JP2004226338A - Circuit board inspection apparatus - Google Patents

Circuit board inspection apparatus Download PDF

Info

Publication number
JP2004226338A
JP2004226338A JP2003017058A JP2003017058A JP2004226338A JP 2004226338 A JP2004226338 A JP 2004226338A JP 2003017058 A JP2003017058 A JP 2003017058A JP 2003017058 A JP2003017058 A JP 2003017058A JP 2004226338 A JP2004226338 A JP 2004226338A
Authority
JP
Japan
Prior art keywords
circuit board
electro
voltage
circuit
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003017058A
Other languages
Japanese (ja)
Other versions
JP4403701B2 (en
Inventor
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003017058A priority Critical patent/JP4403701B2/en
Publication of JP2004226338A publication Critical patent/JP2004226338A/en
Application granted granted Critical
Publication of JP4403701B2 publication Critical patent/JP4403701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board inspection apparatus which detects a short circuit or a break of wire in a circuit board by detecting voltage distribution of a circuit pattern by specifying an input position and detecting it as an image when a plurality of pads are connected to one or more pads to be detected in the circuit pattern. <P>SOLUTION: The circuit board inspection apparatus places an electrooptic device having an electrooptic crystal on a fixed position of the circuit board, irradiates the electrooptic device with a plurality of lighting light sources having different wavelength bands, and detects for every voltage wave form of a plurality of different voltage waveforms applied to the circuit board as an image by a two-dimensional photodetector. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は回路基板の回路パターンの電気的不良個所を検査するための電圧分布計測装置に関し、詳しくは回路パターンの複数の入力個所から印加される電圧分布を、光学的手段を用いることで接触、もしくは非接触で検出し、電圧分布の入力個所を特定して回路パターンの断線、短絡などの欠陥を検査する回路基板の検査装置に関する。
【0002】
【従来の技術】
回路基板の断線、短絡などを検査する方法としては、従来、スプロングプローブで専用治具を形成し、パッドへ一括接触して電気検査する方法がとられてきた。しかし近年、パッド数の増加によって高価なスプリングプローブが多数必要となり、専用治具のコストが高騰している。また、パッドの高密度化によって、物理的に接触性を確保することが難しいことや、尖鋭なスプリングプローブを接触させることによるパッドの損傷も問題となっている。
【0003】
回路基板によっては、一つのパッドもしくは複数のパッドから回路パターンが分岐し、複数のパッドへつながっている場合がある。このような場合、断線/短絡の検査時間が膨大となる問題がある。このような背景から、回路パターンの電圧分布を非接触で検出する手法が望まれる。
【0004】
従来、回路パターンの電圧分布を、電気光学効果を用いて計測する方法としては特許文献1があり、非接触で、特定の位置の電界強度をEOセンサを用いて検出し、回路基板の半田接続状態を検査する。しかし、この方法では、EOセンサの先端部分の電界しか検出できないため、回路パターンの電圧分布を求めるにはEOセンサをスキャンしていく必要がある。
【0005】
【特許文献1】
特開平9−72947号公報
電圧分布を非接触で計測し、液晶ディスプレイの欠陥を電気検査する方法としては、特許文献2があり、液晶ディスプレイの回路パターンと電気光学素子のITO膜に電圧を印加し、光束を液晶ディスプレイ近傍に配置した電気光学素子に照射し、その反射光から回路パターンの電圧分布を二次元検出する方法がある。しかしこの方法では、回路パターンが複数のパッドから、一つもしくは複数の被検出パッドにつながっている場合、電圧分布を検出してもどのパッドから電圧が印加されたかが特定できない。そのため、入力電圧を順次切り替えて検出する必要が有り、検査時間が増大する。
【0006】
【特許文献2】
特開平5−256794号公報
【0007】
【発明が解決しようとする課題】
本発明は上記の問題点を解決するためになされたものであり、回路パターンの電圧分布を、入力された個所を特定して画像として検出し、回路基板の短絡/断線を検査する回路基板の検査装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、回路基板の固定位置上に電気光学結晶層を有する電気光学素子を配置し、電気光学素子に異なる波長帯域の複数の点灯光源を照射し、2次元光検出器で回路基板に印加される異なる複数の電圧波形ごとに画像として検出する回路基板の検査装置を提供する。
【0009】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を説明する。
【0010】
まず本発明の回路基板の検査装置を図1、図2、図3に従って説明する。
【0011】
電気光学素子1としては、電気光学素子1は、電気光学結晶1−2に誘電体反射膜1−1を設ける。この電気光学結晶として、例えば、ポッケルス結晶などがある。
【0012】
ポッケルス結晶を利用して電界を光で検出する場合、光と垂直な方向の電界に感度を有する横電界検出と、光と平行な方向の電界に感度を有する縦電界検出がある。
【0013】
ここで、回路基板に発生している電圧分布の形状に応じて正しく電界分布を検出するため、縦電界検出で実施する。
【0014】
縦電界検出を実施できるポッケルス結晶としては、KDP(KHPO、水素リン酸カリウム)、KTP(KTiOPO、リン酸チタニルカリウム)、ZnSe、BSO(Bi12SiO20、ビスマス酸化シリコン)、GaAs(ガリウム砒素)、LiNbO−55度カット、などが用いられる。
【0015】
ここでKDP、KTPは潮解性があり、ZnSe、GaAsなどは電気光学係数の値が低い。
【0016】
そこで、屈折率は高いものの潮解性は無く、立方晶で等方的な性質を持ち、電気光学係数が比較的大きいBSO結晶が望ましい。
【0017】
例えば、1〜30mm程度のBSO結晶を、望ましくは100〜500μmの厚さに研磨し、底面に誘電体反射層、光の入射面側にITO膜を堆積させて、電気光学素子とする。
【0018】
BSO結晶が100μm未満であると、電位差が小さくなるため、電界の検出感度が小さくなる。
【0019】
また、500μmを越えると面方向に電界が広がり、電圧分布を検出する事が容易でなくなる。
【0020】
また、電気光学素子の他の例として、作用する電界の大きさにより、屈折率が変化するポッケルス結晶を用いることもできる。
【0021】
なお、本発明で用いる電気光学素子1に用いる光学結晶としては、屈折率が変化するものであれば、前記のものに限らず、いずれのものを用いても良い
電気光学素子1は、電気光学結晶1−2に誘電体反射膜1−1を設ける。透明基板1−5にITO膜1−3を設け、電気光学結晶1−2に接着剤層1−4で接着する。このITO膜1−3は、グランドに接地し、信号源3から交流電圧を印加したとき、回路基板2の回路パターン2−1との間に電界が発生する。
【0022】
発生した電界によって電気光学素子を構成する電気光学結晶1−2の屈折率が変化する。
【0023】
制御装置11で、信号源3による交流電圧印加のタイミング、光検出器の検出タイミングを制御する。
【0024】
電気光学素子1を検査対象となる回路基板2の近傍に配置できる様に、回路基板の固定すべき位置と電気光学素子を配置する。このとき、電気光学素子1は回路基板2に接触可能にしてもよいし、20μm程度の距離で非接触としてもよい。以下、回路基板2が回路基板の固定すべき位置に固定されているものとして説明する。
【0025】
光源装置4からの入射光は偏光子5により偏光し、1/4波長板6でわずかに位相補償して電気光学素子1へ入射させる。位相補償角度は、CCDのダイナミックレンジや印加電圧によって異なるが、100V以下程度の印加電圧の場合、0.5度から5度ぐらいが適当である。
【0026】
このときの偏光角は、電気光学結晶の電気光学テンソルと、検出する電界ベクトルの方向によって定まる。
【0027】
ITO膜1−3はグランドに接地する。信号源3から電圧を印加したとき、回路パターン2−1とITO膜1−3との間に電界が発生する。電気光学素子1への入射光は、誘電体反射膜1−1で反射され、反射光は、電気光学結晶1−2に発生している電界分布に応じて、偏光状態が変化する。検光子8で電界による偏光状態の変化を光の強度変化とする。信号源3からの印加電圧に対する反射光強度の特性は図2のようになる。1/4波長板6による位相補償により、電圧の極性に対する光の強度変化は非対称となっている。検光子8を透過した光を光検出器9で検出し、解析装置10で電圧印加時、非印加時の検出結果の差分から電圧印加による変調成分を求め、回路パターンの電圧分布が得られる。
【0028】
図3のように、信号源3から回路パターン2−1のパッド2−2、2−3に同時に電圧を印加した場合、どちらかのパッドから回路パターンの分岐点までの途中で断線していても、もう片側のパッドから印加された電圧が電気光学素子1で画像として検出されてしまい、断線が検出されない。信号源3で、パッド2−2、2−3に順次電圧を印加して電圧分布を検出することで、被検出対象となるパッド2−4との断線検査が実施できるが、そのつど2次元光検出器で検出するため、検出する時間が増大する。
【0029】
本発明では、一回の2次元光検出器の検出で、複数のパッドから被検出パッドへ印加されてくる電圧分布を検出し、どのパッドからの電圧が検出されたかを特定する。
【0030】
2次元光検出器9には、カラー画像が取り込み可能なものを用いる。光源装置4では、波長の異なる点灯光源を複数用いる。波長の異なるLED光源を用いてもよいし、白色光源からの光をバンドパスフィルタで波長を選択してもよい。
【0031】
2次元光検出器9が、一回の検出を実施する期間の信号の波形を4cとする。このとき、2次元光検出器9の検出期間よりはるかに短い周期で、パッド2−2へパルス電圧を4aのような波形に印加する。パッド2−3には、同様に2次元光検出器9の検出期間よりはるかに短い周期で、4aの波形のパルス電圧と位相の異なるパルス電圧の波形4bを印加する。
【0032】
光源装置4の異なる波長の点灯光源4−1(波長350〜1000nm)、4−2(波長350〜1000nm)から、それぞれ波形4a、波形4bのパルス電圧に同期して、パルス光12、13を照射する。このとき反射光は4eのような波形になり、反射光には、印加電圧波形4a、4bによる変調光強度14、15が含まれる。2次元光検出器では、検出期間中の反射光強度の波形4eが積算されてカラー画像が検出される。
【0033】
波形4dのパルス光を照射して、印加時の電圧波形4a、非印加時の電圧波形4bに対応するカラー画像を各々検出する。
【0034】
この場合、通常のCCDではRGBもしくはYMCの3色のセンサーで構成されているため、3つのパッドしか分離できないが、他の多色の波長を分離できるセンサーを用いれば、センサーの種類だけ分離できる。
【0035】
解析装置10において、その各々のカラー画像の差分画像を求める。この差分画像が電界による変調光強度14、15の電圧分布の画像として得られる。変調光強度14、15は、同期していない印加電圧による変調を受けておらず、また波長が異なることなることから、カラー画像の変調成分において、点灯光源4−1、4−2の波長に応じてカラー画像中の色を分離することで、変調光強度14、15を画像検出することができる。
【0036】
このようにして、一回の2次元光検出器の検出で、印加した電圧波形に対応した電圧分布画像を得ることができるので、この電圧波形に対応したパッドの電圧を印加した場合の電圧分布を、印加するパッド別に求めることができ、電圧分布を基に回路基板の短絡や断線を検出することが可能になった。
【0037】
【発明の効果】
本発明の装置によれば、電気光学効果を応用した方法で、回路パターンの電圧分布を空間分解能よく検出できる。この電圧分布を解析することにより、高集積化された回路基板の断線/短絡の電気検査を実現できる。
【0038】
従来の電気光学効果を応用した回路基板の電気検査方法としては、回路基板の一点の電圧を電界強度として検出する方法があった。この方法では、回路基板の多くの箇所で電界を検出するには、電気光学センサーをスキャンする必要があるため検査の速度が遅くなる。また、スキャンするための位置決め機構が必要となって装置構造が複雑となることなどの問題があった。本発明の方法では、電気光学素子を用いて2次元で電圧分布を画像として検出するため、簡易な位置決めで、短い時間で検査できる。
【0039】
従来の電気光学効果を応用した、液晶ディスプレイ用の検査としては、入力する印加電圧を切り替えて、そのつど電圧分布を検出する方法がある。この方法では、複数の電圧を印加するパッドから1個もしくは複数の検出するパッドに回路パターンがつながっている場合、複数のパッドから順次電圧を印加し、そのつど電圧分布を検出する必要がある。本発明の方法では、検出した電圧分布の画像において、どのパッドから印加されたが特定できるため、検査時間を大幅に短縮することができる。
【図面の簡単な説明】
【図1】本発明の一つの実施例を示す構成図である。
【図2】本発明の説明における印加電圧と反射光強度の関係を示すグラフである。
【図3】本発明の図1と同じ実施例を示す構成図である。
【図4】本発明の図1と同じ実施例を示す波形図である。
【符号の説明】
1…電気光学素子
1−1…誘電体反射膜
1−2…電気光学結晶
1−3…ITO膜
1−4…透明基板
2…回路基板
2−1…回路パターン
2−2…パッド
2−3…パッド
2−4…パッド
3…信号源
4…光源装置
4−1…点灯光源
4−2…点灯光源
5…偏光子
6…1/4波長板
7…ビームスプリッタ
8…検光子
9…光検出器
10…解析装置
11…制御装置
12…パルス光
13…パルス光
14…変調光強度
15…変調光強度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage distribution measuring device for inspecting an electrically defective portion of a circuit pattern on a circuit board, and more specifically, a voltage distribution applied from a plurality of input portions of a circuit pattern, by using optical means, Alternatively, the present invention relates to a circuit board inspection apparatus that detects non-contact, identifies an input point of a voltage distribution, and inspects a circuit pattern for a defect such as disconnection or short circuit.
[0002]
[Prior art]
Conventionally, as a method of inspecting a circuit board for disconnection, short circuit, and the like, a method has been employed in which a dedicated jig is formed with a long probe and the pads are collectively contacted to perform electrical inspection. However, in recent years, a large number of expensive spring probes are required due to an increase in the number of pads, and the cost of a dedicated jig is rising. In addition, it is difficult to physically secure the contact property due to the increase in the density of the pad, and damage to the pad due to contact with a sharp spring probe is also a problem.
[0003]
In some circuit boards, a circuit pattern branches off from one pad or a plurality of pads and is connected to a plurality of pads. In such a case, there is a problem that the inspection time for disconnection / short circuit becomes enormous. In view of such a background, a technique for detecting a voltage distribution of a circuit pattern in a non-contact manner is desired.
[0004]
Conventionally, as a method of measuring a voltage distribution of a circuit pattern by using an electro-optic effect, there is Japanese Patent Application Laid-Open No. H11-157, in which electric field intensity at a specific position is detected using an EO sensor in a non-contact manner, and solder connection of a circuit board is performed. Check the condition. However, in this method, only the electric field at the tip of the EO sensor can be detected, so that the EO sensor needs to be scanned to obtain the voltage distribution of the circuit pattern.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-72947 discloses a method for non-contactly measuring a voltage distribution and electrically inspecting a defect of a liquid crystal display. Patent Document 2 discloses a method of applying a voltage to a circuit pattern of a liquid crystal display and an ITO film of an electro-optical element. Then, there is a method of irradiating a light beam to an electro-optical element arranged near a liquid crystal display, and two-dimensionally detecting a voltage distribution of a circuit pattern from the reflected light. However, according to this method, when the circuit pattern is connected to one or a plurality of pads to be detected from a plurality of pads, it is not possible to identify from which pad the voltage is applied even if the voltage distribution is detected. Therefore, it is necessary to sequentially switch and detect the input voltage, and the inspection time increases.
[0006]
[Patent Document 2]
JP-A-5-256794
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a voltage distribution of a circuit pattern is detected as an image by identifying an input location and a short-circuit / disconnection of the circuit board is inspected. It is an object to provide an inspection device.
[0008]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, an electro-optical element having an electro-optical crystal layer is disposed on a fixed position of a circuit board, and the electro-optical element is irradiated with a plurality of lighting light sources in different wavelength bands. In addition, the present invention provides a circuit board inspection apparatus that detects an image for each of a plurality of different voltage waveforms applied to the circuit board by a two-dimensional photodetector.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
First, a circuit board inspection apparatus according to the present invention will be described with reference to FIGS.
[0011]
As the electro-optical element 1, the electro-optical element 1 is provided with a dielectric reflection film 1-1 on an electro-optical crystal 1-2. As this electro-optic crystal, for example, there is a Pockels crystal.
[0012]
When an electric field is detected by light using a Pockels crystal, there are a lateral electric field detection that is sensitive to an electric field in a direction perpendicular to the light and a vertical electric field detection that is sensitive to an electric field in a direction parallel to the light.
[0013]
Here, in order to correctly detect the electric field distribution according to the shape of the voltage distribution generated on the circuit board, the vertical electric field detection is performed.
[0014]
Pockels crystals capable of performing vertical electric field detection include KDP (KH 2 PO 4 , potassium hydrogen phosphate), KTP (KTiOPO 4 , potassium titanyl phosphate), ZnSe, BSO (Bi 12 SiO 20 , bismuth silicon oxide), and GaAs. (Gallium arsenide), LiNbO 3 -55 ° cut, or the like is used.
[0015]
Here, KDP and KTP have deliquescence, and ZnSe and GaAs have low electro-optic coefficients.
[0016]
Therefore, a BSO crystal having a high refractive index but no deliquescence, having a cubic system and isotropic properties, and having a relatively large electro-optic coefficient is desirable.
[0017]
For example, a BSO crystal of about 1 to 30 mm is polished to a thickness of desirably 100 to 500 μm, and a dielectric reflection layer is deposited on the bottom surface, and an ITO film is deposited on the light incident surface side, thereby forming an electro-optical element.
[0018]
If the BSO crystal is less than 100 μm, the potential difference becomes smaller, and the electric field detection sensitivity becomes smaller.
[0019]
On the other hand, if it exceeds 500 μm, the electric field spreads in the plane direction, making it difficult to detect the voltage distribution.
[0020]
Further, as another example of the electro-optical element, a Pockels crystal whose refractive index changes depending on the magnitude of an applied electric field can be used.
[0021]
The optical crystal used for the electro-optical element 1 used in the present invention is not limited to the above-described one as long as the refractive index changes. The electro-optical element 1 may be any one. The crystal 1-2 is provided with a dielectric reflection film 1-1. An ITO film 1-3 is provided on a transparent substrate 1-5, and bonded to an electro-optic crystal 1-2 with an adhesive layer 1-4. The ITO film 1-3 is grounded to the ground, and when an AC voltage is applied from the signal source 3, an electric field is generated between the ITO film 1-3 and the circuit pattern 2-1 of the circuit board 2.
[0022]
The refractive index of the electro-optic crystal 1-2 forming the electro-optic element changes due to the generated electric field.
[0023]
The control device 11 controls the timing of the application of the AC voltage by the signal source 3 and the detection timing of the photodetector.
[0024]
The position where the circuit board is to be fixed and the electro-optical element are arranged so that the electro-optic element 1 can be arranged near the circuit board 2 to be inspected. At this time, the electro-optical element 1 may be capable of contacting the circuit board 2 or may be non-contact at a distance of about 20 μm. Hereinafter, a description will be given assuming that the circuit board 2 is fixed at a position to be fixed on the circuit board.
[0025]
The incident light from the light source device 4 is polarized by the polarizer 5, slightly compensated for the phase by the 波長 wavelength plate 6, and is incident on the electro-optical element 1. The phase compensation angle varies depending on the dynamic range of the CCD and the applied voltage, but for an applied voltage of about 100 V or less, about 0.5 to 5 degrees is appropriate.
[0026]
The polarization angle at this time is determined by the electro-optic tensor of the electro-optic crystal and the direction of the electric field vector to be detected.
[0027]
The ITO film 1-3 is grounded. When a voltage is applied from the signal source 3, an electric field is generated between the circuit pattern 2-1 and the ITO film 1-3. Light incident on the electro-optical element 1 is reflected by the dielectric reflection film 1-1, and the reflected light changes its polarization state according to the electric field distribution generated in the electro-optical crystal 1-2. The change in the polarization state due to the electric field in the analyzer 8 is defined as a change in light intensity. The characteristics of the intensity of the reflected light with respect to the applied voltage from the signal source 3 are as shown in FIG. Due to the phase compensation by the quarter-wave plate 6, the change in light intensity with respect to the polarity of the voltage is asymmetric. The light transmitted through the analyzer 8 is detected by the photodetector 9, and the analysis device 10 obtains a modulation component due to voltage application from a difference between detection results when voltage is applied and when voltage is not applied, thereby obtaining a voltage distribution of a circuit pattern.
[0028]
As shown in FIG. 3, when a voltage is applied from the signal source 3 to the pads 2-2 and 2-3 of the circuit pattern 2-1 at the same time, there is a disconnection on the way from one of the pads to the branch point of the circuit pattern. Also, the voltage applied from the other pad is detected as an image by the electro-optical element 1, and no disconnection is detected. The signal source 3 sequentially applies a voltage to the pads 2-2 and 2-3 to detect a voltage distribution, so that a disconnection inspection with the pad 2-4 to be detected can be performed. Since the detection is performed by the photodetector, the detection time increases.
[0029]
According to the present invention, the distribution of the voltage applied from a plurality of pads to the detection target pad is detected by one detection of the two-dimensional photodetector, and the voltage from which pad is detected is specified.
[0030]
The two-dimensional photodetector 9 is capable of capturing a color image. In the light source device 4, a plurality of lighting light sources having different wavelengths are used. LED light sources having different wavelengths may be used, or the wavelength of light from a white light source may be selected by a band-pass filter.
[0031]
The waveform of the signal during a period in which the two-dimensional photodetector 9 performs one detection is 4c. At this time, a pulse voltage is applied to the pad 2-2 with a waveform like 4a in a cycle much shorter than the detection period of the two-dimensional photodetector 9. Similarly, a pulse voltage waveform 4b having a phase different from that of the pulse voltage of the waveform 4a is applied to the pad 2-3 at a period much shorter than the detection period of the two-dimensional photodetector 9.
[0032]
From the lighting light sources 4-1 (wavelengths 350 to 1000 nm) and 4-2 (wavelengths 350 to 1000 nm) of different wavelengths of the light source device 4, the pulsed lights 12 and 13 are synchronized with the pulse voltages of the waveforms 4a and 4b, respectively. Irradiate. At this time, the reflected light has a waveform like 4e, and the reflected light includes the modulated light intensities 14 and 15 by the applied voltage waveforms 4a and 4b. The two-dimensional photodetector integrates the reflected light intensity waveform 4e during the detection period to detect a color image.
[0033]
By irradiating pulse light having a waveform 4d, color images corresponding to the voltage waveform 4a at the time of application and the voltage waveform 4b at the time of non-application are respectively detected.
[0034]
In this case, since a normal CCD is constituted by sensors of three colors of RGB or YMC, only three pads can be separated. However, if a sensor capable of separating other multicolor wavelengths is used, only the type of sensor can be separated. .
[0035]
In the analyzer 10, a difference image of each color image is obtained. This difference image is obtained as an image of the voltage distribution of the modulated light intensities 14 and 15 due to the electric field. The modulated light intensities 14 and 15 are not modulated by the applied voltages that are not synchronized, and have different wavelengths. Therefore, in the modulation components of the color image, the modulated light intensities are equal to the wavelengths of the lighting light sources 4-1 and 4-2. The modulated light intensities 14 and 15 can be image-detected by separating the colors in the color image accordingly.
[0036]
In this way, a voltage distribution image corresponding to the applied voltage waveform can be obtained by one-time detection of the two-dimensional photodetector, so that the voltage distribution when the voltage of the pad corresponding to this voltage waveform is applied is obtained. Can be obtained for each pad to be applied, and it is possible to detect a short circuit or disconnection of the circuit board based on the voltage distribution.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the apparatus of this invention, the voltage distribution of a circuit pattern can be detected with sufficient spatial resolution by the method which applied the electro-optic effect. By analyzing this voltage distribution, it is possible to realize an electrical test for disconnection / short circuit of a highly integrated circuit board.
[0038]
As a conventional method for inspecting a circuit board using the electro-optic effect, there is a method of detecting a voltage at one point of the circuit board as an electric field intensity. In this method, in order to detect an electric field in many parts of the circuit board, it is necessary to scan the electro-optical sensor, so that the inspection speed is reduced. In addition, there is a problem that a positioning mechanism for scanning is required and the structure of the apparatus is complicated. According to the method of the present invention, since the voltage distribution is detected as an image in two dimensions using the electro-optical element, the inspection can be performed in a short time with simple positioning.
[0039]
As a conventional inspection for a liquid crystal display to which the electro-optic effect is applied, there is a method of switching an applied voltage to be inputted and detecting a voltage distribution each time. In this method, when a circuit pattern is connected from a pad to which a plurality of voltages are applied to one or a plurality of pads to be detected, it is necessary to sequentially apply a voltage from the plurality of pads and to detect a voltage distribution each time. According to the method of the present invention, it is possible to specify which pad is applied from the detected voltage distribution image, so that the inspection time can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
FIG. 2 is a graph showing a relationship between an applied voltage and a reflected light intensity in the description of the present invention.
FIG. 3 is a configuration diagram showing the same embodiment as FIG. 1 of the present invention.
FIG. 4 is a waveform diagram showing the same embodiment as FIG. 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electro-optical element 1-1 ... Dielectric reflection film 1-2 ... Electro-optic crystal 1-3 ... ITO film 1-4 ... Transparent substrate 2 ... Circuit substrate 2-1 ... Circuit pattern 2-2 ... Pad 2-3 .. Pad 2-4 Pad 3 Signal source 4 Light source device 4-1 Lighting light source 4-2 Lighting light source 5 Polarizer 6 Quarter-wave plate 7 Beam splitter 8 Analyzer 9 Light detection Device 10 Analysis device 11 Control device 12 Pulse light 13 Pulse light 14 Modulated light intensity 15 Modulated light intensity

Claims (1)

回路基板の固定位置上に電気光学結晶層を有する電気光学素子を配置し、電気光学素子に異なる波長帯域の複数の点灯光源を照射し、2次元光検出器で回路基板に印加される異なる複数の電圧波形ごとに画像として検出する回路基板の検査装置。An electro-optic element having an electro-optic crystal layer is arranged on a fixed position of a circuit board, and the electro-optic element is irradiated with a plurality of lighting light sources of different wavelength bands, and a plurality of different light sources applied to the circuit board by a two-dimensional photodetector. Circuit board inspection device that detects an image for each voltage waveform.
JP2003017058A 2003-01-27 2003-01-27 Circuit board inspection equipment Expired - Fee Related JP4403701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017058A JP4403701B2 (en) 2003-01-27 2003-01-27 Circuit board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017058A JP4403701B2 (en) 2003-01-27 2003-01-27 Circuit board inspection equipment

Publications (2)

Publication Number Publication Date
JP2004226338A true JP2004226338A (en) 2004-08-12
JP4403701B2 JP4403701B2 (en) 2010-01-27

Family

ID=32904307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017058A Expired - Fee Related JP4403701B2 (en) 2003-01-27 2003-01-27 Circuit board inspection equipment

Country Status (1)

Country Link
JP (1) JP4403701B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988059A (en) * 2015-03-26 2016-10-05 上海纪显电子科技有限公司 Detection device and detection method
CN106051623A (en) * 2016-07-21 2016-10-26 中导光电设备股份有限公司 Multi-spectral LED lighting detection device and detection method thereof
CN113917203A (en) * 2021-09-29 2022-01-11 重庆电子工程职业学院 Portable waveform test pen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988059A (en) * 2015-03-26 2016-10-05 上海纪显电子科技有限公司 Detection device and detection method
CN106051623A (en) * 2016-07-21 2016-10-26 中导光电设备股份有限公司 Multi-spectral LED lighting detection device and detection method thereof
CN113917203A (en) * 2021-09-29 2022-01-11 重庆电子工程职业学院 Portable waveform test pen
CN113917203B (en) * 2021-09-29 2023-05-02 重庆电子工程职业学院 Portable waveform test pen

Also Published As

Publication number Publication date
JP4403701B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US4983911A (en) Voltage imaging system using electro-optics
US5124635A (en) Voltage imaging system using electro-optics
JPH0627428A (en) Device for observing image at large number of position on surface during test and method of observing capacity of ese position
JPH06213975A (en) Apparatus and method for observation of voltage in many positions on surface of panel under test
KR100826505B1 (en) Circuit pattern detecting device and circuit pattern detecting method
JP4403701B2 (en) Circuit board inspection equipment
JPH0580083A (en) Method and apparatus for testing integrated circuit
TW201243318A (en) Electro optical modulator electro optical sensor and detecting method thereof
US6894514B2 (en) Circuit pattern detecting apparatus and circuit pattern inspecting method
JP4003371B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2003227859A (en) Circuit pattern detector and circuit pattern inspection method
JPH0792236A (en) Inspecting apparatus for voltage distribution on surface of substrate
JP2004177214A (en) Measuring method and measuring instrument for three-dimensional electric field distribution
JPS63256864A (en) Device and method of optically measuring or picture-displaying potential
JP2003185696A (en) Circuit pattern detector, circuit pattern detecting method and circuit pattern inspecting method
JP2003262566A (en) Defect detection method for transparent conductive film and defect detection device thereof
JPH0658975A (en) Substrate test equipment
JP2005172730A (en) Apparatus for inspecting disconnection of wire of circuit board
JP2900784B2 (en) Printed circuit board inspection equipment
JP2005017024A (en) Inspection apparatus of circuit board
JP5333150B2 (en) Electrostatic analysis method and electrostatic analysis apparatus
US10132861B2 (en) Visible laser circuit fault isolation
JPH08122415A (en) Inspection equipment for printed board
JPH0427884A (en) Mounting print plate test device
JP2002014131A (en) Method and device for inspecting circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees