JP2004226336A - Method and sampling instrument for measuring vaporized organic material - Google Patents

Method and sampling instrument for measuring vaporized organic material Download PDF

Info

Publication number
JP2004226336A
JP2004226336A JP2003016986A JP2003016986A JP2004226336A JP 2004226336 A JP2004226336 A JP 2004226336A JP 2003016986 A JP2003016986 A JP 2003016986A JP 2003016986 A JP2003016986 A JP 2003016986A JP 2004226336 A JP2004226336 A JP 2004226336A
Authority
JP
Japan
Prior art keywords
carrier gas
sampling
measuring
chamber
adsorption tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003016986A
Other languages
Japanese (ja)
Other versions
JP4044851B2 (en
Inventor
Shuichi Ishiwari
修一 石割
Atsuko Hanabuchi
温子 花渕
Haruo Kato
治夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Hitachi Plant Technologies Ltd
Original Assignee
Renesas Technology Corp
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Hitachi Plant Technologies Ltd filed Critical Renesas Technology Corp
Priority to JP2003016986A priority Critical patent/JP4044851B2/en
Publication of JP2004226336A publication Critical patent/JP2004226336A/en
Application granted granted Critical
Publication of JP4044851B2 publication Critical patent/JP4044851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately sample an organic compound generated from a surface of a solid such as a clean room building member. <P>SOLUTION: A vaporization chamber is formed on a tip opening side of a container for constituting a sampling instrument for measuring the organic material vaporized from the surface of the solid. A sleeve for approaching a suction opening to the vaporization chamber and having a detachable adsorption pipe is provided within a sampling container. A carrier gas supply path provided with an adsorbing agent for capturing the organic material from a carrier gas introduced into the vaporization chamber is formed around the sleeve. The vaporized organic material is measured by bringing the opening of the vaporization chamber of the sampling container into contact with the surface of the solid and sealing and introducing the carrier gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は揮発有機物の測定方法および測定用サンプリング器具に係り、特に半導体製造設備を構成するクリーンルームの構築材料の表面から揮発する有機物の測定に好適な揮発有機物の測定方法および測定用サンプリング器具に関する。
【0002】
【従来の技術】
一般に、半導体製造はクリーンルーム内で行われ、特に製造過程で半導体ウェハに不純物が吸着することを防止しなければならない。特に、クリーンルーム雰囲気中に存在する有機化合物が半導体ウェハ表面に吸着すると、ウェハに形成された集積回路の電気特性に影響を与える問題がある。
【0003】
有機化合物はさまざまな有機材料から発生するが、クリーンルームそのものを構築するのに使用されるプラスチック材、および切断できない材料表面から発生することが問題となり、したがって、これらクリーンルーム構築部材の固体表面から揮発する有機化合物のうちウェハ表面に吸着するものを評価する必要がある。その吸着する有機化合物の代表的なものとしてジオクチルフタル酸(DOP)がある。DOPはプラスチック材中の可塑性の添加剤として多く使用されている。DOPの性状は沸点が360℃であり、常温ではわずかに揮発する。通常クリーンルーム雰囲気中には0.1から1ng/Lの微量含まれている。
【0004】
従来の既設クリーンルームの構成プラスチック材、および切断できない材料表面から微量に揮発する吸着性の強い有機化合物を含め精度良く測定する手法が提示されている。例えば、非特許文献1で記述されている現場測定法が用いられる。この測定法を実施するためのシステム概要図を図10に示す。クリーンルーム構築材料である評価対象部材1の表面にチャンバ2を被せ、試験チャンバ2内にキャリアガスを導入し、試験チャンバ2内で揮発した有機化合物をキャリアガスに同伴させて試験チャンバ外に排出し、排気経路の配管に接続された捕集管3で有機物を捕集するようにしている。このような評価装置の配管、試験チャンバ2(大きさは約20cmの幅、高さ)、接続部の材質は、材料がステンレス製またはガラス製と記述されている。なお、キャリアガスはチャンバ2への導入前にフィルタなどから構成される不純物除去部4により清浄化処理されるようになっている。その後、捕集管は取り外され、次いで熱脱着式ガスクロマトグラフに装着され、有機物が測定される。
【0005】
チャンバ2には様々な形態のものがあり、例えば図11に示されるような矩形容器チャンバ2Aが用いられる。これは側面にキャリアガス導入口5を設け、天端面に設けた排出口6から揮発有機物が同伴しているキャリアガスを排出し、これを捕集管に通して有機物を捕集するようにしている。また、図12に示されるようにチャンバ2Bは、二重チャンバの釣鐘型形状としたものである。両チャンバの間の通路を通して下方から内部にキャリアガスを給気導入する。そして、内側チャンバの上端から揮発性有機物が同伴されているキャリアガスを排出させ、排気経路の配管に接続された捕集管で有機物を捕集するようにしている。
【0006】
【非特許文献1】
「クリーンルーム構成材料から発生する分子状汚染物質の測定方法指針(案)」(日本空気清浄協会)
【0007】
【発明が解決しようとする課題】
ところが、上記従来の測定方法における問題点は固体表面から発生した有機化合物のうち吸着性の強いものは、測定用の容器、または配管内面に吸着され、捕集管に到達できず、発生した有機化合物の種類・量を精度良く測定することが出来ないということである。
【0008】
本発明の目的は、クリーンルーム構築部材などの固体表面から発生する有機化合物、とくに半導体ウェハ表面に強く吸着し、電気特性に影響を与える有機化合物をサンプリング時でのサンプリング容器、配管内面での影響を少なくして測定精度を向上させることができる揮発有機物の測定方法および測定用サンプリング器具を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る揮発有機物の測定方法は、固体表面から揮発する有機物を測定する方法であって、サンプリング容器に形成された揮発室の開口部を前記固体表面に当接して密閉し、前記揮発室に吸着剤を介して有機物を捕捉除去することにより自浄化処理したキャリアガスを導入するとともに、前記揮発室に吸込口を臨ませた吸着管に前記キャリアガスを通流させることによりキャリアガスに同伴した有機物を前記吸着管にて吸着させ、前記吸着管にて捕捉した揮発有機物を測定することを特徴としている。このとき、前記キャリアガスの吸着剤およびサンプリング容器と前記吸着管とを加熱により予め清浄化してサンプリングするようにすればよい。
【0010】
本発明に係る揮発有機物の測定用サンプリング器具は、固体表面から揮発する有機物を測定するサンプリング器具であって、サンプリング容器の先端開口側に揮発室を形成するとともに、当該サンプリング容器の内部に前記揮発室へ吸込口を臨ませて吸着管を着脱装着可能とした吸着管装着部と前記揮発室へ導入するキャリアガス中から有機物を捕捉する吸着剤を備えたキャリアガス給気路とを形成し、前記サンプリング容器の揮発室開口部を前記固体表面に当接して密閉してキャリアガスを導入することにより揮発有機物を測定可能としたものである。
【0011】
すなわち、本発明は、吸着性の強い有機化合物をすべて吸着管に捕集することは大変むずかしいので、揮発させるチャンバを小型化し、かつチャンバを加熱清浄できる構造、揮発用気体の気流により容器表面に吸着を少なくする構造、および揮発用気体を自浄できる構造としてボンベガス、ガス配管、清浄カラムの接続をなくし、複雑な構造から妨害を少なくした構造にすればよいとの知見によって得られたものである。揮発有機物測定用の吸着管の吸着材としては、有機物全てを捕捉できるテナックス吸着剤、シリコン表面に吸着する有機化合物のみを選択的に吸着できるシリコン粉末吸着剤を用いればよい。あるいは、シリコン粉末吸着剤とテナックス吸着剤を直列に接合することにより、シリコンに吸着する有機化合物と非吸着性有機化合物を同時に測定する構造としてもよい。固体表面からの揮発サンプリング後、吸着管を熱脱着式ガスクロマトグラフで測定する方式である。これにより、吸着性の強い有機化合物を含めて、精度良く測定することができる。
【0012】
【発明の実施の形態】
以下に、本発明に係る揮発有機物の測定方法および測定用サンプリング器具の具体的実施形態を、図面を参照しつつ、詳細に説明する。
【0013】
図1は、実施形態に係る揮発有機物測定用サンプリング器具10を示している。このサンプリング器具10は、図2に示す吸着管12を着脱可能に装着できるようにして構成されている。図2に示した吸着管12は、揮発有機化合物を捕捉するもので、ガスクロマトグラフに直接装着できるように構成されている。すなわち、円筒形状とされた石英管14の一端側の先端部を先細にして吸込口16を形成し、他端側の開口部にはフッ素樹脂材料からなる栓18を装着するようにしている。石英管14の内部には吸着剤20が装填されるが、前記吸込口16との間を仕切る石英ガラスフィルタ22が設けられ、その内部に吸着剤20として全有機物を捕捉することができるテナックス剤、活性炭、ゼオライト剤から選択して、あるいは複数の吸着剤を縦列充填するようにしている。吸着剤20として、シリコン表面に選択的に吸着する有機物の捕捉用として用いる場合にはシリコンの粉末を使用する。シリコン以外の固体表面に吸着する有機化合物を測定する際は、その材質で吸着管を作成し、その材質の粉末を吸着剤とすることにより捕捉することができる。石英管14の内部に収容した吸着剤20は固定用の石英ウール24が内部の一定位置に保持される。
【0014】
図3はサンプリング器具10の断面図であり、これは円筒状の石英からなる外側のサンプリング容器26の内部に前記吸着管12を装着できるようにして着脱ができるようにした装着スリーブ28を設けて、二重管構造として構成されている。サンプリング容器26の下端開口部分には揮発室30を形成するようにしており、石英ガラスフィルタ32で仕切られて中央部分に前記吸着管装着スリーブ28の先端が開口されている。サンプリング容器26と装着スリーブ28の間に形成される円環空間はキャリアガス給気路34とされ、内部にはキャリアガスを浄化する吸着剤36を充填させ、上面を石英ウール38で固定保持するようにしている。これにより給気路34にキャリアガスを供給すると、吸着剤36を通過する際にガス中の有機化合物が捕捉されたクリーンな状態でキャリアガスが揮発室30に導入される。このサンプリング容器10は揮発室30の先端開口を測定対象の固体表面に接合して揮発室30を密閉して使用されるのである。
【0015】
実際の測定時には、図1に示しているように、サンプリング容器10の中心部に吸着管12を差込挿入してサンプリングユニットを構成する。組み立てたサンプリングユニットを測定する固体表面40に設置するが、これは揮発室30の開口を測定対象のクリーンルーム内の固体表面40に押し当て、内部を密閉した状態で、吸着管12に装着してあるフッ素樹脂栓18に形成している吸引通路18aを吸引ポンプ(図示せず)などに接続するのである。これにより、吸着管12の内部が負圧になり、サンプリング容器26の上部でフッ素樹脂栓18の周囲に形成された導入口42からクリーンルームエア(キャリアガス)が導入される。クリーンルームエアは吸着剤36を通過して清浄化され、下部の石英ガラスフィルタ32の全面から清浄ガスが揮発室30内に放出される。揮発室30内ではキャリアガスが中心に配置された吸着管12の吸込口16に向かう流れとなるため、固体表面40から揮発した有機化合物はその中心方向に向けて流れる清浄エアに導かれ、サンプリング容器26の内壁に吸着されずに、固定表面から1cm程度の近い位置に吸入口を臨ませた吸着管12内で吸着される。一定時間サンプリング後、サンプリングユニットから吸着管12をはずし、後述する図6に示した保管・輸送管に入れ、熱脱型ガスクロマトグラフ質量分析装置で測定する。
【0016】
このようなサンプリング器具10および吸着管12を測定に用いる場合、測定に先立って予め清浄化処理を行う。この吸着管12およびサンプリング器具10の清浄方法は次のように行えばよい。図4に吸着管12の清浄方法の概要図を示している。吸着管12を加熱炉またはリボンヒータなどの加熱手段44で加熱しながら、内部に不活性ガス(ヘリウム、窒素ガス)を流し、吸着剤12を清浄化する。また、図5に示すように、サンプリング器具10の清浄法を行う場合にも、サンプリング容器26内の吸着剤36が装填されているキャリアガス給気路34、および揮発室30のみに気体を流せるフッ素樹脂製(PTFE製)栓46,48を容器26の上下開口部分に装着する。つぎに加熱炉、またはリボンヒータなどの加熱手段50で加熱しながら、不活性ガス(ヘリウム、窒素ガス)を流し、吸着剤を清浄化する。
【0017】
次に、吸着管12およびサンプリング器具10の保管および搬送を行う場合には次のようになす。雰囲気中の吸着性有機化合物は吸着が強く清浄処理を行った後の保管、サンプリング場所まで搬送するにはフッ素樹脂栓で密封する。すなわち、図6と図7に吸着管12およびサンプリング器具10の保管および搬送の概要図を示した。吸着管12はフッ素樹脂栓で蓋をした密封容器51の内部に収容して保管および搬送をなす。また、サンプリング器具10は容器26の上下開口を密封栓52で蓋をして保管・搬送するようにすればよい。
【0018】
なお、図3に示した固体表面揮発有機化合物サンプリング器具10において、揮発した有機化合物がサンプリング容器26の揮発室30の容器内壁面に付着してしまうと、誤差が生じる可能性がある。したがって、揮発室30の内壁全面を石英フィルタによって形成し浄化キャリアガスを導入するようにすれば、さらに微量の揮発有機化合物を測定するサンプリングに利用できる。例えば、サンプリング器具10の下部の石英フィルタ32を円錐状フィルタ32A(図8)、または釜状フィルタ32B(図9)として清浄化したエア気流が石英フィルタ部全面から放出されることにより、揮発有機化合物のサンプリング器具への付着による誤差を低減できる。
【0019】
【発明の効果】
本発明により、固体表面から揮発するとくに吸着性の強い有機化合物の微量を正確に評価することができる。これにより既設クリーンルーム構成材料(床、塗装、壁など)から揮発する有機化合物を正確に評価することができ、揮発量の大きな構成材料を改善することにより、クリーンルーム雰囲気への有機化合物を低減でき、最終的には吸着有機化合物により製品特性が影響される半導体素子や液晶の製造の信頼性や歩留向上に貢献することが可能である。
【図面の簡単な説明】
【図1】本発明の実施形態に係る吸着管を装着したサンプリング器具の断面図である。
【図2】揮発有機化合物捕捉用の吸着管の断面図である。
【図3】揮発用気体自浄機能付き固体表面揮発有機化合物サンプリング器具の断面図である。
【図4】揮発有機化合物捕捉用吸着管の清浄法を示す断面図である。
【図5】揮発用気体自浄機能付き固体表面揮発有機化合物サンプリング器具の清争法を示す断面図である。
【図6】揮発有機化合物捕捉用の吸着管の保管・搬送形態を示す断面図である。
【図7】揮発用気体自浄機能付き固体表面揮発有機化合物サンプリング器具の保管・搬送形態を示す断面図である。
【図8】サンプリング器具の変形例の断面図である。
【図9】サンプリング器具の他の変形例の断面図である。
【図10】従来の揮発有機物測定システムの説明図である。
【図11】従来の測定チャンバの構成例を示す断面図である。
【図12】従来の測定チャンバの他の構成例を示す断面図である。
【符号の説明】
10………サンプリング器具、12………吸着管、14………石英管、16………吸込口、18………フッ素樹脂栓、20………吸着剤、22………石英ガラスフィルタ、24………石英ウール、26………サンプリング容器、28………吸着管装着スリーブ、30………揮発室、32………石英ガラスフィルタ、34………キャリアガス給気路、36………吸着剤、38………石英ウール、40………固体表面、42………キャリアガス導入口、44………加熱手段、46、48………フッ素樹脂製栓
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring volatile organic substances and a sampling instrument for measurement, and more particularly to a method and a sampling instrument for measuring volatile organic substances suitable for measuring organic substances volatilized from the surface of a construction material of a clean room constituting a semiconductor manufacturing facility.
[0002]
[Prior art]
Generally, semiconductor manufacturing is performed in a clean room, and in particular, it is necessary to prevent impurities from adsorbing to semiconductor wafers during the manufacturing process. In particular, when an organic compound existing in a clean room atmosphere is adsorbed on the surface of a semiconductor wafer, there is a problem that the electrical characteristics of an integrated circuit formed on the wafer are affected.
[0003]
Organic compounds originate from a variety of organic materials, but can be problematic from plastic materials used to build the clean room itself, and from uncut material surfaces, and therefore volatilize from the solid surfaces of these clean room building components. It is necessary to evaluate the organic compounds that are adsorbed on the wafer surface. A typical example of the organic compound to be adsorbed is dioctyl phthalic acid (DOP). DOP is frequently used as a plastic additive in plastic materials. DOP has a boiling point of 360 ° C. and slightly evaporates at room temperature. Usually, a trace amount of 0.1 to 1 ng / L is contained in a clean room atmosphere.
[0004]
There has been proposed a method for accurately measuring a plastic material constituting a conventional existing clean room and a highly adsorptive organic compound volatilized in a trace amount from the surface of a material that cannot be cut. For example, the on-site measurement method described in Non-Patent Document 1 is used. FIG. 10 shows a schematic diagram of a system for implementing this measuring method. The chamber 2 is put on the surface of the evaluation target member 1 which is a clean room construction material, a carrier gas is introduced into the test chamber 2, and the organic compound volatilized in the test chamber 2 is discharged out of the test chamber along with the carrier gas. The organic matter is collected by the collection pipe 3 connected to the piping of the exhaust path. It is described that the material of the pipe, the test chamber 2 (the size is about 20 cm in width and height) of such an evaluation device, and the material of the connection part are stainless steel or glass. Before the carrier gas is introduced into the chamber 2, the carrier gas is subjected to a cleaning process by an impurity removing unit 4 composed of a filter or the like. Thereafter, the collection tube is removed, and then attached to a thermal desorption type gas chromatograph, and organic substances are measured.
[0005]
There are various types of chambers 2, for example, a rectangular container chamber 2A as shown in FIG. In this method, a carrier gas inlet 5 is provided on the side surface, a carrier gas accompanied by volatile organic substances is discharged from an outlet 6 provided on the top end face, and the organic gas is collected by passing the gas through a collection pipe. I have. As shown in FIG. 12, the chamber 2B has a double-chamber bell shape. A carrier gas is supplied and introduced into the inside from below through a passage between both chambers. Then, the carrier gas accompanied by the volatile organic substance is discharged from the upper end of the inner chamber, and the organic substance is collected by a collection pipe connected to the piping of the exhaust path.
[0006]
[Non-patent document 1]
"Guidelines for measuring method of molecular pollutants generated from materials used in clean rooms (draft)" (Japan Air Cleaning Association)
[0007]
[Problems to be solved by the invention]
However, the problem with the above-mentioned conventional measurement method is that among the organic compounds generated from the solid surface, those having a strong adsorptivity are adsorbed on the inner surface of the measurement container or the pipe and cannot reach the collection pipe, and the generated organic compound is not absorbed. This means that the type and amount of the compound cannot be measured accurately.
[0008]
An object of the present invention is to reduce the influence of an organic compound generated from a solid surface such as a clean room building member, particularly an organic compound that strongly adsorbs on a semiconductor wafer surface and affects electric characteristics in a sampling container and a pipe inner surface at the time of sampling. It is an object of the present invention to provide a volatile organic substance measuring method and a measuring sampling instrument that can improve the measuring accuracy at a reduced level.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for measuring volatile organic matter according to the present invention is a method for measuring organic matter volatilized from a solid surface, wherein an opening of a volatilization chamber formed in a sampling vessel is applied to the solid surface. The carrier gas is subjected to self-cleaning treatment by trapping and removing organic matter through the adsorbent into the volatilization chamber, and the carrier gas is passed through an adsorption tube having a suction port facing the volatilization chamber. The method is characterized in that organic substances entrained in the carrier gas are adsorbed by the adsorption tube by flowing, and the volatile organic substances captured by the adsorption tube are measured. At this time, the adsorbent of the carrier gas, the sampling container, and the adsorption tube may be preliminarily cleaned by heating to perform sampling.
[0010]
The sampling instrument for measuring volatile organic matter according to the present invention is a sampling instrument for measuring organic matter volatilized from a solid surface, wherein a volatilization chamber is formed on the tip opening side of the sampling vessel and the volatilization chamber is provided inside the sampling vessel. Forming an adsorption tube mounting portion in which the suction tube is detachably mounted with the suction port facing the chamber, and a carrier gas supply path including an adsorbent for capturing organic substances from the carrier gas introduced into the volatilization chamber, The volatile organic matter can be measured by introducing the carrier gas by sealing the opening of the volatilization chamber of the sampling container against the solid surface and introducing the carrier gas.
[0011]
That is, in the present invention, it is very difficult to collect all the organic compounds having a strong adsorptivity in the adsorption tube, so the chamber for volatilization is reduced in size, and the chamber can be heated and cleaned. It was obtained based on the knowledge that it is sufficient to eliminate the connection of cylinder gas, gas piping, and clean columns as a structure that reduces adsorption and a structure that can self-clean volatilizing gas, and reduce the complexity of the structure to a structure that reduces interference. . As the adsorbent of the adsorption tube for measuring volatile organic substances, a tenax adsorbent capable of capturing all organic substances and a silicon powder adsorbent capable of selectively adsorbing only organic compounds adsorbed on the silicon surface may be used. Alternatively, a structure may be employed in which an organic compound adsorbed on silicon and a non-adsorbable organic compound are simultaneously measured by joining a silicon powder adsorbent and a tenax adsorbent in series. After volatilization sampling from the solid surface, the adsorption tube is measured by a thermal desorption type gas chromatograph. This allows accurate measurement including an organic compound having strong adsorptivity.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of a method for measuring volatile organic matter and a sampling instrument for measurement according to the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a volatile organic matter measurement sampling instrument 10 according to the embodiment. The sampling device 10 is configured so that the suction tube 12 shown in FIG. 2 can be detachably mounted. The adsorption tube 12 shown in FIG. 2 captures a volatile organic compound, and is configured to be directly mounted on a gas chromatograph. That is, a suction port 16 is formed by tapering a tip portion of one end of a cylindrical quartz tube 14, and a plug 18 made of a fluororesin material is attached to an opening portion of the other end. An adsorbent 20 is loaded in the quartz tube 14, and a quartz glass filter 22 is provided to partition the quartz tube 14 from the suction port 16, and a tenax agent capable of trapping all organic substances as the adsorbent 20 therein. Activated carbon, a zeolite agent, or a plurality of adsorbents are packed in tandem. When used as an adsorbent 20 for capturing organic substances that are selectively adsorbed on the silicon surface, silicon powder is used. When measuring an organic compound adsorbed on a solid surface other than silicon, it can be trapped by forming an adsorption tube with the material and using a powder of the material as an adsorbent. The adsorbent 20 housed inside the quartz tube 14 has a fixed quartz wool 24 held at a fixed position inside.
[0014]
FIG. 3 is a cross-sectional view of the sampling device 10, which is provided with a mounting sleeve 28 that allows the suction tube 12 to be mounted and detachable inside an outer sampling container 26 made of cylindrical quartz. , As a double tube structure. A volatilizing chamber 30 is formed at the lower end opening of the sampling vessel 26, and is separated by a quartz glass filter 32, and the tip of the adsorption tube mounting sleeve 28 is opened at the center. An annular space formed between the sampling container 26 and the mounting sleeve 28 is a carrier gas supply passage 34, which is filled with an adsorbent 36 for purifying the carrier gas, and whose upper surface is fixed and held by quartz wool 38. Like that. Thus, when the carrier gas is supplied to the air supply passage 34, the carrier gas is introduced into the volatilization chamber 30 in a clean state in which the organic compound in the gas is captured when passing through the adsorbent 36. The sampling vessel 10 is used by sealing the volatilization chamber 30 by joining the opening at the tip of the volatilization chamber 30 to the solid surface to be measured.
[0015]
At the time of actual measurement, as shown in FIG. 1, the sampling unit is configured by inserting and inserting the adsorption tube 12 into the center of the sampling container 10. The assembled sampling unit is installed on the solid surface 40 to be measured. The opening of the volatilization chamber 30 is pressed against the solid surface 40 in the clean room to be measured. The suction passage 18a formed in a certain fluorine resin stopper 18 is connected to a suction pump (not shown) or the like. As a result, the inside of the adsorption tube 12 becomes a negative pressure, and clean room air (carrier gas) is introduced from the inlet 42 formed around the fluororesin plug 18 above the sampling container 26. The clean room air is cleaned by passing through the adsorbent 36, and a clean gas is discharged into the volatilization chamber 30 from the entire surface of the lower quartz glass filter 32. In the volatilization chamber 30, the carrier gas flows toward the suction port 16 of the adsorption tube 12 arranged at the center, so that the organic compounds volatilized from the solid surface 40 are guided to the clean air flowing toward the center thereof, and the sampling is performed. Instead of being adsorbed on the inner wall of the container 26, it is adsorbed in the adsorption tube 12 facing the suction port at a position approximately 1 cm from the fixed surface. After sampling for a certain period of time, the adsorption tube 12 is removed from the sampling unit, put into a storage / transport tube shown in FIG. 6 described later, and measured by a thermal desorption type gas chromatograph mass spectrometer.
[0016]
When such a sampling device 10 and the adsorption tube 12 are used for measurement, a cleaning process is performed before the measurement. The method of cleaning the adsorption tube 12 and the sampling device 10 may be performed as follows. FIG. 4 shows a schematic diagram of a method for cleaning the adsorption tube 12. While the adsorption tube 12 is heated by a heating means 44 such as a heating furnace or a ribbon heater, an inert gas (helium, nitrogen gas) is caused to flow therein to clean the adsorbent 12. Further, as shown in FIG. 5, even when the cleaning method of the sampling device 10 is performed, the gas can flow only through the carrier gas supply passage 34 in which the adsorbent 36 in the sampling container 26 is loaded and the volatilization chamber 30. Plugs 46 and 48 made of fluororesin (made of PTFE) are attached to the upper and lower openings of the container 26. Next, an inert gas (helium, nitrogen gas) is flowed while heating with a heating means 50 such as a heating furnace or a ribbon heater to clean the adsorbent.
[0017]
Next, the storage and transport of the adsorption tube 12 and the sampling device 10 are performed as follows. The adsorptive organic compounds in the atmosphere are strongly adsorbed and are stored after being subjected to a cleaning treatment, and are sealed with a fluororesin stopper to be transported to a sampling location. That is, FIGS. 6 and 7 show schematic diagrams of storage and transport of the adsorption tube 12 and the sampling device 10. FIG. The suction tube 12 is stored and transported in a sealed container 51 covered with a fluororesin stopper. Further, the sampling device 10 may be stored and transported by covering the upper and lower openings of the container 26 with the sealing stopper 52.
[0018]
In the solid surface volatile organic compound sampling instrument 10 shown in FIG. 3, an error may occur if the volatilized organic compound adheres to the inner wall surface of the evaporation chamber 30 of the sampling container 26. Therefore, if the entire inner wall of the volatilization chamber 30 is formed by a quartz filter and a purifying carrier gas is introduced, it can be used for sampling for measuring a trace amount of volatile organic compounds. For example, when the quartz air filter 32 below the sampling device 10 is used as a conical filter 32A (FIG. 8) or a pot-shaped filter 32B (FIG. 9), a clean air stream is discharged from the entire surface of the quartz filter unit, and thus volatile organic compounds are emitted. Errors due to the attachment of the compound to the sampling device can be reduced.
[0019]
【The invention's effect】
According to the present invention, it is possible to accurately evaluate a trace amount of an organic compound having a particularly high adsorptivity, which volatilizes from a solid surface. This makes it possible to accurately evaluate the organic compounds that evaporate from the existing clean room constituent materials (floor, paint, walls, etc.). Eventually, it is possible to contribute to the improvement of the reliability and yield of semiconductor devices and liquid crystals whose product characteristics are affected by the adsorbed organic compound.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a sampling device equipped with an adsorption tube according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of an adsorption tube for trapping volatile organic compounds.
FIG. 3 is a cross-sectional view of a solid surface volatile organic compound sampling instrument with a volatilizing gas self-cleaning function.
FIG. 4 is a cross-sectional view showing a method of cleaning the adsorption tube for trapping volatile organic compounds.
FIG. 5 is a cross-sectional view showing a dispute law of a solid surface volatile organic compound sampling device with a volatilizing gas self-cleaning function.
FIG. 6 is a cross-sectional view showing a storage / transport mode of an adsorption tube for capturing volatile organic compounds.
FIG. 7 is a cross-sectional view showing a storage / transportation form of a solid surface volatile organic compound sampling device with a volatilizing gas self-cleaning function.
FIG. 8 is a cross-sectional view of a modification of the sampling device.
FIG. 9 is a cross-sectional view of another modification of the sampling device.
FIG. 10 is an explanatory diagram of a conventional volatile organic matter measurement system.
FIG. 11 is a cross-sectional view illustrating a configuration example of a conventional measurement chamber.
FIG. 12 is a cross-sectional view showing another configuration example of a conventional measurement chamber.
[Explanation of symbols]
10 sampling apparatus, 12 suction tube, 14 quartz tube, 16 suction port, 18 fluorine resin plug, 20 adsorbent, 22 quartz glass filter 24 quartz wool 26 sampling container 28 adsorption tube mounting sleeve 30 volatile chamber 32 quartz glass filter 34 carrier gas supply passage 36 ... Adsorbent, 38 ... Quartz wool, 40 ... Solid surface, 42 ... Carrier gas inlet, 44 ... Heating means, 46, 48 ... Fluororesin stopper

Claims (3)

固体表面から揮発する有機物を測定する方法であって、サンプリング容器に形成された揮発室の開口部を前記固体表面に当接して密閉し、前記揮発室に吸着剤を介して有機物を捕捉除去することにより自浄化処理したキャリアガスを導入するとともに、前記揮発室に吸込口を臨ませた吸着管に前記キャリアガスを通流させることによりキャリアガスに同伴した有機物を前記吸着管にて吸着させ、前記吸着管にて捕捉した揮発有機物を測定することを特徴とする揮発有機物の測定方法。A method for measuring an organic substance volatilized from a solid surface, wherein an opening of a volatilization chamber formed in a sampling container is brought into contact with the solid surface and sealed, and the organic substance is trapped and removed via an adsorbent in the volatilization chamber. By introducing the carrier gas which has been subjected to the self-cleaning treatment, the organic matter accompanying the carrier gas is adsorbed by the adsorption tube by flowing the carrier gas through the adsorption tube facing the suction port to the volatilization chamber, A method for measuring volatile organic matter, comprising measuring volatile organic matter captured by the adsorption tube. 前記キャリアガスの吸着剤およびサンプリング容器と前記吸着管とを加熱により予め清浄化してサンプリングすることを特徴とする揮発有機物の測定方法。A method for measuring volatile organic matter, wherein the carrier gas adsorbent and the sampling container and the adsorption tube are preliminarily cleaned by heating and sampled. 固体表面から揮発する有機物を測定するサンプリング器具であって、サンプリング容器の先端開口側に揮発室を形成するとともに、当該サンプリング容器の内部に前記揮発室へ吸込口を臨ませて吸着管を着脱装着可能とした吸着管装着部と前記揮発室へ導入するキャリアガス中から有機物を捕捉する吸着剤を備えたキャリアガス給気路とを形成し、前記サンプリング容器の揮発室開口部を前記固体表面に当接して密閉してキャリアガスを導入することにより揮発有機物を測定可能とした揮発有機物の測定用サンプリング器具。A sampling device for measuring an organic substance volatilized from a solid surface, wherein a volatile chamber is formed at a tip opening side of a sampling container, and a suction tube is detachably mounted inside the sampling container with a suction port facing the volatile chamber. Forming an adsorption tube mounting portion and a carrier gas supply path provided with an adsorbent for trapping organic substances from the carrier gas introduced into the volatilization chamber, and forming a volatilization chamber opening of the sampling container on the solid surface. A sampling device for measuring volatile organic substances, which is capable of measuring volatile organic substances by contacting and sealing and introducing a carrier gas.
JP2003016986A 2003-01-27 2003-01-27 Method for measuring volatile organic substances and sampling instrument for measurement Expired - Fee Related JP4044851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016986A JP4044851B2 (en) 2003-01-27 2003-01-27 Method for measuring volatile organic substances and sampling instrument for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016986A JP4044851B2 (en) 2003-01-27 2003-01-27 Method for measuring volatile organic substances and sampling instrument for measurement

Publications (2)

Publication Number Publication Date
JP2004226336A true JP2004226336A (en) 2004-08-12
JP4044851B2 JP4044851B2 (en) 2008-02-06

Family

ID=32904261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016986A Expired - Fee Related JP4044851B2 (en) 2003-01-27 2003-01-27 Method for measuring volatile organic substances and sampling instrument for measurement

Country Status (1)

Country Link
JP (1) JP4044851B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782318B1 (en) 2005-07-01 2007-12-06 강원대학교산학협력단 Test chamber for emitting pollutants with air supply pipe
JP2010008374A (en) * 2008-06-30 2010-01-14 Nippon Koden Corp Method and apparatus for analyzing gas component derived from living body, and disease determination supporting apparatus
US8096199B2 (en) 2007-02-10 2012-01-17 Conopco Inc. Sampler and method of sampling
JP2015040819A (en) * 2013-08-23 2015-03-02 株式会社Nttドコモ Gas measuring device and gas measuring method
WO2019116605A1 (en) * 2017-12-13 2019-06-20 株式会社日立ハイテクノロジーズ Electron beam irradiation device and analysis system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782318B1 (en) 2005-07-01 2007-12-06 강원대학교산학협력단 Test chamber for emitting pollutants with air supply pipe
US8096199B2 (en) 2007-02-10 2012-01-17 Conopco Inc. Sampler and method of sampling
JP2010008374A (en) * 2008-06-30 2010-01-14 Nippon Koden Corp Method and apparatus for analyzing gas component derived from living body, and disease determination supporting apparatus
JP2015040819A (en) * 2013-08-23 2015-03-02 株式会社Nttドコモ Gas measuring device and gas measuring method
WO2019116605A1 (en) * 2017-12-13 2019-06-20 株式会社日立ハイテクノロジーズ Electron beam irradiation device and analysis system

Also Published As

Publication number Publication date
JP4044851B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US10215666B2 (en) Sample injection device and method for sample collection and sample thermal desorption, and trace detection apparatus
Pellizzari et al. Collection and analysis of trace organic vapor pollutants in ambient atmospheres. Thermal desorption of organic vapors from sorbent media
US7882754B2 (en) Gas component collector, gas component collecting device, filter producing method, and gas component analyzing apparatus
JP2022066291A (en) System, apparatus, and method for monitoring organic compounds in gas environment
JP2007127585A (en) Simultaneous collection device for tritium and carbon 14 in atmosphere
US8062610B2 (en) Apparatus and methods for use in concentration of gas and particle-laden gas flows
US7114370B2 (en) Air quality sampler using solid phase coated material
JP2021501880A (en) High-speed quasi-ambient temperature multicapillary column preconcentration system for volatile chemical analysis by gas chromatography
JP2004537715A (en) Gas detection method and gas detector
JP4044851B2 (en) Method for measuring volatile organic substances and sampling instrument for measurement
JPH11218526A (en) Analyzing method
JP2003315221A (en) Organic compound analyzer
JP6653175B2 (en) Volatile organic compound measuring device and volatile organic compound measuring method
JP3799446B2 (en) Adsorption performance prediction method for porous adsorbents
JP2001124748A (en) Method and apparatus for high-speed analysis of chlorobenzene
JP3632748B2 (en) Method for evaluating solid surface adsorption of pollutants
JP4089646B2 (en) Organic volatile matter collection tube and organic volatile matter measurement method
JP4389078B2 (en) Method for measuring organic volatiles in organic materials
CN117460943A (en) Gas sampling system and method for trace level analysis of compounds
JP7157869B2 (en) Hybrid capillary/filled trap and method of use
JPH10300647A (en) Passive type sampler
JP2002139431A (en) Gas analyzer for trace organic matter
JP4512505B2 (en) Method for evaluating the contamination state of the space inside the substrate transfer container
JP2004301566A (en) Apparatus and method for quickly measuring semivolatile organic compound in exhaust gas
JP2004020293A (en) Environment monitoring method and system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees