JP2004226351A - Method of and apparatus for detecting attitude of flying object - Google Patents

Method of and apparatus for detecting attitude of flying object Download PDF

Info

Publication number
JP2004226351A
JP2004226351A JP2003017277A JP2003017277A JP2004226351A JP 2004226351 A JP2004226351 A JP 2004226351A JP 2003017277 A JP2003017277 A JP 2003017277A JP 2003017277 A JP2003017277 A JP 2003017277A JP 2004226351 A JP2004226351 A JP 2004226351A
Authority
JP
Japan
Prior art keywords
motor
flying object
encoder
inertial
rotary table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017277A
Other languages
Japanese (ja)
Inventor
Michihiko Mimura
道彦 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2003017277A priority Critical patent/JP2004226351A/en
Publication of JP2004226351A publication Critical patent/JP2004226351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a high-precision inertial sensor for roll angle detection by controlling the rotation of a flying object such that the roll angle of an inertial system is canceled by rotating a motor backward. <P>SOLUTION: The method of and the apparatus for detecting the attitude of a flying object rotates a rotary table (11) having the inertial device (10) by a motor encoder (5) comprising a motor (3) and an encoder (4), rotates the motor (3) backward such that the roll angle of the flying object (30) does not rotate, and detects the rotation of the motor by the encoder (4) and a gyro signal (40) with a high precision. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、飛翔体の姿勢検出方法及び装置に関し、特に、飛翔体に設けた慣性装置のロール角が回転しないように飛翔体の回転と逆方向にモータを回転させ、飛翔体において一番大きく変化するロール角の検出に高精度の慣性センサを用いることなく全ての慣性諸元データを精度良く計測するための新規な改良に関する。
【0002】
【従来の技術】
従来、用いられていたこの種の飛翔体の姿勢検出方法としては、社内で製作されていただけであるため、その方法を示す特許文献及び非特許文献等は示していないが、筒状の飛翔体には、その特有の運動特性のために、慣性諸元データは計測が難かしく、姿勢角を正確に測定する装置は採用されていなかった。
【0003】
【発明が解決しようとする課題】
従来の飛翔体の姿勢検出は前述の状況であるため、次のような課題が存在していた。
すなわち、飛翔体はその特有の運動特性の故に、飛翔体の慣性諸元を検出しようとすると、ロール軸のみが他の軸よりも何倍も大きく回転するため、他の軸に比べると、2桁位い高い検出範囲を有する慣性センサが必要となり、姿勢角演算等で必要なダイナミックレンジを確保することは困難であった。
【0004】
本発明は、以上のような課題を解決するためになされたもので、特に、飛翔体に設けた慣性装置のロール角が回転しないように飛翔体の回転と逆方向にモータを回転させ、飛翔体において一番大きく変化するロール角の検出に高精度の慣性センサを用いることなく全ての慣性諸元データを精度良く計測するようにした飛翔体の姿勢検出方法及び装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明による飛翔体の姿勢検出方法は、飛翔体に設けられ前記飛翔体の軸方向と同一方向にモータ軸を有するモータと、前記モータに設けられたエンコーダと、前記モータ軸に設けられた回転テーブルと、前記回転テーブルに設けられた慣性装置とを用い、前記慣性装置から得られたロール角速度信号を検出したジャイロ信号を前記モータに帰還させ、常に前記飛翔体のロール角が回転しないように前記飛翔体の回転と逆方向に前記モータを回転させ、前記モータの回転を前記エンコーダとジャイロ信号で検出し、前記飛翔体の慣性状態を検出する方法であり、また、前記慣性装置の各検出軸に設けられた各慣性センサは同じ検出精度を有する方法であり、また、本発明による飛翔体の姿勢検出装置は、基台上に設けられたモータエンコーダ体と、前記モータエンコーダ体のモータのモータ軸に接続された回転テーブルと、前記回転テーブル上に設けられ複数の検出軸用の慣性センサを有する慣性装置とを備え、前記モータエンコーダ体のエンコーダにより前記モータの回転を検出するようにした構成である。
【0006】
【発明の実施の形態】
以下、図面と共に本発明による飛翔体の姿勢検出方法及び装置の好適な実施の形態について説明する。
図1において符号1で示されるものはケース2に設けられた基台であり、この基台1上にはモータ3とエンコーダ4が複合構成されたモータエンコーダ体5がダンパ板6及びダンパ柱7を介して固設されている。
【0007】
前記基台1の下部には信号処理回路8が設けられ、前記モータ3のモータ軸9には、周知の慣性装置10が載置された回転テーブル11が接続され、このモータ3の回転によって前記慣性装置10は飛翔体30のロール角方向に回転できるように構成されている。
【0008】
前記慣性装置10には、X軸回りの角速度P及び加速度Axを検出するためのX軸慣性センサ20と、Y軸回りの角速度q及び加速度Ayを検出するためのY軸慣性センサ21と、Z軸回りの角速度(ロール角速度)r及びZ軸方向の加速度Azを検出するためのZ軸慣性センサ22とが設けられている。尚、前記各センサ20〜22は同じ精度の構成でユニット化されている。
【0009】
前記X、Y、Z軸は、図2の各軸表示部分に示されているように、前記モータ3のモータ軸9の軸方向9a(すなわち、前記ケース2が内設される各種飛翔体30の軸方向と一致している)に対して3軸となるように構成されている。
前記各速度p、q、r、Ax、Ay、Azによってジャイロ信号40が構成され、このジャイロ信号40は前記信号処理回路8により信号処理される。尚、慣性装置10と信号処理回路8との間はスリップリング50により接続されている。
【0010】
前記Z軸からなるロール軸に対するロール角速度rが加減算部60を介してモータ3の駆動回路(図示せず)に帰還され、このモータ3を介して回転テーブル11を飛翔体30の回転と逆方向に回転させ、慣性装置10のロール角が実質的に回転しないように制御されている。
【0011】
次に、動作について説明する。まず、図1のように構成されたケース2に組込まれた慣性装置10を、ロケット等の飛翔体30に前記軸方向9aを飛翔体30の軸方向と一致させた状態で内設した構成の飛翔体30を発射させると、X軸及びY軸方向にも姿勢が変化するが、その形状が長手筒状であるため、Z軸すなわちロール軸方向に最もその姿勢が変化する。
そのため、ロール角速度rをモータ3に帰還させてモータ3を回転させ、回転テーブル11を飛翔体30の回転と逆方向に回転させ、常にZ軸すなわちロール角が回転しないように帰還制御する。
【0012】
前述の帰還制御により、ロール角が回転しない状態であるため、モータ3のモータ軸9の動きを、エンコーダ4からのエンコーダ信号4aとジャイロ信号40とによって高精度に検出し、実際のロール角速度rはこのエンコーダ信号4aとジャイロ信号40を用いて前記信号処理回路8で処理されて検出される。
従って、前述のロール角速度rとX軸回りの角速度p及びY軸周りの角速度q並びに各加速度Ax、Ay、Azよりなる慣性諸元としてのジャイロ信号40を得ることができる。
【0013】
【発明の効果】
本発明による飛翔体の姿勢検出方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、最も姿勢変化が大であるロール軸のロール角速度を、ダイナミックレンジが他のセンサよりも2桁も高い特別なセンサを用いることなく、ロール角が常に回転しないように飛翔体の回転制御を行うモータの回転角をエンコーダから得てロール角速度を検出しているため、同じ精度のセンサを用いて慣性諸元を高精度に得ることができる。
【図面の簡単な説明】
【図1】本発明による飛翔体の姿勢検出方法及び装置を示す構成図である。
【図2】図1の要部のブロック図である。
【図3】図1の斜視図である。
【符号の説明】
1 基台
3 モータ
4 エンコーダ
5 モータエンコーダ体
9 モータ軸
10 慣性装置
11 回転テーブル
20〜22 慣性センサ
30 飛翔体
40 ジャイロ信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for detecting the attitude of a flying object, and in particular, a motor is rotated in a direction opposite to the rotation of the flying object so that a roll angle of an inertial device provided on the flying object does not rotate, and the largest in the flying object The present invention relates to a novel improvement for accurately measuring all inertia specification data without using a high-accuracy inertial sensor for detecting a changing roll angle.
[0002]
[Prior art]
Conventionally, as a method of detecting the attitude of this type of flying object, which has been manufactured in-house, patent documents and non-patent documents showing the method are not shown. However, due to its unique motion characteristics, it is difficult to measure the inertial specification data, and no device for accurately measuring the attitude angle has been adopted.
[0003]
[Problems to be solved by the invention]
Since the conventional attitude detection of a flying object is in the above-described situation, the following problems exist.
In other words, because the flying object rotates its roll axis many times larger than the other axes when trying to detect the inertia data of the flying object due to its unique motion characteristics, it is 2 An inertial sensor having an order of magnitude higher detection range is required, and it has been difficult to secure a necessary dynamic range for posture angle calculation and the like.
[0004]
The present invention has been made in order to solve the above-described problems, and in particular, the motor is rotated in a direction opposite to the rotation of the flying object so that the roll angle of the inertial device provided on the flying object does not rotate, and the flying is performed. It is an object of the present invention to provide a method and apparatus for detecting the attitude of a flying object that accurately measures all inertial specification data without using a high-accuracy inertial sensor to detect the roll angle that changes most in the body. I do.
[0005]
[Means for Solving the Problems]
A method for detecting the attitude of a flying object according to the present invention includes a motor provided on the flying object and having a motor shaft in the same direction as the axial direction of the flying object, an encoder provided on the motor, and a rotation provided on the motor shaft. Using a table and an inertial device provided on the rotary table, a gyro signal detecting a roll angular velocity signal obtained from the inertial device is fed back to the motor so that the roll angle of the flying object does not always rotate. A method of rotating the motor in a direction opposite to the rotation of the flying object, detecting the rotation of the motor with the encoder and a gyro signal, and detecting an inertial state of the flying object, and detecting each of the inertial devices. Each of the inertial sensors provided on the shaft is a method having the same detection accuracy, and the flying object attitude detecting device according to the present invention is a motor encoder provided on a base. A rotary table connected to a motor shaft of a motor of the motor encoder body, and an inertial device having an inertial sensor for a plurality of detection axes provided on the rotary table, wherein the encoder of the motor encoder body The configuration is such that rotation of the motor is detected.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a flying object attitude detection method and apparatus according to the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a base provided on a case 2. On the base 1, a motor encoder body 5 in which a motor 3 and an encoder 4 are combined is provided with a damper plate 6 and a damper column 7. Is fixed through.
[0007]
A signal processing circuit 8 is provided below the base 1, and a rotary table 11 on which a well-known inertial device 10 is mounted is connected to a motor shaft 9 of the motor 3. The inertial device 10 is configured to be able to rotate in the roll angle direction of the flying object 30.
[0008]
The inertial device 10 includes an X-axis inertial sensor 20 for detecting an angular velocity P and an acceleration Ax about the X-axis, a Y-axis inertial sensor 21 for detecting an angular velocity q and an acceleration Ay about the Y-axis, and Z A Z-axis inertial sensor 22 for detecting an angular velocity (roll angular velocity) r around the axis and an acceleration Az in the Z-axis direction is provided. The sensors 20 to 22 are unitized with the same accuracy.
[0009]
The X, Y, and Z axes are, as shown in the respective axis display portions in FIG. 2, the axial direction 9a of the motor shaft 9 of the motor 3 (that is, the various flying objects 30 in which the case 2 is provided). (Which is the same as the axial direction).
A gyro signal 40 is constituted by the speeds p, q, r, Ax, Ay, and Az, and the gyro signal 40 is processed by the signal processing circuit 8. The inertial device 10 and the signal processing circuit 8 are connected by a slip ring 50.
[0010]
The roll angular velocity r with respect to the roll axis composed of the Z axis is fed back to a drive circuit (not shown) of the motor 3 via the adding / subtracting unit 60, and the rotary table 11 is rotated via the motor 3 in a direction opposite to the rotation of the flying object 30. And the roll angle of the inertial device 10 is controlled so as not to substantially rotate.
[0011]
Next, the operation will be described. First, the inertial device 10 incorporated in the case 2 configured as shown in FIG. 1 is installed inside a flying object 30 such as a rocket in a state where the axial direction 9a matches the axial direction of the flying object 30. When the flying object 30 is fired, the attitude also changes in the X-axis and Y-axis directions, but since the shape is a long cylindrical shape, the attitude changes most in the Z-axis, that is, the roll axis direction.
Therefore, the roll angular velocity r is fed back to the motor 3, the motor 3 is rotated, the rotary table 11 is rotated in the direction opposite to the rotation of the flying object 30, and feedback control is performed so that the Z axis, that is, the roll angle does not always rotate.
[0012]
Since the roll angle is not rotated by the feedback control described above, the movement of the motor shaft 9 of the motor 3 is detected with high accuracy by the encoder signal 4a from the encoder 4 and the gyro signal 40, and the actual roll angular velocity r Is detected by the signal processing circuit 8 using the encoder signal 4a and the gyro signal 40.
Therefore, the gyro signal 40 as the inertia data including the roll angular velocity r, the angular velocity p around the X axis, the angular velocity q around the Y axis, and the accelerations Ax, Ay, Az can be obtained.
[0013]
【The invention's effect】
Since the flying object attitude detection method according to the present invention is configured as described above, the following effects can be obtained.
That is, the roll angular velocity of the roll axis whose attitude change is the largest is controlled by controlling the rotation of the flying object so that the roll angle does not always rotate without using a special sensor whose dynamic range is two orders of magnitude higher than other sensors. Since the roll angular velocity is detected by obtaining the rotation angle of the motor to be performed from the encoder, the inertia data can be obtained with high accuracy using a sensor of the same accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a flying object attitude detection method and apparatus according to the present invention.
FIG. 2 is a block diagram of a main part of FIG.
FIG. 3 is a perspective view of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 3 Motor 4 Encoder 5 Motor encoder body 9 Motor shaft 10 Inertial device 11 Rotary table 20-22 Inertial sensor 30 Flying object 40 Gyro signal

Claims (3)

飛翔体(30)に設けられ前記飛翔体(30)の軸方向と同一方向にモータ軸(9)を有するモータ(3)と、前記モータ(3)に設けられたエンコーダ(4)と、前記モータ軸(9)に設けられた回転テーブル(11)と、前記回転テーブル(11)に設けられた慣性装置(10)とを用い、前記慣性装置(10)から得られたロール角速度(r)を前記モータ(3)に帰還させ、常に前記飛翔体(30)のロール角が回転しないように前記飛翔体(30)の回転と逆方向に前記モータ(3)を回転させ、前記モータ(3)の回転を前記エンコーダ(4)とジャイロ信号(40)で検出し、前記飛翔体(30)の慣性状態を検出することを特徴とする飛翔体の姿勢検出方法。A motor (3) provided on the flying object (30) and having a motor shaft (9) in the same direction as the axial direction of the flying object (30); an encoder (4) provided on the motor (3); Using a rotary table (11) provided on a motor shaft (9) and an inertial device (10) provided on the rotary table (11), a roll angular velocity (r) obtained from the inertial device (10). Is returned to the motor (3), and the motor (3) is rotated in a direction opposite to the rotation of the flying object (30) so that the roll angle of the flying object (30) does not always rotate. ) Is detected by the encoder (4) and the gyro signal (40), and the inertial state of the flying object (30) is detected. 前記慣性装置(10)の各検出軸(X、Y、Z)に設けられた各慣性センサ(20、21、22)は同じ検出精度を有することを特徴とする請求項1記載の飛翔体の姿勢検出方法。2. The flying object according to claim 1, wherein each of the inertial sensors (20, 21, 22) provided on each of the detection axes (X, Y, Z) of the inertial device (10) has the same detection accuracy. Attitude detection method. 基台(1)上に設けられたモータエンコーダ体(5)と、前記モータエンコーダ体(5)のモータのモータ軸(9)に接続された回転テーブル(11)と、前記回転テーブル(11)上に設けられ複数の検出軸用の慣性センサ(20〜22)を有する慣性装置(10)とを備え、前記モータエンコーダ体(5)のエンコーダ(4)により前記モータ(3)の回転を検出するように構成したことを特徴とする飛翔体の姿勢検出装置。A motor encoder (5) provided on a base (1), a rotary table (11) connected to a motor shaft (9) of a motor of the motor encoder (5), and the rotary table (11) An inertia device (10) provided above and having a plurality of inertia sensors (20 to 22) for detection axes, wherein rotation of the motor (3) is detected by an encoder (4) of the motor encoder body (5). A flying object attitude detection device characterized in that the flying object attitude detection device is configured to perform the following.
JP2003017277A 2003-01-27 2003-01-27 Method of and apparatus for detecting attitude of flying object Pending JP2004226351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017277A JP2004226351A (en) 2003-01-27 2003-01-27 Method of and apparatus for detecting attitude of flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017277A JP2004226351A (en) 2003-01-27 2003-01-27 Method of and apparatus for detecting attitude of flying object

Publications (1)

Publication Number Publication Date
JP2004226351A true JP2004226351A (en) 2004-08-12

Family

ID=32904467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017277A Pending JP2004226351A (en) 2003-01-27 2003-01-27 Method of and apparatus for detecting attitude of flying object

Country Status (1)

Country Link
JP (1) JP2004226351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071369A (en) * 2004-08-31 2006-03-16 Sumitomo Precision Prod Co Ltd Angular speed detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071369A (en) * 2004-08-31 2006-03-16 Sumitomo Precision Prod Co Ltd Angular speed detection device
JP4524157B2 (en) * 2004-08-31 2010-08-11 住友精密工業株式会社 Angular velocity detector

Similar Documents

Publication Publication Date Title
JP4980541B2 (en) Method and apparatus for correcting coordinate measurement error due to vibration of coordinate measuring machine (CMM)
JP4879495B2 (en) Accelerometer
TWI652448B (en) Speed sensor and its operation method
WO2003021278B1 (en) Inertially-stabilized magnetometer measuring apparatus for use in a borehole rotary environment
Bernstein et al. Development of air spindle and triaxial air bearing testbeds for spacecraft dynamics and control experiments
JP6739662B2 (en) Determination of spatial orientation
WO2011152105A1 (en) Magnetic gyroscope
CN111895967A (en) Rotation angle sensor
US11230019B2 (en) Posture angle calculation apparatus, moving apparatus, posture angle calculation method, and program
JP2006155362A (en) Rotation shaft controller
JP2004226351A (en) Method of and apparatus for detecting attitude of flying object
JP2001141507A (en) Inertial navigation system
JP5697149B2 (en) Acceleration sensor characteristic evaluation method and program
JP2000258453A (en) Fall detecting device
JP2009064190A (en) Method for determining control parameter of drive of multi-axis moving element and its apparatus
JPH06174487A (en) Attitude detecting device
RU2003105730A (en) METHOD OF STABILIZING ON THE ROLL OF AN INERTIAL PLATFORM FOR RAPID FACILITIES AND THE STABILIZED BY THE ROLL INERTIAL PLATFORM
JP2021518526A (en) Systems and methods that provide multiple strap-down solutions in one Attitude and Heading Reference System (AHRS)
JPH05133762A (en) Inertia navigation device
JP6721174B2 (en) Method for diagnosing synchronous accuracy of rotating two-axis motion
JP2006177909A (en) Bias measurement method for inertial sensor, and device thereof
JP2003139536A (en) Declinometer and azimuth measuring method
JP5757526B2 (en) Diagnostic method for synchronization accuracy of rotating biaxial motion
JP2006064555A (en) Method and device for detecting sensitivity of angular velocity sensor
JP2009008632A (en) Rate detector and missile mounting the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105