える場合がある。さらに、現像粒子に付着して光の散乱により表示画像を白濁させ、画像品質を低下させることがある。一方、粒径が小さすぎると、微粒子の二次粒子の状態(微粒子同士が凝集した状態)で付着する。この場合も粒径が大きい場合と同様に脱落する恐れがある。
【0028】
よって微粒子の粒径は、1nm以上1μm以下程度が好ましく、より好ましくは1nm以上100nm以下程度である。
【0029】
微粒子の素材は様々なものが使用可能である。例えば、無機微粒子の場合には、疎水基置換シリカ、シリカ、酸化チタンを例示でき、樹脂微粒子の場合には、ポリエチレン(PE)、ポリプロピレン(PP)、アクリル樹脂、ポリメチルメタクリレート(PMMA)、シリコン樹脂、フッソ樹脂、ポリスチレン、ベンゾグアナミンを例示できる。
素材の異なる2種類以上の微粒子を採用したり、異なる素材からなる微粒子を採用するなどしてもよい。
【0030】
液架橋力の観点からは、疎水性の微粒子を用いることがより好ましく、そのような微粒子として、例えば疎水基置換シリカ、シリコン樹脂、フツ素樹脂からなる微粒子を挙げることができる。
【0031】
また、ファンデルワールス力の観点からは、無機微粒子よりも樹脂微粒子で絶縁性の微粒子が好ましい。
【0032】
微粒子は基板内面及び基板間部材のうち少なくとも一部に付着させるが、画像品位に特に影響のある画像観察側基板の内面に付着させることが好ましい。勿論、画像観察側とは反対側の基板の内面や基板間部材面に付着させても、それらへの現像粒子付着による移動可能な現像粒子量の低減を抑制でき、それにより残像の発生やコントラストの低下等を抑制して画像品位の高い画像を表示させることができる。
【0033】
微粒子の付着は、なるべく均−に、かつ少量であることが望ましい。付着量が多い、或いは付着が不十分だと脱離しやすくなる場合がある。また、微粒子の二次凝集をできるだけ減らすことが大切である。
【0034】
これらの課題を解決する微粒子付着方法として、(1) 微粒子をブラシ等でこすりつけるように塗布するなどの物理的方法、(2) 微粒子を良分散媒に分散させて、付着対象面へ塗布し、乾燥させて微粒子含有膜を形成するなどの膜形成方法が挙げられる。
【0035】
さらに言えば、前者(1) の物理的方法としては、微粒子を被塗布面に散布し、ブラシ等でこすりつけ、過剰な分はエアブラシなどで除去するきわめて簡便な方法や、微粒子を分散媒に分散させ、分散媒とともに被塗布面にコーティングし、その後分散媒の乾燥除去を行う方法を例示できる。このコーティング法は分散がよければ均一、少量でコーティングが可能である。
【0036】
後者(2) の膜形成方法は、既述のコーティング法と同様に、微粒子を分散媒に分散させ、分散媒とともに被塗布面にコーティングし、その後分散媒を乾燥させるが、分散媒として乾燥除去されない重合性などを有するものを用いて膜形成する。従って微粒子は被塗布面に膜で固定され、脱落し難い。この点でこの付着方法は好ましいものと言える。
【0037】
先に、微粒子の付着はなるべく少量であることが望ましいと説明したが、付着量については、微粒子の粒径、比重、二次凝集の度合いなども考慮しなければならない。粒経が小さくなると付着量自体が極めて少なくなる。特に、表面性のばらつきによる付着力の高い部位にのみ付着させるような場合は、さらに少なくなる。
【0038】
これらの観点から、現像粒子付着抑制のための微粒子の基板内面及び基板間部材面のうち少なくとも一部への付着量として概ね0.001mg/cm〜1g/cmを挙げることができる。
【0039】
次に書換え可能の粒子移動型画像表示媒体の例(画像表示媒体11)について図面を参照して説明する。図1(A)及び図1(B)は画像表示媒体11の一部省略の概略断面を示している。図1(A)は画像表示前の状態を示しており、図1(B)は画像表示状態の1例を示している。図2は媒体11の一部を切り欠いて示す平面図である。図3は媒体11に画像を書き込む様子を示す図である。
【0040】
図1及び図2に示す媒体11は、画像観察側の基板111と反対側の基板112とを含んでいる。これら基板111、112は両者間に所定のギャップをおいて対向している。基板111、112の間には、仕切り壁113が設けられており、これら仕切り壁113により両基板間ギャップが所定のものに確保されている。仕切り壁隔壁113は両基板111、112間のスペーサを兼ねている。
【0041】
そうする必要はないが、ここでは、仕切り壁113は基板111と一体的に形成されており、基板111の長手方向に平行に複数本形成されている。隣り合う仕切り壁113の間が現像剤収容セル114となっている。
【0042】
画像観察側の基板111及びこれと一体の仕切り壁113は、それには限定されないが、ここでは透明樹脂フィルムを成形して形成されている。基板112は必ずしも透明である必要はないが、ここでは透明樹脂フィルムからなっており、外面に電極膜ELが形成されている。
【0043】
前記各セル114には、互いに帯電極性が異なる、相互に摩擦帯電した白色現像粒子WP及び黒色現像粒子BPを含む乾式現像剤DLが収容されている。該現像剤DLに臨む基板111の内面及びそこから立ち上がっている仕切り壁113側面にはそれら面への現像粒子WP、BPの付着を抑制するための微粒子mpを付着させてある。
【0044】
微粒子mpの粒径は1nm以上100nm以下の範囲にあり、付着量は0.001mg/cm〜1g/cmの範囲にある。微粒子mpの素材は先に例示したものから選ばれている。
【0045】
基板112は各セル114に現像剤DLを所定量収容したのち、仕切り壁113の頂面に当てがわれ、接着剤等で接着されている。また、両基板111、112の長手方向両側縁110a及び短手方向端縁110bは熱融着にて密閉されている。かくして各セル114は密閉されており、該セルから現像剤DLが漏れ出ることはない。
【0046】
各仕切り壁113は幅α、高さhで、隣り合う仕切り壁113の間隔(セル幅)をwとして形成されている。これらの寸法は画像表示に支障のない範囲で決定される。
【0047】
以上説明した画像表示媒体11は、例えば図3に示す電子写真方式の画像形成装置を用いて画像表示させることができる。
【0048】
図3の装置は、図中矢印方向に回転駆動される感光体ドラムPCを含んでいる。この感光体ドラムPCの周囲にスコロトロン帯電器CH、レーザー画像露光装置EX、イレーサランプIRが配置してある。感光体ドラムPCの下方には回転駆動される電極ローラR1を配置してある。電極ローラR1は画像表示のための静電場を形成するための現像電極ローラである。ローラR1には電源PW1からバイアス電圧が印加される。ローラR1はローラR1とは反対方向に回転駆動される(或いは往復回転駆動される)回転磁極ローラR2を内蔵している。
【0049】
かかる感光体ドラムPC表面を帯電器CHにより帯電させた後、その帯電域に露光装置EXにより画像露光してドラムPC上に静電潜像EIを形成する。一方、電極ローラR1には電源PW1からバイアスを印加する。
そして感光体ドラムPC上の静電潜像EIと同期をとって該ドラムと電極ローラR1との間に媒体11を送り込む。このとき媒体11の画像観察側基板111を感光体ドラムPCへ向けるとともに、基板112外面の電極膜ELを電極ローラR1に接触させる。
【0050】
かくして、媒体11の各セル114に内包された現像剤DLの現像粒子BP、WPに対し所定の静電場が形成され、これにより該静電場と帯電現像粒子との間に働くクーロン力にて両現像粒子が相対的に互いに反対方向に移動する。そして、図1(A)に示すように現像剤DLにおいて白黒粒子WP、BPが混合されている状態から図1(B)に示すように白色粒子WP、黒色粒子BPがそれぞれ電場に応じて移動する。かくして所定のコントラストで画像が表示される。
以上のように画像表示したのちは、次回のプリントに備えて、感光体ドラムPC表面の電荷をイレーサーランプIRで消去しておく。
【0051】
このように画像形成した媒体11は、再び、例えば図3に示す画像形成装置により、前回とは異なる静電場を印加することで、画像を消去したり、画像を書き換えたりでき、再使用できる。
【0052】
また、現像粒子WP、BPに臨む基板111の内面及び仕切り壁113の側面に微粒子mpを付着させてあるので、それだけ、画像書換え時における残像の発生を抑制することができるとともに移動可能な現像粒子量の低減を抑制して、高品位の画像を表示させることができる。
【0053】
次に、図1(A)に示すタイプの画像表示媒体を形成して、微粒子の効果を評価した実験例について説明する。比較実験例についても併せて説明する。
各実験例、比較実験例において、画像表示媒体の作製は現像粒子付着抑制のための微粒子に関係する点を除いて次に説明するとおりであり、使用現像剤も次に説明する共通のものである。
【0054】
<画像表示媒体の作製>
ポリエチレンテレフタレート(PET)フィルムを加熱型押しして、ベース部の平均厚みt(図1(A)参照)=25μm、仕切り壁の幅α=50μm、仕切り壁の高さh=150μm、隣り合う仕切り壁の間隔(セル幅)w=300μmの、連続溝状セル及びこれに沿う仕切り壁を有する画像観察側基板を作製した。
【0055】
次いで該基板の内面及び仕切り壁の側面に現像粒子付着抑制のための微粒子を付着させたのち、各セルにセル容積に対して34vol.%の充填率で現像剤を充填した。
次いで、仕切り壁頂面に光硬化性接着剤を薄く塗布した後、厚み25μmの、外面にITO膜を蒸着形成したポリエチレンテレフタレート(PET)フィルムを密着させ、紫外線照射により該接着剤を硬化させた。その後両フィルム基板の周縁部をヒートシールにより封止して画像表示媒体を得た。
【0056】
<使用現像剤>
(白色現像粒子)
熱可塑性ポリエステル樹脂(軟化点121℃、ガラス転移点67℃)100重量部と、酸化チタン(石原産業社製:CR−50)40重量部と、負荷電制御剤としてサリチル酸亜鉛錯体(オリエント化学社製:ボントロンE−84)5重量部とをヘンシェルミキサーで十分に混合した後、2軸押出し機で混練後冷却した。該混練物を粗粉砕し、その後ジェット粉砕機で粉砕し、風力分級により平均粒径10μmの白色粉末を得た。この白色粉末に疎水性シリカ微粒子(日本アエロジル社製:アエロジルR−972)0.3重量部を加え、ヘンシェルミキサーにより混合処理を行い白色現像粒子とした。
【0057】
(黒色現像粒子)
スチレンーnブチルメタクリレート系樹脂(軟化点132℃、ガラス転移点65℃)100重量部と、カーボンブラック(ライオン油脂社製,ケッチェンブラック)2重量部と、シリカ(日本アエロジル社製,#200)1.5重量部と、マグネタイト系磁性粉(RB−BL チタン工業社製)500重量部とをヘンシェルミキサーで充分混合した後、ベント二軸混練装置で混練した。
この混練物を冷却後フェザーミルで粗粉砕した後、ジェットミルで微粉砕し、これを風力分級機で分級して体積平均粒径が20μmの黒色現像粒子を得た。
【0058】
(現像剤の調整)
前記白色現像粒子30gと、黒色現像粒子を70gとをポリエチレン製のボトルに入れ、ボールミル架台にて回転させて30分間混合攪拌を行い、現像剤を得た。この現像剤では、白色現像粒子は負極性に、また黒色現像粒子は正極性に帯電していた。
【0059】
<現像粒子付着抑制のための微粒子>
前記<画像表示媒体の作製>において述べた基板内面及び仕切り壁側面への微粒子の塗布は次のように行った。
【0060】
(実験例1)
微粒子として、日本アエロジル社製のメチル基置換シリカ微粒子R972(平均粒径D50=16nm)を用いた。基板のセルを有する面にR972を約1g散布し、ブラシでこすりつけるようにして塗布した。その後、余分のR972をエアガンで取り除き、さらにブラシでできるだけ取り除いた。ブラシによりかきとられたR972が基板端の平坦部にあらかた付着しなくなるまで除去した。
【0061】
(実験例2)
2−PrOH 50mlに2gのR972を分散させた分散液を基板のセルを有する面に塗布し、熱風乾燥した。
【0062】
(実験例3、4及び比較実験例2)
実験例3では微粒子として、日本アエロジル社製のシリカ微粒子AEROSIL200(D50=12nm)を用い、
実験例4では微粒子として東レファインケミカル社製のシリコン樹脂微粒子R930(D50=1.0μm)を用い、
比較実験例2では微粒子として積水化成品工業社製の架橋ポリメタクリル酸メチル微粒子MBX−8(D50=8μm)を用い、
その他は実験例1と同様にして微粒子を付着させた。
【0063】
(実験例5)
微粒子として東邦化学社製のポリプロピレン微粒子E6314(D50=0.1μm)を用い、これを純粋で2倍に希釈し、これを用いて基板のセルを有する面にスピンコート法で薄層を形成し、その後水洗した。
【0064】
評価は白一黒一白一黒一白黒市松模様の順で画出しを行い、五回目の市松模様の画像濃度(ID)で評価した。その際、白と黒の評価を次の基準で行い、白及び黒のうち良くない方の評価を評価結果とした。
【0065】

Figure 2004226768
【0066】
以上説明した実験例及び評価結果を次表1にまとめて示す。
Figure 2004226768
【0067】
【発明の効果】
以上の説明から分かるように、本発明によれば、粒子移動型の書換え可能の画像表示媒体であって、現像粒子の基板等への付着を抑制することで、画像書換え時における残像の発生を抑制するとともに移動可能な現像粒子量の低減を抑制して、それだけ高品位の画像を表示できる画像表示媒体を提供することができる。
【図面の簡単な説明】
【図1】図1(A)、図1(B)は粒子移動型画像表示媒体例の一部省略の概略断面図であり、図1(A)は画像表示前の状態を示しており、図1(B)は画像表示状態の1例を示している。
【図2】図1に示す画像表示媒体の一部を切り欠いて示す平面図である。
【図3】図1及び図2に示す画像表示媒体に画像の書き込みを行う様子を示す図である。
【符号の説明】
11 書換え可能の画像表示媒体
111 画像観察側の基板
112 反対側の基板
113 仕切り壁
114 現像剤収容セル
115 接着剤
DL 現像剤
110a 媒体11の長手方向の側縁
110b 媒体11の短手方向の端部
α 仕切り壁幅
h 仕切り壁高さ
w セル幅
WP 白色現像粒子
BP 黒色現像粒子
mp 現像粒子付着を抑制するための微粒子
PC 感光体ドラム
CH スコロトロン帯電器
EX レーザー画像露光装置
IR イレーサランプ
R1 電極ローラ
R2 回転磁極ローラ
PW1 バイアス電源[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image display medium, and more particularly to a reusable and rewritable image display medium.
[0002]
[Prior art]
At present, as a method of displaying or outputting an image in work of a word processor, a personal computer, or the like, there is a method of displaying by a display or a method of printing by a printer. The display on the display generally has a low resolution, is not suitable for displaying a text document mainly composed of characters, and the eyes are very apt to be tired when working for a long time because of the luminous display. On the other hand, the image printed by the printer is easy on the eyes because of the high-resolution and reflective display. For this reason, it is very common for a document to be temporarily output to be output by a printer.
[0003]
However, a printer requires a high electricity cost, requires consumables such as printing paper, and requires a high running cost. Recently, there has been a demand for reduction of energy consumed by a printer and reduction of consumption of paper and the like due to reduction of environmental load. In spite of this, even if it is enough to see it temporarily, an image is output and displayed on a sheet by a printer or the like, and once it is seen, it is often unnecessary and discarded.
[0004]
Therefore, rewritable image display media that can be reused have recently been studied, and various proposals have been made.
As such an image display medium, a particle type rewritable in which a dry type developer is included between a pair of substrates and an image can be displayed by moving a developing particle constituting the developer by applying a developer driving energy. Has been proposed.
[0005]
JP-A-2001-290179 and JP-A-2002-156658 enclose a dry developer between a pair of substrates, and have different charging polarities as the dry developer, and A device including at least two types of triboelectrically charged developing particles having different optical reflection densities, and applying an electric field corresponding to an image to move the two types of developing particles relatively in opposite directions. Thus, an image display medium for displaying an image is disclosed.
[0006]
Further, “Japan Hardcopy '99 Transactions PP pp. 249 to 252” discloses that a sealed space is formed by opposing two substrates, each having an electrode and a charge transport layer, at a predetermined interval, and forming a conductive space in the space. An image display medium for enclosing a toner and insulating particles having different colors from the toner, applying an electrostatic field, injecting charges into the conductive toner, charging the conductive toner, and moving the conductive toner with Coulomb force to display an image. Has been disclosed.
[0007]
Generally speaking, with regard to these particle-moving type image display media, particles used for development tend to adhere to the inner surface of the substrate or members between the substrates, and at the time of image rewriting, the particles thus adhered hardly separate, For this reason, there is a problem that an afterimage is generated or the amount of movable developing particles is reduced, thereby deteriorating the image quality.
[0008]
In this regard, Japanese Patent Application Laid-Open No. 2002-156658 discloses a method for solving such a problem, in which the center line average roughness Ra of the inner surface of the image observation side substrate which comes into contact with the developing particles is 0.2 μm to 0.5 μm. It also discloses that the development particles are prevented from adhering to the inner surface of the substrate, thereby suppressing the occurrence of an afterimage.
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-290179 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-156658 [Non-Patent Document 1] Japan Hardcopy '99 Transactions PP249-252
[0009]
[Problems to be solved by the invention]
The control of the center line average roughness Ra of the inner surface of the substrate described in JP-A-2002-156658 is recognized to have an effect of suppressing the adhesion of the developing particles to the inner surface of the substrate, but the present invention also provides A particle-movable rewritable image display medium, which suppresses the adhesion of developing particles to a substrate or the like, thereby suppressing the occurrence of an afterimage at the time of image rewriting and the reduction of the amount of movable developing particles. Accordingly, it is an object of the present invention to provide an image display medium capable of displaying a high-quality image.
[0010]
[Means for Solving the Problems]
According to the study of the present inventor, the following can be considered as the adhesion force of the developing particles to the inner surface of the substrate and the member surface between the substrates in contact with the developing particles in the rewritable image display medium of the particle moving type.
[0011]
In general, the adhesive force acting between a particle and an object surface that comes into contact with the particle mainly includes a van der Waals force between the particles (which is proportional to the cube of the distance) and a liquid bridging force (generated only when a capillary is formed). And a long-distance force such as an electrostatic force (proportional to the square of the distance).
[0012]
The contact area of the developing particles with another object surface is smaller in the case where the developing particles are in contact with fine particles having a smaller particle size than the developing particles attached to the object surface, as compared with the case where the developing particles are in direct contact with a flat object surface.
The adhesive force of the developing particles to other objects is affected by the particle size and the like, but the adhesive force due to the proximity force such as van der Waals force greatly depends on the size of the contact area.
[0013]
From these facts, in the case of the particle transfer type image display medium, if the fine particles are adhered to at least a part of the inner surface of the substrate and the surface of the inter-substrate member, the contact area of the developing particles is reduced and the adhesive force can be reduced It can be said.
[0014]
Further, in suppressing the adhesive force between the developing particles and the substrate or the like, the above-described liquid crosslinking force must be considered. The liquid crosslinking force is relatively large as compared with other physical forces, and reduction of this force is very important in suppressing the adhesion of the developer particles to a substrate or the like. This force is due to the condensation of water in the air due to capillary action between the two objects that come into contact with each other, causing liquid bridging. The surface tension of this liquid bridging causes the adhesion of the two objects. I do.
[0015]
In the case of a particle moving type image display medium, for example, if the surface of the inner surface of the substrate in contact with the developing particles is made hydrophobic (the interfacial tension is small), the liquid bridging force is reduced. Considering the adhesion with the substrate, there is a limitation in making the inner surface of the substrate hydrophobic.
[0016]
However, by adopting a substrate having a large interfacial tension, bonding it to the inter-substrate member, and then adhering fine particles to at least a part of the inner surface of the substrate and the inter-substrate member surface facing the developing particles, the interfacial tension of the partial surface is increased. Can be reduced, whereby the adhesion of the developing particles to the portion can be suppressed.
[0017]
In addition to the liquid cross-linking force, there are many effects on the surface adhesion, and the surface properties vary due to various additives added to the substrate and the morphology of the substrate itself, and this is caused by the adhesion. In some cases, and locally strong adhesion may occur. Even in such a case, the adhesion of the developing particles can be suppressed by attaching the fine particles in advance.
[0018]
Then, the present invention, in order to solve the above problems,
A pair of substrates, an inter-substrate member provided between the pair of substrates and providing at least one developer accommodating cell, and a dry type developer accommodated in the developer accommodating cell; A particle transfer type rewritable image display medium capable of moving the developing particles constituting the dry developer by applying energy to display an image, wherein the substrate inner surface and the inter-substrate member surface facing the developing particles Provided is a rewritable image display medium in which fine particles for suppressing adhesion of a developing particle having a smaller particle diameter than the developing particles are adhered to at least a part thereof.
[0019]
According to this image display medium, an image can be displayed by moving developer particles included in the dry developer contained therein by applying developer drive energy. Further, once an image is displayed, the image can be erased or rewritten by applying different driving energy, and the image can be reused in this way.
[0020]
At least a part of the inner surface of the substrate facing the developing particles and the inter-substrate member surface has fine particles for suppressing the developing particle adhesion smaller than the developing particles adhered to the developing particles. It is possible to suppress the reduction in the amount of the movable developing particles that can be suppressed and display a high-quality image.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The rewritable image display medium according to the embodiment of the present invention is basically provided with a pair of substrates, an inter-substrate member provided between the pair of substrates and providing at least one developer accommodating cell, and the developer And a dry developer contained in the containing cell, wherein at least a part of the inner surface of the substrate facing the developer and the surface of the inter-substrate member have a particle diameter smaller than that of the developer constituting the developer. Fine particles are adhered.
[0022]
As a member between boards,
(1) A frame-shaped wall member such as a rectangular frame that provides one developer storage cell;
(2) a frame-shaped wall member such as a rectangular frame that provides one developer accommodating cell, and a columnar-shaped developer movement suppressing member disposed inside (in the cell) of the frame-shaped wall member;
(3) a partition wall member that provides a plurality of developer storage cells, for example, a partition wall member that provides cells in a grid pattern, and a plurality of parallel partition wall members that provides a plurality of grooved cells;
(4) a partition wall member that provides a plurality of developer storage cells (for example, a partition wall member that provides cells in a grid pattern or a plurality of parallel partition wall members that provides a plurality of grooved cells); A developer movement suppressing member such as a column provided in at least one cell,
Etc. can be exemplified.
[0023]
As the substrate, a glass substrate, a resin substrate, or the like can be adopted, and a flexible resin film substrate may be used. In any case, at least the substrate on the image observation side should be a light-transmitting substrate, more preferably a transparent substrate, so that the developing particles contributing to image display inside the medium can be visually recognized. The inter-substrate member may be formed integrally with one of the pair of substrates.
[0024]
The dry type developer typically has at least two types of triboelectric charging having different charge polarities and different optical reflection densities (in other words, different contrasts or different colors). And those containing dry developing particles having a property.
[0025]
When such a developer is used, an image can be displayed by moving the two types of developing particles relatively in opposite directions by applying an electric field corresponding to the image to be displayed to the developing particles. it can.
[0026]
Further, the image display medium having the basic configuration may be a medium of the type disclosed in the above-mentioned “Japan Hardcopy '99 Transactions PP249-252”.
[0027]
The fine particles for suppressing the adhesion of the developing particles, if the particle size is too large, the stress such as contact with the developing particles becomes larger than the adhesive force with the substrate or the like, and the particles are separated from the substrate or the like to which the fine particles are attached. In some cases, the toner adheres to the developing particles and adversely affects the chargeability of the developing particles. Further, the display image may become turbid due to scattering of light by adhering to the developing particles, thereby deteriorating the image quality. On the other hand, if the particle size is too small, the particles adhere in a state of secondary particles (a state in which the particles are aggregated). Also in this case, there is a possibility that the particles may fall off as in the case where the particle size is large.
[0028]
Therefore, the particle size of the fine particles is preferably about 1 nm or more and 1 μm or less, more preferably about 1 nm or more and 100 nm or less.
[0029]
Various materials can be used for the fine particles. For example, in the case of inorganic fine particles, hydrophobic group-substituted silica, silica and titanium oxide can be exemplified. In the case of resin fine particles, polyethylene (PE), polypropylene (PP), acrylic resin, polymethyl methacrylate (PMMA), silicon Resins, fluororesins, polystyrene and benzoguanamine can be exemplified.
Two or more types of fine particles made of different materials may be used, or fine particles made of different materials may be used.
[0030]
From the viewpoint of liquid crosslinking power, it is more preferable to use hydrophobic fine particles, and examples of such fine particles include fine particles composed of hydrophobic group-substituted silica, silicon resin, and fluorine resin.
[0031]
Further, from the viewpoint of van der Waals force, resin fine particles and insulating fine particles are preferable to inorganic fine particles.
[0032]
The fine particles adhere to at least a part of the inner surface of the substrate and the inter-substrate member, but are preferably attached to the inner surface of the image observation side substrate, which particularly affects the image quality. Of course, even if it is attached to the inner surface of the substrate opposite to the image observation side or to the surface of the inter-substrate member, it is possible to suppress the reduction of the amount of movable developing particles due to the adhesion of the developing particles to them, thereby generating afterimages and contrast. Of the image quality can be suppressed and an image with high image quality can be displayed.
[0033]
It is desirable that the adhesion of the fine particles is as uniform and small as possible. If the amount of adhesion is large or the adhesion is insufficient, desorption may easily occur. It is also important to reduce the secondary aggregation of fine particles as much as possible.
[0034]
As a method for adhering fine particles to solve these problems, (1) a physical method such as rubbing the fine particles with a brush or the like; and (2) a method in which the fine particles are dispersed in a good dispersion medium and applied to the surface to be adhered. And a film forming method such as drying to form a fine particle-containing film.
[0035]
More specifically, as the physical method (1), a very simple method of spraying fine particles on a surface to be coated and rubbing with a brush or the like, and removing an excessive amount with an air brush or the like, or dispersing the fine particles in a dispersion medium. Then, it is possible to exemplify a method of coating the surface to be coated together with the dispersion medium and then drying and removing the dispersion medium. This coating method is uniform and can be coated with a small amount if the dispersion is good.
[0036]
In the latter method (2), the fine particles are dispersed in a dispersion medium and coated on the surface to be coated together with the dispersion medium in the same manner as the coating method described above, and then the dispersion medium is dried. A film is formed using a material having polymerizability that is not obtained. Therefore, the fine particles are fixed on the surface to be coated with the film, and are hardly dropped. In this regard, this attachment method can be said to be preferable.
[0037]
Although it has been described above that it is desirable that the amount of the attached fine particles is as small as possible, it is necessary to consider the amount of the attached fine particles in consideration of the particle diameter, specific gravity, degree of secondary aggregation, and the like. As the particle size decreases, the amount of adhesion itself becomes extremely small. In particular, in the case where the adhesive is applied only to a portion having a high adhesive force due to a variation in surface properties, the number is further reduced.
[0038]
From these viewpoints, the amount of the fine particles for suppressing the adhesion of the developing particles to at least a part of the inner surface of the substrate and the surface of the member between the substrates can be approximately 0.001 mg / cm 2 to 1 g / cm 2 .
[0039]
Next, an example of the rewritable particle movement type image display medium (image display medium 11) will be described with reference to the drawings. 1A and 1B show a schematic cross section of the image display medium 11 with a part omitted. FIG. 1A shows a state before displaying an image, and FIG. 1B shows an example of an image displaying state. FIG. 2 is a plan view showing a part of the medium 11 cut out. FIG. 3 is a diagram showing how an image is written on the medium 11.
[0040]
The medium 11 shown in FIGS. 1 and 2 includes a substrate 111 on the image observation side and a substrate 112 on the opposite side. These substrates 111 and 112 face each other with a predetermined gap therebetween. Partition walls 113 are provided between the substrates 111 and 112, and a predetermined gap between the substrates is secured by the partition walls 113. The partition wall partition 113 also serves as a spacer between the substrates 111 and 112.
[0041]
Although it is not necessary to do so, here, the partition wall 113 is formed integrally with the substrate 111, and a plurality of partition walls 113 are formed in parallel with the longitudinal direction of the substrate 111. A space between the adjacent partition walls 113 is a developer accommodating cell 114.
[0042]
The substrate 111 on the image observation side and the partition wall 113 integrated therewith are not limited thereto, but are formed here by molding a transparent resin film. The substrate 112 does not necessarily need to be transparent, but here is made of a transparent resin film, and the electrode film EL is formed on the outer surface.
[0043]
In each of the cells 114, a dry developer DL containing white developing particles WP and black developing particles BP, which are frictionally charged and have different charging polarities, is accommodated. Fine particles mp are attached to the inner surface of the substrate 111 facing the developer DL and the side surfaces of the partition wall 113 rising from the surface to suppress the adhesion of the developing particles WP and BP to those surfaces.
[0044]
The particle size of the fine particles mp is in the range of 1 nm or more and 100 nm or less, and the attached amount is in the range of 0.001 mg / cm 2 to 1 g / cm 2 . The material of the fine particles mp is selected from those exemplified above.
[0045]
After the substrate 112 contains a predetermined amount of the developer DL in each cell 114, the substrate 112 is applied to the top surface of the partition wall 113, and is adhered with an adhesive or the like. Further, both longitudinal edges 110a and lateral edges 110b of both substrates 111 and 112 are sealed by heat fusion. Thus, each cell 114 is sealed, and the developer DL does not leak from the cell.
[0046]
Each partition wall 113 has a width α and a height h, and is formed such that an interval (cell width) between adjacent partition walls 113 is w. These dimensions are determined within a range that does not hinder image display.
[0047]
The image display medium 11 described above can display an image using, for example, an electrophotographic image forming apparatus shown in FIG.
[0048]
The apparatus in FIG. 3 includes a photosensitive drum PC that is driven to rotate in the direction of the arrow in the figure. A scorotron charger CH, a laser image exposure device EX, and an eraser lamp IR are arranged around the photosensitive drum PC. An electrode roller R1 that is driven to rotate is disposed below the photosensitive drum PC. The electrode roller R1 is a developing electrode roller for forming an electrostatic field for displaying an image. A bias voltage is applied to the roller R1 from the power supply PW1. The roller R1 has a built-in rotary magnetic pole roller R2 that is driven to rotate in the opposite direction to the roller R1 (or is driven to reciprocate).
[0049]
After the surface of the photosensitive drum PC is charged by the charger CH, an image is exposed to the charged area by the exposure device EX to form an electrostatic latent image EI on the drum PC. On the other hand, a bias is applied to the electrode roller R1 from the power supply PW1.
Then, the medium 11 is fed between the drum and the electrode roller R1 in synchronization with the electrostatic latent image EI on the photosensitive drum PC. At this time, the image observation side substrate 111 of the medium 11 is directed toward the photosensitive drum PC, and the electrode film EL on the outer surface of the substrate 112 is brought into contact with the electrode roller R1.
[0050]
Thus, a predetermined electrostatic field is formed on the developing particles BP and WP of the developer DL contained in each cell 114 of the medium 11, and thereby a Coulomb force acts between the electrostatic field and the charged developing particles. The developer particles move relatively in opposite directions. Then, as shown in FIG. 1A, the white particles WP and the black particles BP move according to the electric field from the state where the black and white particles WP and BP are mixed in the developer DL, as shown in FIG. I do. Thus, an image is displayed with a predetermined contrast.
After the image is displayed as described above, the charge on the surface of the photosensitive drum PC is erased by the eraser lamp IR in preparation for the next print.
[0051]
The medium 11 on which an image has been formed in this manner can be erased or rewritten by applying an electrostatic field different from that of the previous time to the image forming apparatus shown in FIG. 3 again, and can be reused.
[0052]
Further, since the fine particles mp are adhered to the inner surface of the substrate 111 facing the developing particles WP and BP and to the side surface of the partition wall 113, it is possible to suppress the occurrence of an afterimage at the time of image rewriting and to move the developing particles. A high-quality image can be displayed while suppressing a reduction in the amount.
[0053]
Next, an experimental example in which an image display medium of the type shown in FIG. 1A is formed and the effect of the fine particles is evaluated will be described. Comparative experimental examples are also described.
In each of the experimental examples and comparative experimental examples, the preparation of the image display medium is as described below except that it relates to fine particles for suppressing the adhesion of the developing particles, and the developer used is the same as that described below. is there.
[0054]
<Preparation of image display medium>
The polyethylene terephthalate (PET) film is heated and pressed, and the average thickness t of the base portion (see FIG. 1A) = 25 μm, the width α of the partition wall = 50 μm, the height h of the partition wall = 150 μm, and adjacent partitions. An image observation side substrate having a continuous groove-shaped cell and a partition wall along the cell having a wall interval (cell width) w = 300 μm was produced.
[0055]
Next, fine particles for suppressing the adhesion of the developing particles are adhered to the inner surface of the substrate and the side surface of the partition wall. % Of the developer.
Next, a thin photo-curing adhesive was applied to the top surface of the partition wall, and then a 25 μm-thick polyethylene terephthalate (PET) film with an ITO film deposited on the outer surface was adhered to the outer surface, and the adhesive was cured by ultraviolet irradiation. . Thereafter, the peripheral portions of both film substrates were sealed by heat sealing to obtain an image display medium.
[0056]
<Developer used>
(White developed particles)
100 parts by weight of a thermoplastic polyester resin (softening point 121 ° C., glass transition point 67 ° C.), 40 parts by weight of titanium oxide (CR-50, manufactured by Ishihara Sangyo Co., Ltd.), and a zinc salicylate complex (Orient Chemical Co., Ltd.) as a negative charge control agent And 5 parts by weight of Bontron E-84) were sufficiently mixed with a Henschel mixer, kneaded with a twin-screw extruder, and then cooled. The kneaded material was coarsely pulverized and then pulverized by a jet pulverizer, and a white powder having an average particle size of 10 μm was obtained by air classification. 0.3 parts by weight of hydrophobic silica fine particles (Aerosil R-972 manufactured by Nippon Aerosil Co., Ltd.) was added to this white powder, and mixed with a Henschel mixer to obtain white developed particles.
[0057]
(Black developing particles)
100 parts by weight of a styrene-n-butyl methacrylate resin (softening point 132 ° C., glass transition point 65 ° C.), 2 parts by weight of carbon black (Lion Oil & Fat Co., Ketjen Black), and silica (Nippon Aerosil Co., # 200) After 1.5 parts by weight and 500 parts by weight of magnetite-based magnetic powder (RB-BL Titanium Co., Ltd.) were sufficiently mixed with a Henschel mixer, they were kneaded with a vented twin-screw kneading apparatus.
After cooling, the kneaded product was coarsely pulverized by a feather mill, finely pulverized by a jet mill, and classified by an air classifier to obtain black developed particles having a volume average particle diameter of 20 μm.
[0058]
(Adjustment of developer)
30 g of the white developing particles and 70 g of the black developing particles were put in a polyethylene bottle, and rotated and mixed and stirred for 30 minutes by a ball mill base to obtain a developer. In this developer, the white developing particles were negatively charged and the black developing particles were positively charged.
[0059]
<Fine particles for suppressing development particle adhesion>
The application of the fine particles to the inner surface of the substrate and the side surface of the partition wall described in <Preparation of image display medium> was performed as follows.
[0060]
(Experimental example 1)
As the fine particles, methyl group-substituted silica fine particles R972 (average particle diameter D50 = 16 nm) manufactured by Nippon Aerosil Co., Ltd. were used. Approximately 1 g of R972 was sprayed on the surface of the substrate having cells, and was applied by rubbing with a brush. Thereafter, excess R972 was removed with an air gun, and further removed with a brush as much as possible. The R972 scraped off by the brush was removed until it did not adhere to the flat portion of the substrate edge.
[0061]
(Experimental example 2)
A dispersion in which 2 g of R972 was dispersed in 50 ml of 2-PrOH was applied to the surface of the substrate having cells, and dried with hot air.
[0062]
(Experimental Examples 3 and 4 and Comparative Experimental Example 2)
In Experimental Example 3, silica fine particles AEROSIL200 (D50 = 12 nm) manufactured by Nippon Aerosil Co., Ltd. were used as fine particles.
In Experimental Example 4, silicon resin fine particles R930 (D50 = 1.0 μm) manufactured by Toray Fine Chemical Co., Ltd. were used as fine particles.
In Comparative Experimental Example 2, crosslinked polymethyl methacrylate fine particles MBX-8 (D50 = 8 μm) manufactured by Sekisui Chemical Co., Ltd. were used as fine particles.
Otherwise, the fine particles were adhered in the same manner as in Experimental Example 1.
[0063]
(Experimental example 5)
As the fine particles, polypropylene fine particles E6314 (D50 = 0.1 μm) manufactured by Toho Chemical Co., Ltd. are used, and they are purely diluted by a factor of 2 to form a thin layer by spin coating on the surface of the substrate having cells. , And then washed with water.
[0064]
The evaluation was performed in the order of white-black-white-black-white-black-white checkerboard pattern, and evaluated by the fifth checkerboard image density (ID). At that time, the evaluation of white and black was performed according to the following criteria, and the evaluation of the poorer of white and black was taken as the evaluation result.
[0065]
Figure 2004226768
[0066]
The experimental examples and evaluation results described above are summarized in Table 1 below.
Figure 2004226768
[0067]
【The invention's effect】
As can be understood from the above description, according to the present invention, a rewritable image display medium of a particle movement type, in which the occurrence of an afterimage at the time of image rewriting is suppressed by suppressing the adhesion of developing particles to a substrate or the like. It is possible to provide an image display medium capable of displaying a high-quality image by suppressing the reduction of the amount of movable developing particles while suppressing the reduction.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic cross-sectional views of an example of a particle moving type image display medium in which a part is omitted, and FIG. 1A shows a state before image display; FIG. 1B shows an example of an image display state.
FIG. 2 is a plan view showing a part of the image display medium shown in FIG.
FIG. 3 is a diagram showing how an image is written on the image display medium shown in FIGS. 1 and 2.
[Explanation of symbols]
11 Rewritable image display medium 111 Image observation side substrate 112 Opposite substrate 113 Partition wall 114 Developer storage cell 115 Adhesive DL Developer 110a Longitudinal side edge 110b of medium 11 Short side end of medium 11 Part α Partition wall width h Partition wall height w Cell width WP White developing particles BP Black developing particles mp Fine particles PC for suppressing adhesion of developing particles Photoconductor drum CH Scorotron charger EX Laser image exposure device IR eraser lamp R1 Electrode roller R2 Rotary magnetic pole roller PW1 Bias power supply

Claims (4)

一対の基板と、該一対の基板間に設けられ、少なくとも一つの現像剤収容セルを提供する基板間部材と、該現像剤収容セルに収容された乾式現像剤とを備えており、現像剤駆動エネルギーを印加することで該乾式現像剤を構成する現像粒子を移動させて画像表示できる粒子移動型の書換え可能の画像表示媒体であって、該現像粒子に臨む基板内面及び基板間部材面のうち少なくとも一部に該現像粒子より粒径が小さい現像粒子付着抑制のための微粒子を付着させてあることを特徴とする書換え可能の画像表示媒体。A pair of substrates, an inter-substrate member provided between the pair of substrates and providing at least one developer accommodating cell, and a dry type developer accommodated in the developer accommodating cell; A particle transfer type rewritable image display medium capable of moving the developing particles constituting the dry developer by applying energy to display an image, wherein the substrate inner surface and the inter-substrate member surface facing the developing particles A rewritable image display medium, characterized in that fine particles for suppressing the adhesion of developing particles having a smaller particle diameter than the developing particles are adhered to at least a part thereof. 前記乾式現像剤は、互いに帯電極性の異なる、且つ、互いに光学的反射濃度の異なる少なくとも2種類の摩擦帯電性を有する乾式現像粒子を含んでいる請求項1記載の書換え可能の画像表示媒体。The rewritable image display medium according to claim 1, wherein the dry developer includes at least two types of triboelectrically-chargeable dry developing particles having different charging polarities and different optical reflection densities. 前記現像粒子付着抑制のための微粒子は粒径1nm〜1μmの微粒子である請求項1又は2記載の画像表示媒体。The image display medium according to claim 1, wherein the fine particles for suppressing the adhesion of the developing particles are fine particles having a particle size of 1 nm to 1 μm. 前記現像粒子付着抑制のための微粒子の前記基板内面及び基板間部材面のうち少なくとも一部への付着量は0.001mg/cm〜1g/cmである請求項1、2又は3記載の画像表示媒体。。The amount of the fine particles for suppressing the adhesion of the developing particles to at least a part of the inner surface of the substrate and the member surface between the substrates is 0.001 mg / cm 2 to 1 g / cm 2 . Image display medium. .
JP2003015479A 2003-01-24 2003-01-24 Method for manufacturing rewritable image display medium Expired - Fee Related JP4192606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015479A JP4192606B2 (en) 2003-01-24 2003-01-24 Method for manufacturing rewritable image display medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015479A JP4192606B2 (en) 2003-01-24 2003-01-24 Method for manufacturing rewritable image display medium

Publications (2)

Publication Number Publication Date
JP2004226768A true JP2004226768A (en) 2004-08-12
JP4192606B2 JP4192606B2 (en) 2008-12-10

Family

ID=32903216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015479A Expired - Fee Related JP4192606B2 (en) 2003-01-24 2003-01-24 Method for manufacturing rewritable image display medium

Country Status (1)

Country Link
JP (1) JP4192606B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251663A (en) * 2005-03-14 2006-09-21 Bridgestone Corp Manufacturing method for panel for information display, and panel for information display
JP2009251084A (en) * 2008-04-02 2009-10-29 Konica Minolta Business Technologies Inc Image display device
JP2009300727A (en) * 2008-06-13 2009-12-24 Konica Minolta Business Technologies Inc Image display device
JP2010190964A (en) * 2009-02-16 2010-09-02 Konica Minolta Business Technologies Inc Image display apparatus
JP2011059410A (en) * 2009-09-10 2011-03-24 Fuji Xerox Co Ltd Display medium and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251663A (en) * 2005-03-14 2006-09-21 Bridgestone Corp Manufacturing method for panel for information display, and panel for information display
JP2009251084A (en) * 2008-04-02 2009-10-29 Konica Minolta Business Technologies Inc Image display device
US7830593B2 (en) 2008-04-02 2010-11-09 Konica Minolta Business Technologies, Inc. Image display device
JP2009300727A (en) * 2008-06-13 2009-12-24 Konica Minolta Business Technologies Inc Image display device
JP2010190964A (en) * 2009-02-16 2010-09-02 Konica Minolta Business Technologies Inc Image display apparatus
US7903323B2 (en) 2009-02-16 2011-03-08 Konica Minolta Business Technologies, Inc. Image display apparatus
JP2011059410A (en) * 2009-09-10 2011-03-24 Fuji Xerox Co Ltd Display medium and display device

Also Published As

Publication number Publication date
JP4192606B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US6515790B2 (en) Reversible image display medium and image display method
US7436379B2 (en) Reversible image display medium
US20050179643A1 (en) Image displaying method and image forming apparatus utilizing a reversible image display medium having a high resolution image display
US6686940B2 (en) Reversible image display medium
US6774879B2 (en) Reversible image display medium
JP4192623B2 (en) Method for manufacturing rewritable image display medium
US6377757B2 (en) Image display method, image forming apparatus and reversible image display medium
JP4192606B2 (en) Method for manufacturing rewritable image display medium
JP4051940B2 (en) Image display medium
JP2004029699A (en) Particles for picture display, and picture display device using the same
JP2002350905A (en) Image display medium and image display method
JP3932753B2 (en) Reversible image display medium
JP2002174831A (en) Reversible image display medium and method for manufacturing the same
JP4062864B2 (en) Reversible image display medium
JP4296668B2 (en) Reversible image display method
JP3932754B2 (en) Reversible image display medium
JPH07295282A (en) Magnetic toner and electrophotographic method
JP2004341123A (en) Panel and method for displaying picture
JP2003302661A (en) Image display medium
JP2002350906A (en) Reversible image display medium, image display method and image display device
JP2002156658A (en) Reversible image display medium
JP2001350164A (en) Reversible image display medium
JP4296669B2 (en) Reversible image display method
JP5136807B2 (en) Reversible image display medium
JP2002156663A (en) Method for displaying image and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees