JP2004226383A - Capacity type load detecting device - Google Patents

Capacity type load detecting device Download PDF

Info

Publication number
JP2004226383A
JP2004226383A JP2003018083A JP2003018083A JP2004226383A JP 2004226383 A JP2004226383 A JP 2004226383A JP 2003018083 A JP2003018083 A JP 2003018083A JP 2003018083 A JP2003018083 A JP 2003018083A JP 2004226383 A JP2004226383 A JP 2004226383A
Authority
JP
Japan
Prior art keywords
load
plate
plates
upper plate
lower plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018083A
Other languages
Japanese (ja)
Inventor
Hiroyuki Senchi
廣之 泉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003018083A priority Critical patent/JP2004226383A/en
Publication of JP2004226383A publication Critical patent/JP2004226383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a capacity type load detecting device in which a load detecting part is efficiently arranged. <P>SOLUTION: The device has an upper plate 1 on which a load is placed, a lower plate 2 which holds a load detecting part, load detecting springs 3a, 3b, 3c and 3d which hold the upper plate 1 and are displaced depending on the weight of the placed load, and three intermediate plates 41, 42 and 43 which are arranged between the upper and lower plates 1 and 2 and polarize the space between the plates into a plurality of spaces. The device is configured to be polarized into four poles. Intermediate springs 51, 52, 53 and 54 for evenly dividing the space distance are arranged between the polarized plates, i.e., the polarized upper and lower plates 1 and 2 and intermediate plates 41, 42 and 43. A capacity part for detecting the load weight is constituted of spaces between respective adjacent plates of the upper plate 1, plural intermediate plates and lower plate 2, and a load detecting spring 3 is displaced depending on the load weight applied to the upper plate 1. This displacement amount is fractionated into displacement amounts between the plural polar plates (1, 51, 52, 53, 54, 2), which are detected as a lager amount of changes in capacity values between the respective polar plates. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、容量式荷重検出装置に関し、特に、上下の載荷板間に複数の極板を有する容量式荷重検出装置に関する。
【0002】
【従来の技術】
従来、容量式荷重検出装置は一般に、荷重の大きさを検出する装置・機器として構成される。良く知られた物として、たとえば、筒状に形成されたバネの変移量を機械的に測定する方式、起歪部と抵抗線式ひずみゲージとを用いたロードセル方式、変移量を容量として検出しブリッジ回路で電圧変化量として検出する方式等が知られている。
【0003】
【特許文献1】
特開2000−199723号公報(特許第3273768号)
「荷重測定装置および荷重測定方法」
【0004】
図4は、従来の容量式荷重検出装置の構成例を示しており、上記特許文献1の基本構成例を示す側面図である。本発明と技術分野の類似する上記の先願発明例1は、本願発明と同一発明者に成る発明である。本特許文献1では、上下の載荷板10、30の間に極板20を有して構成され、極板10、20、30のそれぞれが同様に載荷された負荷荷重を受け、極板10、20、30のそれぞれの間にバネ61、62を設け、それぞれの対向する極板間で構成されるコンデンサを積層コンデンサの構造としている。故に、それぞれの極板間のバネ61、62は、各々がほぼ均等に載荷された負荷荷重を受ける。
【0005】
【発明が解決しようとする課題】
しかしながら、上記先願発明の荷重検出装置の構成によれば、それぞれの極板間のバネが載荷された負荷荷重を受けるため、全てのバネが負荷荷重に対応した荷重容量を有する必要がある。それ故、個々のバネ全てが機械的に大きくなり、全体的な装置の高さが大きくなり、極板間の間隔を小さくすることが困難となる。
【0006】
極板間の間隔が大きくなると、それによって構成される容量は小さくなる。絶対的な容量値が小さいと、間隔変位量により検出される容量値の変化量も付随的に小さくなる。この結果、負荷荷重に応じて変位した検出容量値が小さくなり、高精度での荷重検出が困難となる。
【0007】
さらに、荷重検出装置の高さ寸法が大きくなり、薄型化、小型化、軽量化等が困難となる。また、荷重を受ける底面に対する荷重受け面の位置が高くなり、これに伴い荷重の重心位置が高くなり、負荷荷重の安定性が低下する。この安定性の低化は、結果的に測定精度の低下へ通じる。
【0008】
構造的により高い強度の必要性は、機械的な強度の必要性へ通じ、一般的に、材料費、加工費、組立調整費等のコストアップ要因となる問題点を伴う。
【0009】
本願発明は、上記先願発明の基本原理に関連し、さらに荷重検出部を効率的に構成し、測定精度の向上、構成の簡素化、薄型軽量化、等の性能を向上可能とする容量式荷重検出装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
かかる目的を達成するため、本発明の容量式荷重検出装置は、被測定の荷重が印加され該荷重量の大きさに応じて可動状態とされた上板と、上板を保持する下板と、上板と下板間に配置され荷重量の大きさに応じて該上板と下板間の間隔距離を変化させる荷重検出バネと、上板と下板とにより形成される間隔内に収容されて配置され、該間隔を少なくとも2層に分割する中間板とを有して構成され、上板と中間板と下板の何れかの板間により形成される間隔の上板と下板間の間隔距離の変化に基く容量の変化量により、印加される荷重量を検出することを特徴とする。
【0011】
また、上記上板と中間板および該中間板と下板の夫々の間に少なくとも1個の中間バネをさらに有し、上板と下板を一方の極とし、且つ中間板を他方の極とし、2層の空間部により構成される容量を並列接続し、該容量の変化量により荷重量を検出可能とし、この容量の大きさの変化に応じて発振周波数の変化する発振回路をさらに有し、空間部に基く容量の変化量に基く発振周波数に対応して荷重量を測定可能とするとよい。
【0012】
【発明の実施の形態】
次に、添付図面を参照して本発明による容量式荷重検出装置の実施の形態を詳細に説明する。図1、図2および図3を参照すると、本発明の容量式荷重検出装置の一実施形態が示されている。これらの図1は、上板を外した状態の上方から見た平面図である。図2は、図1に対応する側面図である。また、図3は、極板間の接続例を示す概念図である。
【0013】
本実施形態の容量式荷重検出装置は、荷重が載荷される上板1と、荷重検出部を保持する下板2と、上板1を保持して載荷された荷重量に応じて変位する荷重検出バネ3a、3b、3c、3dと、上記上板1と下板2との間に配置され両者の間隔を複数の空間に分極する3枚の中間板41、42、43とを有して構成される。よって、上板1と下板2間は3枚の中間板41、42、43により、4極に分極されて構成される。
【0014】
上記の上板1と下板2との間には、上板1と下板2間において両者の間隔長変化に応じて、中間板41、42、43の複数の極間間隔長を均等に変化させるための中間バネ51、52、53、54が、それぞれの中間板41、42、43間、並びに上板1と中間板41および下板2と中間板53との間に設置される。なお、中間バネ51、52、53、54はそれぞれの中間板間に4個(例えば、51a、51b、51c、51d)が1組として配置される。よって、中間バネの総数は、本実施例では(4個/1極)×4極=16の16個が用いられる。
【0015】
なお、荷重検出バネ3a、3b、3c、3dと、中間バネ51、52、53、54とは、本実施形態では、無荷重時の自然長と定格負荷時の荷重時長とのバネの伸縮比率を大きく取るために、側面形状が台形の円錐バネを用いている。この円錐形状のバネを用いることにより、定格荷重時のバネの高さ長をより小さくすることができる。よって、隣接する極板間の間隔距離をより小さくすることができ、結果的に、無負荷時から荷重印加時への検出容量値の変化量をより大きく形成することができる。
【0016】
上板1と複数の極板と下板の隣接するそれぞれの各板間により、荷重量を検出するための容量部が構成される。載荷板となる上板へ載荷される荷重量に応じて荷重検出バネが変位する。この変位量は、中間バネにより複数の極板間の変位量へ細分化され、各極板間の容量値の変化量として形成される。
【0017】
本実施形態の容量式荷重検出装置の基本的な構成は、上記の各部により構築される。但し、実用的に用いる上で、不図示の付随的な構成部を有している。例えば、上板1・下板2・中間板41、42、43の間の、位置ズレの発生を防止するため、測定の効率性を高めるため、荷重印加の均等性を高めるため、測定の安定性向上のため、繰り返し測定性を高めるため、等の目的において付随的な構成部を有している。
【0018】
上記付随的な構成部の一つとして、不図示の連結板がある。本連結板は、上板1および下板2間の上下動を自在にし、かつ横移動の防止を図っている。この目的を持った連結板を上板1および下板2間の四方向へ取りつけることにより、上下のZ軸方向への移動を自在とし、且つXY軸方向への移動を規制している。本上板1と下板2間を連結する連結板の他に、極板間の電気的な接続を採るための接続部品がある。
【0019】
各極版間の機械的な位置を確保するための構成例として、バネの上下の端部を上方または下方へ突き出す方策もある。より具体的には、例えば、上側の端を上方へ折り曲げ、下側の端を下方へ折り曲げる等である。また、各極版には、上記の折り曲げ部を採り込む孔を設けて、相互に機械的位置を確定させる。
【0020】
上板1、下板2および中間板間を交互に連結し、構成される容量測定空間を並列接続とし、検出容量を増大化させ、測定容量の変化量を拡大化させ、測定の安定化と感度の向上化を図っている。これらの目的のために、中間板41、42、43間の間隔長をより小さくし、対抗する面積の拡大化を図っている。
【0021】
上記の目的において、中間板41、42、43の角の構造を上下板間で非対称とし、隣接する極板間で重ならない部位を構成している。実施例における3枚の中間板41、42、43は、加工構造は同一であるが上下非同一の形状とし、さらに、重ねる方向を裏表反転させ配置することにより、隣接する極板間で重ならない部位を構成している。本構成になる隣接する極板間で、重ならない部位を用いて交互の電気的な接続の容易化を図っている。
【0022】
本実施形態の容量式荷重検出装置は、上板1と3枚の中間板41、42、43と下板2とで4極構成の容量構成部が並列接続されて、1式の容量式の荷重検出器が形成されている。上板1、下板2、および第2の中間板42のそれぞれが電気的に接続されてマイナス極とされる。また、第1中間板41および第2中間板43が相互に電気的に接続されてプラス極とされる。これらの図3に示すマイナス極(−)とプラス極(+)とが不図示の発振回路へ接続されて、該発振回路から出力される発振周波数の変化値が、測定値として変換される。
【0023】
載荷板となる上板1へ印加される荷重量に応じて各板により形成される容量値が並列的に変化する。また、上板1と下板2との間に中間板41、42、43を設けて空間を細分化している。これにより、極板の面積の拡大化および極板間の距離の短縮化がされる。これらの隣接する極板間により構成される容量を、並列接続して発振回路へ接続する。
【0024】
上記の構成によれば、極板間により構成される容量の構成数が増す。また、極板間の距離間隔が短縮化され、その結果として構成容量値が増大化される。構成容量をより大きくすることにより、検出される容量の変化量をより微細化することが可能なことを実験により得ている。これらの諸条件に基き、発振回路の発振周波数の安定化が図れると共に有効変化量が大きくなり、得られる検出信号が拡大化され、検出感度を高めることが可能となる。
【0025】
さらに、上記実施形態では、上板の載荷板で受けた荷重を、4個の荷重検出バネ3a、3b、3c、3dにより直接下板へ伝達している。この結果、上板1と下板2との間に配置され、極板となる中間板41、42、43間を均等間隔長で保持する中間バネ51、52、53は、荷重容量が小さくてよい。よって、全体的な構成がより簡素化され、よりコンパクト・薄型に形成することが可能となる。
【0026】
なお、上記の実施形態の容量式荷重検出装置は、図1、図2および図3から知れる様に、中間板41、42、43を、上下板1、2により形成されるスペース範囲内に収容して構成している。中間板41、42、43を上下板1、2より小さくすると、形成される容量値は小さくなり、荷重検出感度の低下要因となる。しかしこの反面、荷重の重心位置の変動による4個の荷重検出バネ3a、3b、3c、3dの変位量の不同一による、検出容量値の変動値が小さくなることが確認されている。よって、上下板1、2の外形寸法に対し中間板41、42、43をより小さくすることにより、測定値の変動量をより小さくすることが可能となる。
【0027】
上記要件に基き構成される容量式荷重検出装置は、容量構成部の個数が増す。また、極板間の距離間隔が短縮化され、その結果として構成容量値が増大化される。この構成容量をより大きくすることにより、検出される容量の変化量を微細化することができる。これらの諸条件に基き、発振回路の発振周波数の安定化が図れると共に有効変化量が大きくなり、得られる検出信号が拡大化され、検出感度を高めることが可能となる。
【0028】
なお、上述の実施形態は本発明の好適な実施の一例である。ただし、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施が可能である。
【0029】
【発明の効果】
以上の説明より明らかなように、本発明の容量式荷重検出装置は、荷重量の大きさに応じて上板が上下可動状態とされ、荷重検出バネが荷重量の大きさに応じて上板と下板間の間隔長を変化させる。上板と下板の中間部に収容された少なくとも2個の空間部を構成する中間板を有し、形成される複数の空間部に基く容量値の変化量により、印加される荷重量を検出することを可能としている。本構成により、構成容量値が増大化され、検出される容量の変化量を微細化することができる。これらの諸条件に基き、発振回路の発振周波数の安定化が図れると共に有効変化量が大きくなり、得られる検出信号が拡大化され、検出感度を高めることが可能となる。
【図面の簡単な説明】
【図1】本発明の容量式荷重検出装置の実施形態の構成例を示しており、上板を外した状態の上方から見た平面図である。
【図2】図1の平面図に対応した側面図である。
【図3】極板間の接続例を示す概念図である。
【図4】従来の容量式荷重検出装置の構成例を示す側面図である。
【符号の説明】
1 上板
2 下板
3a、3b、3c、3d 荷重検出バネ
41、42、43 中間板
51、52、53、54 中間バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitive load detecting device, and more particularly to a capacitive load detecting device having a plurality of pole plates between upper and lower loading plates.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a capacitive load detection device is generally configured as a device / apparatus for detecting the magnitude of a load. As well-known objects, for example, a method of mechanically measuring the displacement of a spring formed in a cylindrical shape, a load cell method using a strain generating section and a resistance wire type strain gauge, and detecting the displacement as a capacitance. A method of detecting a voltage change amount by a bridge circuit is known.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-199723 (Patent No. 3273768)
"Load measurement device and load measurement method"
[0004]
FIG. 4 shows a configuration example of a conventional capacitive load detection device, and is a side view showing a basic configuration example of Patent Document 1 described above. The above-mentioned prior invention example 1 which is similar to the present invention in the technical field is an invention which is the same inventor as the present invention. In Patent Document 1, the electrode plate 20 is configured to have the electrode plate 20 between the upper and lower loading plates 10 and 30, and each of the electrode plates 10, 20 and 30 receives a similarly-loaded load, and Springs 61 and 62 are provided between each of the electrodes 20 and 30, and the capacitor formed between the opposing electrode plates has a multilayer capacitor structure. Therefore, each of the springs 61 and 62 between the respective electrode plates receives a load that is substantially equally loaded.
[0005]
[Problems to be solved by the invention]
However, according to the configuration of the load detection device of the invention of the prior application, since the springs between the respective electrode plates receive the loaded load, all the springs need to have a load capacity corresponding to the applied load. Therefore, all of the individual springs are mechanically large, the overall device height is increased, and it is difficult to reduce the spacing between the plates.
[0006]
As the distance between the plates increases, the capacitance formed thereby decreases. When the absolute capacitance value is small, the change amount of the capacitance value detected by the interval displacement amount is also small accompanyingly. As a result, the detected capacitance value displaced according to the load becomes small, and it becomes difficult to detect the load with high accuracy.
[0007]
Further, the height dimension of the load detection device becomes large, and it becomes difficult to reduce the thickness, size, weight, and the like. In addition, the position of the load receiving surface with respect to the bottom surface receiving the load increases, and accordingly, the position of the center of gravity of the load increases, and the stability of the applied load decreases. This decrease in stability results in a decrease in measurement accuracy.
[0008]
The need for structurally higher strength leads to the need for mechanical strength, and generally involves problems that increase costs, such as material costs, processing costs, and assembly adjustment costs.
[0009]
The invention of the present application is related to the basic principle of the above-mentioned prior invention, and furthermore, a capacity type capable of efficiently configuring a load detection unit and improving performance such as improvement of measurement accuracy, simplification of configuration, reduction in thickness and weight, and the like. An object is to obtain a load detection device.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the capacitive load detection device of the present invention includes an upper plate to which a load to be measured is applied and which is movable according to the magnitude of the load amount, and a lower plate which holds the upper plate. A load detecting spring disposed between the upper plate and the lower plate to change a distance between the upper plate and the lower plate according to the magnitude of the load, and housed in a space formed by the upper plate and the lower plate. And an intermediate plate that divides the interval into at least two layers, and is formed between any of the upper plate, the intermediate plate, and the lower plate. The amount of applied load is detected based on the amount of change in capacitance based on the change in the interval distance.
[0011]
Further, at least one intermediate spring is further provided between each of the upper plate and the intermediate plate and the intermediate plate and the lower plate. The upper plate and the lower plate have one pole, and the intermediate plate has the other pole. And a oscillating circuit for connecting a capacitor formed of two layers of space portions in parallel, enabling a load to be detected based on a change in the capacitance, and changing an oscillation frequency in accordance with a change in the size of the capacitor. It is preferable that the load amount can be measured corresponding to the oscillation frequency based on the change amount of the capacitance based on the space.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a capacitive load detecting device according to the present invention will be described in detail with reference to the accompanying drawings. Referring to FIGS. 1, 2 and 3, there is shown an embodiment of the capacitive load detecting device of the present invention. FIG. 1 is a plan view from above with the upper plate removed. FIG. 2 is a side view corresponding to FIG. FIG. 3 is a conceptual diagram showing an example of connection between electrode plates.
[0013]
The capacitive load detection device according to the present embodiment includes an upper plate 1 on which a load is loaded, a lower plate 2 holding a load detection unit, and a load displaced in accordance with the amount of load loaded while holding the upper plate 1. It has detection springs 3a, 3b, 3c, and 3d, and three intermediate plates 41, 42, and 43 that are disposed between the upper plate 1 and the lower plate 2 and that polarize the interval between the two plates into a plurality of spaces. Be composed. Accordingly, the space between the upper plate 1 and the lower plate 2 is configured to be polarized to four poles by the three intermediate plates 41, 42, and 43.
[0014]
Between the upper plate 1 and the lower plate 2, the distance between the plurality of poles of the intermediate plates 41, 42, 43 is evenly set between the upper plate 1 and the lower plate 2 according to the change in the distance between them. Intermediate springs 51, 52, 53, 54 for changing are provided between the respective intermediate plates 41, 42, 43, and between the upper plate 1 and the intermediate plate 41 and between the lower plate 2 and the intermediate plate 53. In addition, four intermediate springs 51, 52, 53, and 54 (for example, 51a, 51b, 51c, and 51d) are arranged as one set between the intermediate plates. Therefore, the total number of intermediate springs used in this embodiment is (4 / one pole) × 4 = 16.
[0015]
In this embodiment, the load detecting springs 3a, 3b, 3c, and 3d and the intermediate springs 51, 52, 53, and 54 are configured to expand and contract according to the natural length at the time of no load and the length at the time of rated load. In order to increase the ratio, a conical spring having a trapezoidal side shape is used. By using this conical spring, the height of the spring at the time of rated load can be further reduced. Therefore, the distance between adjacent electrode plates can be made smaller, and as a result, the amount of change in the detected capacitance value from when no load is applied to when a load is applied can be made larger.
[0016]
A capacity unit for detecting a load amount is formed between each of the adjacent upper and lower plates 1, 2 and 3. The load detection spring is displaced in accordance with the amount of load applied to the upper plate serving as the loading plate. This displacement amount is subdivided into a displacement amount between a plurality of electrode plates by an intermediate spring, and is formed as a change amount of a capacitance value between the respective electrode plates.
[0017]
The basic configuration of the capacitive load detection device according to the present embodiment is constructed by the above-described units. However, for practical use, it has additional components (not shown). For example, in order to prevent the occurrence of displacement between the upper plate 1, the lower plate 2, and the intermediate plates 41, 42, 43, to increase the efficiency of the measurement, to increase the uniformity of the load application, and to stabilize the measurement. It has an additional component for the purpose of improving the reproducibility, improving the repetitive measurement performance, and the like.
[0018]
One of the additional components is a connecting plate (not shown). This connecting plate makes it possible to freely move up and down between the upper plate 1 and the lower plate 2 and to prevent lateral movement. By attaching connecting plates having this purpose in four directions between the upper plate 1 and the lower plate 2, movement in the vertical Z-axis direction is allowed, and movement in the XY-axis directions is restricted. In addition to the connecting plate for connecting the upper plate 1 and the lower plate 2, there is a connecting part for establishing electrical connection between the electrode plates.
[0019]
As a configuration example for securing a mechanical position between the pole plates, there is a method of protruding the upper and lower ends of the spring upward or downward. More specifically, for example, the upper end is bent upward, and the lower end is bent downward. Further, each pole plate is provided with a hole for taking in the above-mentioned bent portion, and the mechanical position is mutually determined.
[0020]
The upper plate 1, the lower plate 2, and the intermediate plate are alternately connected, and the configured capacity measurement spaces are connected in parallel to increase the detection capacity, increase the amount of change in the measurement capacity, and stabilize the measurement. The sensitivity is improved. For these purposes, the interval length between the intermediate plates 41, 42, 43 is made smaller, and the area to be opposed is enlarged.
[0021]
For the above purpose, the structure of the corners of the intermediate plates 41, 42, 43 is asymmetric between the upper and lower plates, and constitutes a portion that does not overlap between the adjacent electrode plates. The three intermediate plates 41, 42, and 43 in the embodiment have the same processing structure but have non-identical upper and lower shapes, and furthermore, by arranging the overlapping direction upside down, adjacent electrode plates do not overlap. Make up the part. In this configuration, the electrical connection between adjacent plates is made non-overlapping to facilitate alternate electrical connection.
[0022]
In the capacitive load detecting device of the present embodiment, a four-pole capacitive component is connected in parallel by the upper plate 1, the three intermediate plates 41, 42, 43, and the lower plate 2, so that one capacitive type load detecting device is provided. A load detector is formed. Each of the upper plate 1, the lower plate 2, and the second intermediate plate 42 is electrically connected to be a negative pole. Further, the first intermediate plate 41 and the second intermediate plate 43 are electrically connected to each other to be a positive pole. The minus pole (-) and the plus pole (+) shown in FIG. 3 are connected to an oscillation circuit (not shown), and the change value of the oscillation frequency output from the oscillation circuit is converted as a measured value.
[0023]
The capacitance value formed by each plate changes in parallel according to the amount of load applied to the upper plate 1 serving as the loading plate. Further, intermediate plates 41, 42 and 43 are provided between the upper plate 1 and the lower plate 2 to subdivide the space. Thereby, the area of the electrode plate is enlarged and the distance between the electrode plates is reduced. The capacitances formed between these adjacent electrode plates are connected in parallel and connected to the oscillation circuit.
[0024]
According to the above configuration, the number of capacitances formed between the electrode plates increases. Further, the distance between the electrode plates is reduced, and as a result, the constituent capacitance value is increased. Experiments have shown that it is possible to further reduce the amount of change in the detected capacitance by increasing the constituent capacitance. Based on these conditions, the oscillation frequency of the oscillation circuit can be stabilized and the effective change amount can be increased, the detection signal obtained can be enlarged, and the detection sensitivity can be increased.
[0025]
Further, in the above-described embodiment, the load received by the load plate of the upper plate is directly transmitted to the lower plate by the four load detection springs 3a, 3b, 3c, and 3d. As a result, the intermediate springs 51, 52, and 53, which are arranged between the upper plate 1 and the lower plate 2 and hold the intermediate plates 41, 42, and 43, which are pole plates, at equal intervals, have a small load capacity. Good. Therefore, the overall configuration is further simplified, and a more compact and thinner configuration can be achieved.
[0026]
In addition, the capacitive load detection device of the above embodiment accommodates the intermediate plates 41, 42, and 43 in the space formed by the upper and lower plates 1 and 2, as is known from FIGS. It is composed. When the intermediate plates 41, 42 and 43 are smaller than the upper and lower plates 1 and 2, the formed capacitance value becomes smaller, which causes a reduction in load detection sensitivity. However, on the other hand, it has been confirmed that the variation in the detected capacitance value due to the non-uniform displacement of the four load detection springs 3a, 3b, 3c and 3d due to the variation in the position of the center of gravity of the load has been confirmed. Therefore, by making the intermediate plates 41, 42, and 43 smaller than the outer dimensions of the upper and lower plates 1 and 2, it is possible to further reduce the amount of change in measured values.
[0027]
In the capacitive load detecting device configured based on the above requirements, the number of capacitive components increases. Further, the distance between the electrode plates is reduced, and as a result, the constituent capacitance value is increased. By increasing the constituent capacitance, the amount of change in the detected capacitance can be reduced. Based on these conditions, the oscillation frequency of the oscillation circuit can be stabilized and the effective change amount can be increased, the detection signal obtained can be enlarged, and the detection sensitivity can be increased.
[0028]
The above embodiment is an example of a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
[0029]
【The invention's effect】
As is clear from the above description, in the capacitive load detecting device of the present invention, the upper plate is vertically movable according to the magnitude of the load amount, and the load detecting spring is moved to the upper plate according to the magnitude of the load amount. And the interval length between the lower plate and the lower plate. An intermediate plate constituting at least two spaces accommodated in an intermediate portion between the upper plate and the lower plate, and an applied load is detected based on a change in a capacitance value based on a plurality of formed spaces. It is possible to do. With this configuration, the constituent capacitance value is increased, and the amount of change in the detected capacitance can be reduced. Based on these conditions, the oscillation frequency of the oscillation circuit can be stabilized and the effective change amount can be increased, the detection signal obtained can be enlarged, and the detection sensitivity can be increased.
[Brief description of the drawings]
FIG. 1 shows a configuration example of an embodiment of a capacitive load detection device of the present invention, and is a plan view from above with a top plate removed.
FIG. 2 is a side view corresponding to the plan view of FIG.
FIG. 3 is a conceptual diagram showing a connection example between electrode plates.
FIG. 4 is a side view showing a configuration example of a conventional capacitive load detection device.
[Explanation of symbols]
1 upper plate 2 lower plates 3a, 3b, 3c, 3d load detecting springs 41, 42, 43 intermediate plates 51, 52, 53, 54 intermediate springs

Claims (4)

被測定の荷重が印加された該荷重値に応じて可動状態とされた上板と、
前記上板を保持する下板と、
前記上板と下板間に配置され前記荷重値に応じて該上板と下板間の間隔距離を変化させる荷重検出バネと、
前記上板と下板とにより形成される間隔内に収容されて配置され、該間隔を少なくとも2層に分割する中間板とを有して構成され、
前記上板と中間板と下板の何れかの板間により形成される間隔の前記上板と下板間の間隔距離の変化に基く容量の変化量により、前記荷重値を検出することを特徴とする容量式荷重検出装置。
An upper plate that is made movable according to the load value to which the load to be measured is applied,
A lower plate that holds the upper plate,
A load detection spring disposed between the upper plate and the lower plate to change a distance between the upper plate and the lower plate according to the load value,
An intermediate plate that is housed and arranged in a space formed by the upper plate and the lower plate, and divides the space into at least two layers;
The load value is detected by a change amount of a capacity based on a change in an interval distance between the upper plate and the lower plate in an interval formed by any one of the upper plate, the intermediate plate, and the lower plate. And a capacitive load detector.
前記上板と中間板および該中間板と下板の夫々の間に、少なくとも1個の中間バネをさらに有することを特徴とする請求項1に記載の容量式荷重検出装置。The capacitive load detecting device according to claim 1, further comprising at least one intermediate spring between each of the upper plate and the intermediate plate and between the intermediate plate and the lower plate. 前記上板と下板を一方の極とし、且つ前記中間板を他方の極とし、前記2層の空間部により構成される容量を並列接続し、該容量の変化量により前記荷重値を検出可能としたことを特徴とする請求項1または2に記載の容量式荷重検出装置。The upper plate and the lower plate are used as one pole, and the intermediate plate is used as the other pole, and the capacity constituted by the two-layered space portion is connected in parallel, and the load value can be detected based on a change in the capacity. The capacitive load detection device according to claim 1 or 2, wherein: 前記容量の大きさの変化に応じて発振周波数の変化する発振回路をさらに有し、前記空間部に基く容量の変化量に基く前記発振周波数に対応して前記荷重量を測定可能としたことを特徴とする請求項1から3の何れかに記載の容量式荷重検出装置。An oscillation circuit that changes an oscillation frequency in accordance with a change in the size of the capacitance is further provided, and the load can be measured in accordance with the oscillation frequency based on a change in the capacitance based on the space. The capacitive load detection device according to any one of claims 1 to 3, wherein:
JP2003018083A 2003-01-27 2003-01-27 Capacity type load detecting device Pending JP2004226383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018083A JP2004226383A (en) 2003-01-27 2003-01-27 Capacity type load detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018083A JP2004226383A (en) 2003-01-27 2003-01-27 Capacity type load detecting device

Publications (1)

Publication Number Publication Date
JP2004226383A true JP2004226383A (en) 2004-08-12

Family

ID=32905049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018083A Pending JP2004226383A (en) 2003-01-27 2003-01-27 Capacity type load detecting device

Country Status (1)

Country Link
JP (1) JP2004226383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422551A (en) * 2013-09-03 2015-03-18 昆山爱都思电子科技有限公司 Electrostatic volume type force sensor
CN114354700A (en) * 2022-01-06 2022-04-15 广东海洋大学 Hanging object falling risk detection method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422551A (en) * 2013-09-03 2015-03-18 昆山爱都思电子科技有限公司 Electrostatic volume type force sensor
CN114354700A (en) * 2022-01-06 2022-04-15 广东海洋大学 Hanging object falling risk detection method and device

Similar Documents

Publication Publication Date Title
KR102163683B1 (en) Battery cell formation device and probe supporting structure thereof
US7352117B2 (en) Piezoelectric vibrator
CN104380120B (en) Electrostatic capacitive physical quantity transducer
CN114428189B (en) Electric field sensor
JPH0454165B2 (en)
JPH1062445A (en) Acceleration sensor
US20070151339A1 (en) Acceleration sensor element and acceleration sensor
JPH0259633A (en) Detector for pressure distribution
JP2003042768A (en) Motion sensor
JP2004226383A (en) Capacity type load detecting device
KR102242113B1 (en) Measuring apparatus for three axis magnetic field
US10677668B2 (en) Pressure sensor and method for measuring a pressure
CN107923934A (en) Capacitance structure and the method that the quantity of electric charge is determined in the case of using capacitance structure
JPH04115165A (en) Acceleration sensor
JP4410478B2 (en) Semiconductor dynamic quantity sensor
JP6392679B2 (en) Gas sensor
JP5076657B2 (en) Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor
JP4344798B2 (en) Piezoelectric vibrator for tactile sensor
JP4141061B2 (en) Load transducer
JP6200172B2 (en) External force detection device
JP3734596B2 (en) Capacitance level meter
JP2001083177A (en) Electret capacitor type acceleration sensor
SU1242766A1 (en) Device for determing surface tension at solid electrode-solid electrolyte boundary
JP3378163B2 (en) Piezo components
JPH0821852A (en) One-way acceleration sensor