JP2004226185A - Overcurrent detection circuit and its delay circuit - Google Patents

Overcurrent detection circuit and its delay circuit Download PDF

Info

Publication number
JP2004226185A
JP2004226185A JP2003013085A JP2003013085A JP2004226185A JP 2004226185 A JP2004226185 A JP 2004226185A JP 2003013085 A JP2003013085 A JP 2003013085A JP 2003013085 A JP2003013085 A JP 2003013085A JP 2004226185 A JP2004226185 A JP 2004226185A
Authority
JP
Japan
Prior art keywords
voltage
circuit
current
delay time
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013085A
Other languages
Japanese (ja)
Other versions
JP4221572B2 (en
Inventor
Osamu Kawagoe
治 川越
Yasuhiro Tokumaru
泰博 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2003013085A priority Critical patent/JP4221572B2/en
Priority to KR1020030086619A priority patent/KR100975279B1/en
Priority to TW092136338A priority patent/TW200415835A/en
Priority to CNA2004100393401A priority patent/CN1518183A/en
Publication of JP2004226185A publication Critical patent/JP2004226185A/en
Application granted granted Critical
Publication of JP4221572B2 publication Critical patent/JP4221572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • H02H1/043Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks to inrush currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • H02H7/205Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment for controlled semi-conductors which are not included in a specific circuit arrangement

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an electric discharge control switch may have been broken due to the passage of a large current through the electric discharge control switch when a large current passes due to a short circuit etc. during the delay time of a delay circuit in an overcurrent detecting circuit provided with the delay circuit. <P>SOLUTION: In an overcurrent detecting circuit 20a having a delay circuit 25 for controlling the on-time of an electric discharge control switch 113, by generating continuous and analog changes in the delay time, the delay circuit 25 is capable of speedily turning the electric discharge control switch 113 into an off-state correspondingly to a sudden change in the state of the electric discharge control switch 113. Thereby, it is possible to prevent a large current from passing the electric discharge control switch 113 for a long time and prevent the electric discharge control switch 113 from being broken. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池等、充電可能な二次電池を保護する二次電池保護回路に関し、特に、当該二次電池保護回路に使用される遅延回路に関する。
【0002】
【従来の技術】
一般に、この種の二次電池保護回路は、正極端子及び負極端子を備えた電池ユニット(電池パック)内に二次電池と共に収容され、使用の際には、電池ユニットの正極端子と負極端子との間には、カメラ等のデバイスが負荷として接続される。このように、電池ユニットに負荷が接続された場合、電池ユニット内の二次電池は、放電状態となり、負荷を駆動、動作させる。他方、電池ユニット内の二次電池を充電する際には、電池ユニットの正極端子と負極端子との間に充電器が接続されて、二次電池は充電状態となる。
【0003】
ここで、電池ユニット内に収容される二次電池には、ニッケル−カドミウム電池、ニッケル−水銀電池、リチウムイオン電池等、種々の電池が各種のデバイスに応じて接続される。このうち、ニッケル−カドミウム電池及びニッケル水銀電池は、電池容量が0になるまで使った後に充電しないと、即ち、浅い放電・充電を繰り返すと、電池能力が低下すると言う特性を有している。このように、浅い放電・充電を繰り返すことによって電池能力が低下する効果をメモリー効果と呼ぶ。
【0004】
一方、リチウムイオン電池は、上記したメモリー効果を持たず、二次電池として理想的であるが、放電しすぎて電池電圧が所定電圧よりも低くなってしまうと、電池の構成物質が変質し、過放電状態となって電池寿命が短くなってしまう。また、リチウムイオン電池では、充電器による充電中、満充電状態になっても電池電圧は上昇し続け、過充電状態になることがある。このように、過充電状態になると、リチウムイオン電池では、リチウム金属の析出により電極間ショートが発生するおそれがある。更に、リチウムイオン電池において正極端子と負極端子との間がショート状態になると、大きな放電電流が流れ、過電流状態になることがある。
【0005】
電池ユニットに二次電池と共に組み込まれる二次電池保護回路、特に、リチウムイオン電池用の二次電池保護回路は、前述した過充電状態、過放電状態、及び、過電流状態を検出して、これらの状態がそれぞれ検出されると、充電電流及び放電電流を遮断することによって、二次電池を保護する機能を備えている。このため、二次電池保護回路は、過充電検出回路、過放電検出回路、及び、過電流検出回路を備えている。
【0006】
一方、充電中或いは放電中に、短時間の間、電流或いは電圧が何らかの原因により一時的に大きく変動することがある。前述した短時間内の一時的な変動が生じても、実際には、過充電、過放電、或いは、過電流状態にはなっていないから、このような短時間における電流、電圧の変動によって、過充電検出回路、過放電検出回路、及び、過電流検出回路を不動作状態にしておく必要がある。このため、これら過充電検出回路、過放電検出回路、及び、過電流検出回路には、電流、電圧の短時間変動によっては保護動作を行わないようにするために、一定時間だけ、各検出回路を不動作状態、即ち、不感応状態にする不感応時間設定回路がそれぞれ設けられている。具体的には、これら不感応時間設定回路として、遅延回路が設けられており、上記した一定時間は遅延回路の遅延時間として設定されている。
【0007】
これら二次電池保護回路の過充電検出回路、過放電検出回路、及び、過電流検出回路のうち、過電流検出回路に使用される遅延回路として、特願2002−309470明細書に記載された遅延回路がある。提案された遅延回路は、過電流が検出されると、クロック発振器からのクロック信号のカウントを開始し、クロック信号を所定の値までカウントし、所定の値までカウントされても過電流が検出されていると、有効検出信号を出力する構成を有している。この場合、過電流検出回路は、電流ユニットに負荷として接続されるデバイスに流れる負荷電流を検出する抵抗に接続され、当該抵抗の両端電圧を過電流検出回路によって検出することにより、遅延時間を制御している。この構成では、過電流の検出信号に瞬時的な変動があっても、正確に所定の値までカウントすることができる。
【0008】
図6を参照すると、従来、リチウムイオン電池等の二次電池を含む電池ユニット11内に設けられる過電流検出回路10の他の例が示されている。図示された電池ユニット11は、出力端子として正極端子101と負極端子102とを備えており、当該正極端子101と負極端子102間には、放電時にカメラ等の負荷が接続され、充電時に充電器が接続される。
【0009】
図示された電池ユニット11は、過電流検出回路10、リチウムイオン電池等の二次電池111、電流検出抵抗112、及び、放電制御スイッチ113のみによって特徴付けられているが、実際には、過電流検出回路10のほかに、図示されない過放電検出回路及び過充電検出回路が電池ユニット11内には設けられている。これら過充電検出回路及び過放電検出回路は説明を簡略化するために、図6では省略されている。
【0010】
電池ユニット11の正極端子101には、放電制御スイッチ113を構成するPチャンネルFETのドレインが接続され、そのソースには、二次電池111のカソードが接続されている。一方、二次電池111のアノードと、負極端子102との間には、電流検出抵抗112が接続されており、当該電流検出抵抗112の両端には、過電流検出回路10が接続されている。
【0011】
具体的に説明すると、過電流検出回路10は過電流検出部20と、所定の遅延時間を設定された遅延回路21とによって構成されており、過電流検出部20は電流検出抵抗112の両端に接続され、当該電流検出抵抗112に流れる電流によって生じる電圧降下を過電流検出部20によって検出している。
【0012】
過電流検出部20は、閾値電圧を基準電圧として設定された電圧比較器を有し、この電圧比較器において、電流検出抵抗112の両端における電圧降下を基準電圧と比較する。この例では、基準電圧よりも電流検出抵抗112の両端電圧降下が小さい場合、電圧比較器は論理“0”レベルの出力信号を遅延回路21に出力し、他方、基準電圧よりも電流検出抵抗112の両端電圧降下が大きくなると、過電流であると判定し、論理“1”レベルの出力信号を遅延回路21に出力する。
【0013】
ここで、電池ユニット11の正極端子101と負極端子102間に、負荷が接続され、二次電池111が放電している状態にあるものとする。この状態では、過電流検出部20は、論理“0”レベルの出力信号を遅延回路21に出力しており、放電制御スイッチ113を構成しているPチャンネルFETには、遅延回路21から低レベル信号が供給されている。この結果、過電流が検出されない状態では、放電制御スイッチ113はオン状態にある。
【0014】
一方、負荷に流れる電流が大きくなり、電流検出抵抗112の両端における電圧降下が閾値を超えると、過電流検出部20は高レベル信号を出力信号として遅延回路21に出力する。遅延回路21は、所定の遅延時間の経過した時点においても、過電流検出部20から高レベル信号が与えられている場合、高レベル信号を放電制御スイッチ113に出力することにより、放電制御スイッチ113をオフ状態にし、この結果、放電は停止する。
【0015】
このように、遅延回路21は、過電流状態が所定の遅延時間継続したことを監視する動作を行っている。この遅延回路21を設けることにより、所定の遅延時間に満たない時間だけ、一時的に過電流状態が生じても、遅延回路21は、高レベル信号を放電制御スイッチ113に出力しない。言い換えれば、過電流状態が所定の遅延時間継続した場合にのみ、放電制御スイッチ113は、オフ状態となる。この構成では、過電流状態が短時間継続しても、放電制御スイッチ113はオフ状態とはならないため、一時的に生じる過電流が誤って検出されるのを防止できる。
【0016】
【特許文献1】
特願2002−309470明細書
【0017】
【発明が解決しようとする課題】
この種、電池ユニットに負荷として接続されるデバイス負荷は、デバイスの動作時と不動作時との間で大きく変動し、この結果、放電状態で負荷に流れる電流も大きく変動する傾向にあり、極端な場合、正極端子と負極端子との間がショートすることもある。
【0018】
図6に示された電流検出抵抗112の抵抗値は、電流検出抵抗112による損失が抑えられているため、放電制御スイッチ113による損失が問題になるものと予測される。他方、図6に示されている遅延回路における遅延時間は、負荷電流の大小に関係無く一定である。このように、一定の遅延時間を有する遅延回路を使用した場合、一定の遅延時間内には、大きな負荷電流が、瞬間的に、電池ユニットの放電制御スイッチ113を構成するFETに流れる。この結果、当該スイッチ113を構成するFETに悪影響が生じてしまい、場合によってはFETの破壊を招くこともある。
【0019】
上記した点を図7を参照して、具体的に説明する。図7には、図6に示された過電流検出回路10の特性が示されており、図7において、横軸は、電流検出抵抗112に流れる電流Iをあらわし、縦軸は遅延回路21における遅延時間Tをあらわしている。図からも明らかな通り、電流検出抵抗112に流れる電流Iが設定電流レベルIdを超えると、遅延回路21は一定の遅延時間Tdだけ、過電流検出部20の出力を遅延させる特性を有している。尚、電流検出抵抗112に流れる電流Iは、実際には、過電流検出部20において、電流検出抵抗112の両端電圧に変換され、当該両端電圧が閾値電圧と比較される。
【0020】
図示された特性を有する過電流検出回路10を使用した場合、電流検出抵抗112に一時的に設定電流レベルIdを超える電流が流れ、一定の遅延時間内に、元の正常な電流レベルに戻ると、放電制御スイッチ113は、遅延回路21の出力により一定の遅延時間内においてオン状態に維持されている。このため、放電制御スイッチ113には大きな負荷電流が流れ、この結果、放電制御スイッチ113を構成するFETは破壊してしまうことがある。
【0021】
一方、前述した特願2002−309470明細書に記載された遅延回路のように、クロック発振器からのクロックをカウンタによりカウントする形式の遅延回路では、カウンタのカウント値を複数設定しておくことにより、不感応時間をディジタル的に段階的に変化させ得るものと思われる。しかしながら、このように、ディジタル的に不感応時間を変化させる遅延回路では、負荷電流に応じてリアルタイムに遅延時間を変化させることはできない。このため、ショート等のように、急激に負荷電流が変化した場合、前述した遅延回路は、この変化に追随できず、放電制御スイッチを構成する素子の破壊を防止できない。
【0022】
本発明の目的は、瞬間的に、且つ、急激に電流が変化した場合にも、電池ユニット内の内部素子の破壊を防止できる過電流検出回路を提供することである。
【0023】
本発明の他の目的は、急激な電流変動が生じても、放電制御スイッチの破壊を防止できる過電流検出回路を備えた電池ユニットを提供することである。
【0024】
本発明の更に他の目的は、負荷電流に応じて遅延特性を連続的に変化させることができる遅延回路を提供することである。
【0025】
【課題を解決するための手段】
本発明の第1の態様によれば、一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗を備えた電池ユニットに設けられた過電流検出回路において、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、前記遅延回路は、前記放電制御スイッチのオン抵抗の両端で生じる電圧降下を監視する監視手段と、前記オン抵抗に流れる電流による前記オン抵抗間の電圧降下が所定の電圧以上になると、前記オン抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする過電流検出回路が得られる。
【0026】
本発明の第2の態様によれば、前記監視手段は、前記放電制御スイッチの両端に接続され、前記オン抵抗による電圧降下に応じた電流を出力する差動回路によって構成され、他方、前記アナログ遅延部は、前記差動回路からの電流によって、電流制御される電流源と、該電流源に直列に接続されたキャパシタと、当該電流源とキャパシタとの共通接続点における電圧を予め定められた電圧と比較する比較回路とを有することを特徴とする過電流検出回路が得られる。
【0027】
本発明の第3の態様によれば、前記放電スイッチはFETによって構成されていることを特徴とする過電流検出回路が得られる。
【0028】
本発明の第4の態様によれば、一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗と、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、前記遅延回路は、前記放電制御スイッチのオン抵抗の両端で生じる電圧降下を監視する監視手段と、前記オン抵抗に流れる電流による前記オン抵抗間の電圧降下が所定の電圧以上になると、前記オン抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする電池ユニットが得られる。
【0029】
本発明の第5の態様によれば、一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗を備えた電池ユニットに設けられた過電流検出回路において、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、前記遅延回路は、前記電流検出抵抗の両端で生じる電圧降下を監視する監視手段と、前記電流検出抵抗に流れる電流による前記電圧降下が設定された電圧以上になると、前記電流検出抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする過電流検出回路が得られる。
【0030】
本発明の第6の態様によれば、所定の抵抗素子両端における電圧降下に応じた電流を供給する電流源と、当該電流源に直列に接続されたキャパシタと、当該電流源とキャパシタとの共通接続点における電圧を予め定められた電圧と比較する比較回路とを有し、遅延時間をアナログ的に可変できることを特徴とする遅延回路が得られる。
【0031】
【発明の実施の形態】
図1を参照すると、本発明の一実施形態に係る電池ユニット11aの概略構成が示されている。図1に示された電池ユニット11aは、過電流検出回路20aとして、放電制御スイッチ113のオン抵抗による電圧降下を検出する機能を有する電圧検出機能付遅延回路25を使用している点で、図6の過電流検出回路20と相違している。図1に示されているように、電圧検出機能付遅延回路25は、PチャンネルFETによって構成される放電制御スイッチ113の入出力端子(即ち、PチャネルFETのソース、ドレイン)に接続され、当該PチャンネルFETのオン抵抗による電圧降下を検出し、当該電圧降下に応じて遅延時間をアナログ的に、即ち、連続的に変化させる特性を備えている。
【0032】
図2をも参照すると、図1に示された電圧検出機能付遅延回路25の特性が示されており、横軸は放電制御スイッチ113に流れる電流I、縦軸は電圧検出機能付遅延回路25の遅延時間をあらわしている。図2からも明らかな通り、放電制御スイッチ113に流れる電流Iが設定された電流レベルIfを超えると、当該遅延回路25は過電流検出部20aの出力を所定の遅延時間Tdだけ遅延させる状態になる。更に、電流Iが大きくなると、電圧検出機能付遅延回路25の遅延時間は、電流Iレベルの増加に応じて、TdからTaまで、アナログ的に、即ち、連続的に短くなる。このような特性を有する電圧検出機能付遅延回路25を使用することにより、短時間に瞬間的に大きな電流Iが放電制御スイッチ113に流れた場合、極めて短い遅延時間後、放電制御スイッチ113をオフ状態にすることができ、この結果、放電スイッチ113を構成するFETの破壊を防止できる。
【0033】
図1に示された放電制御スイッチ113を構成するPチャンネルFETは、正極端子101に接続されたドレイン、二次電池111のカソードに接続されたソース、及び、電圧検出機能付遅延回路25に接続されたゲートを備え、電流検出抵抗112は負極端子102に接続されている。
【0034】
一方、放電制御スイッチ113をNチャンネルFETで構成する場合、負極端子102にソースを接続し、ドレインを二次電池111のアノードに接続するように構成すると共に、ゲートに対して図1とは逆極性の信号を与えるように構成すれば良い。また、この場合、電流検出抵抗112は、正極端子101と二次電池111のカソードとの間に接続される。この構成自体は知られているので、ここでは、詳述しない。
【0035】
次に、図3を参照して、図1に示された電圧検出機能付遅延回路25の具体的構成について説明する。図示された電圧検出機能付遅延回路25は、PチャンネルFETによって構成された放電制御スイッチ113の入出力端子間のオン抵抗による電圧降下を監視する監視回路として、差動回路251を有している。即ち、差動回路251はPチャンネルFETのソース、ドレインとの間に接続され、当該FETのオン抵抗を流れる電流によって生じる電圧降下を監視し、監視された電圧を電流に変換して、遅延部に出力している。図3に示された遅延部は、図2に示すようなアナログ的な遅延特性を有しているため、ここでは、アナログ遅延部と呼ぶ。ここで、PチャンネルFETのソース及びドレインの電圧をそれぞれVcc及びCSとする。
【0036】
図示されたアナログ遅延部は、差動回路251から与えられる電流によって電流制御される電流源252を備えている。当該電流源252には、直列にキャパシタ253の一端が接続され、キャパシタ253の他端は接地されている。また、電流源252とキャパシタ253との共通接続点は、比較回路254の一方の入力端子に接続されて、当該比較回路254の他方の入力端子には、予め定められた電圧を供給する電圧源255が接続されている。この構成では、電流源252からの電流によってキャパシタ253が充電され、このため、比較回路254の一方の入力端子の電圧は、電流源252の電流に応じて上昇する。
【0037】
ここで、放電制御スイッチ113を流れる電流が急激に増加した場合、差動回路251の電流も急激に増加し、結果的に電流源252からキャパシタ253に供給される電流も急激に増加する。したがって、キャパシタ253の電圧は、急速に上昇して電圧源255の電圧を短時間で超えてしまい、比較回路254からは、短時間の間に出力信号が出力される。
【0038】
比較回路254の出力信号及び過電流検出部の出力信号に応じて、放電制御スイッチ113をオフ状態にするように構成しておけば、当該放電制御スイッチ113は短時間の間に、オン状態からオフ状態に切り替えられ、短い遅延時間を有する遅延回路を構成できる。
【0039】
一方、放電制御スイッチ113を流れる電流が緩慢に増加した場合、差動回路251の電流もゆっくり増加し、電流源252からキャパシタ253に供給される電流も徐徐に増加する。したがって、キャパシタ253の電圧もゆっくり上昇するから、電圧源255に設定された電圧を超えるために比較的長い時間がかかる。この結果として、図2に示すような電流I、遅延時間T特性が得られる。
【0040】
図4を参照すると、図3に示された電流源252の具体的な構成例が示されている。図4に示されているように、電流源252は、差動回路251からの出力に応じた電流を供給する電流源回路31と、PNPトランジスタTr1、Tr2、Tr3によって構成された第1のカレントミラー回路、及び、NPNトランジスタTr4、Tr5によって構成された第2のカレントミラー回路とを備えている。トランジスタTr1、Tr2、及び、Tr3のエミッタには、それぞれ抵抗が接続され、当該抵抗を介して、Vcc、CS、及び、Vccの電圧が与えられている。
【0041】
差動回路251からの出力信号に応じた電流が電流源回路31から第1のカレントミラー回路に供給されると、トランジスタTr1に流れる電流に比例した電流がトランジスタTr2、Tr3に流れる。また、トランジスタTr2、Tr3は第2のカレントミラー回路(Tr4、Tr5)に接続されているから、当該トランジスタTr2、Tr3には互いに比例した電流が流れる。この結果、トランジスタTr3とTr5の共通接続点に接続されたキャパシタ253は、差動回路251の出力信号に対応した電流で充電される。
【0042】
図5を参照して、本発明の他の実施形態に係る電池ユニット11bを説明する。図示された電池ユニット11bの過電流検出回路10bは、図1と同様な構成を備えた過電流検出部20aと、当該過電流検出部20aに接続されると共に、電流検出抵抗112の両端に接続された電圧検出機能付遅延回路25aとを有している。このように、図示された電圧検出機能付遅延回路25aには、電流検出抵抗112の両端電圧も与えられる点以外、図1に示された電池ユニット11aと同様な構成を備えている。図5に示された電圧検出機能付遅延回路25aは、図3に示された回路25と同様な構成を備え、差動回路251の2つの入力端子を電流検出抵抗112の両端に接続すれば良い。
【0043】
上記した実施の形態は、主にリチウムイオン電池を二次電池として使用した場合について説明したが、本発明は何等これに限定されることなく、ニッケル−カドミウム電池、ニッケル−水銀電池等にも適用できる。
【0044】
【発明の効果】
本発明によれば、FET或いは電流検出抵抗の両端における電圧降下に応じて、遅延時間をアナログ的に可変することにより、極めて短時間内に生じる急激な電流変化によって、FETに大電流が流れるのを防止することができ、ディジタル的に遅延時間を変化させる場合に比較して、過電流を高速で検出して、FETの破壊を防止できると言う利点がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電池ユニットの構成を説明するためのブロック図である。
【図2】図1に示された電池ユニットに含まれる電圧検出機能付遅延回路の特性を示す図である。
【図3】図1に示された電圧検出機能付遅延回路の一部の構成を具体的に示す回路図である。
【図4】図3に示された回路の一部を詳細に説明する回路図である。
【図5】本発明の他の実施形態に係る電池ユニットの構成を示すブロック図である。
【図6】従来の電池ユニットの構成を説明するブロック図である。
【図7】図6に示された過電流検出回路の特性を説明する図である。
【符号の説明】
10、10a、10b 過電流検出回路
11、11a、11b 電池ユニット
111 二次電池
112 電流検出抵抗
113 放電制御スイッチ
101 正極端子
102 負極端子
20 過電流検出部
21 遅延回路
25、25a 電圧検出機能付遅延回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery protection circuit for protecting a rechargeable secondary battery such as a lithium ion battery, and more particularly, to a delay circuit used in the secondary battery protection circuit.
[0002]
[Prior art]
Generally, this type of secondary battery protection circuit is housed together with a secondary battery in a battery unit (battery pack) having a positive terminal and a negative terminal, and when used, the positive terminal and the negative terminal of the battery unit are connected to each other. Between them, a device such as a camera is connected as a load. As described above, when the load is connected to the battery unit, the secondary battery in the battery unit is in a discharged state, and drives and operates the load. On the other hand, when charging the secondary battery in the battery unit, a charger is connected between the positive terminal and the negative terminal of the battery unit, and the secondary battery is charged.
[0003]
Here, various batteries such as a nickel-cadmium battery, a nickel-mercury battery, and a lithium ion battery are connected to the secondary battery housed in the battery unit according to various devices. Among them, the nickel-cadmium battery and the nickel mercury battery have a characteristic that if they are not charged after being used until the battery capacity becomes zero, that is, if the shallow discharge / charge is repeated, the battery capacity is reduced. The effect of reducing the battery capacity by repeating shallow discharge / charge in this manner is called a memory effect.
[0004]
On the other hand, a lithium ion battery does not have the above-mentioned memory effect, and is ideal as a secondary battery.However, if the battery voltage becomes lower than a predetermined voltage due to excessive discharge, the constituent materials of the battery deteriorate, The battery is over-discharged and the life of the battery is shortened. In addition, in a lithium ion battery, the battery voltage continues to increase even when the battery is fully charged during charging by the charger, and may be in an overcharged state. As described above, when the battery is overcharged, in a lithium ion battery, a short circuit between electrodes may occur due to deposition of lithium metal. Furthermore, when a short circuit occurs between the positive electrode terminal and the negative electrode terminal in a lithium ion battery, a large discharge current flows, which may cause an overcurrent state.
[0005]
The secondary battery protection circuit incorporated in the battery unit together with the secondary battery, in particular, the secondary battery protection circuit for a lithium ion battery detects the above-described overcharge state, overdischarge state, and overcurrent state, and When each of the above conditions is detected, the charge current and the discharge current are cut off, thereby protecting the secondary battery. For this reason, the secondary battery protection circuit includes an overcharge detection circuit, an overdischarge detection circuit, and an overcurrent detection circuit.
[0006]
On the other hand, during charging or discharging, the current or voltage may fluctuate temporarily for some reason for a short time. Even if the above-mentioned temporary fluctuation occurs within a short period of time, in fact, overcharging, overdischarging, or overcurrent is not in progress. It is necessary to keep the overcharge detection circuit, overdischarge detection circuit, and overcurrent detection circuit inactive. For this reason, the overcharge detection circuit, the overdischarge detection circuit, and the overcurrent detection circuit are provided with each detection circuit only for a certain period of time in order to prevent the protection operation from being performed due to short-term fluctuations in current and voltage. Are set to an inactive state, that is, an insensitive state. Specifically, a delay circuit is provided as the insensitive time setting circuit, and the above-mentioned fixed time is set as a delay time of the delay circuit.
[0007]
Among the overcharge detection circuit, overdischarge detection circuit, and overcurrent detection circuit of the secondary battery protection circuit, a delay circuit described in Japanese Patent Application No. 2002-309470 is used as a delay circuit used in the overcurrent detection circuit. There is a circuit. The proposed delay circuit starts counting a clock signal from a clock oscillator when an overcurrent is detected, counts the clock signal to a predetermined value, and detects an overcurrent even when the clock signal is counted to a predetermined value. And outputs a valid detection signal. In this case, the overcurrent detection circuit is connected to a resistor that detects a load current flowing to a device connected as a load to the current unit, and controls a delay time by detecting a voltage across the resistor by the overcurrent detection circuit. are doing. With this configuration, even if there is an instantaneous variation in the overcurrent detection signal, it is possible to accurately count to a predetermined value.
[0008]
Referring to FIG. 6, another example of an overcurrent detection circuit 10 conventionally provided in a battery unit 11 including a secondary battery such as a lithium ion battery is shown. The illustrated battery unit 11 includes a positive terminal 101 and a negative terminal 102 as output terminals. A load such as a camera is connected between the positive terminal 101 and the negative terminal 102 during discharging, and a charger is connected during charging. Is connected.
[0009]
The illustrated battery unit 11 is characterized only by an overcurrent detection circuit 10, a secondary battery 111 such as a lithium-ion battery, a current detection resistor 112, and a discharge control switch 113. In addition to the detection circuit 10, an overdischarge detection circuit and an overcharge detection circuit (not shown) are provided in the battery unit 11. These overcharge detection circuit and overdischarge detection circuit are omitted in FIG. 6 to simplify the description.
[0010]
The drain of a P-channel FET constituting the discharge control switch 113 is connected to the positive terminal 101 of the battery unit 11, and the cathode of the secondary battery 111 is connected to its source. On the other hand, a current detection resistor 112 is connected between the anode of the secondary battery 111 and the negative electrode terminal 102, and the overcurrent detection circuit 10 is connected to both ends of the current detection resistor 112.
[0011]
More specifically, the overcurrent detection circuit 10 includes an overcurrent detection unit 20 and a delay circuit 21 in which a predetermined delay time has been set. The overcurrent detection unit 20 detects the voltage drop caused by the current flowing through the connected current detection resistor 112.
[0012]
The overcurrent detection unit 20 includes a voltage comparator having a threshold voltage set as a reference voltage, and compares a voltage drop across the current detection resistor 112 with the reference voltage in the voltage comparator. In this example, when the voltage drop across the current detection resistor 112 is smaller than the reference voltage, the voltage comparator outputs a logic “0” level output signal to the delay circuit 21 while the current detection resistor 112 is smaller than the reference voltage. When the voltage drop between both ends increases, it is determined that an overcurrent has occurred, and an output signal of a logic “1” level is output to the delay circuit 21.
[0013]
Here, it is assumed that a load is connected between the positive terminal 101 and the negative terminal 102 of the battery unit 11 and the secondary battery 111 is in a discharged state. In this state, the overcurrent detection unit 20 outputs an output signal of a logic “0” level to the delay circuit 21, and the P-channel FET constituting the discharge control switch 113 receives the low level signal from the delay circuit 21. A signal is being supplied. As a result, when no overcurrent is detected, the discharge control switch 113 is on.
[0014]
On the other hand, when the current flowing through the load increases and the voltage drop across the current detection resistor 112 exceeds the threshold, the overcurrent detection unit 20 outputs a high-level signal as an output signal to the delay circuit 21. The delay circuit 21 outputs the high-level signal to the discharge control switch 113 even when the predetermined delay time has elapsed, when the high-level signal is given from the overcurrent detection unit 20, and thereby the discharge control switch 113 Is turned off, and as a result, the discharge stops.
[0015]
Thus, the delay circuit 21 performs an operation of monitoring that the overcurrent state has continued for a predetermined delay time. By providing the delay circuit 21, the delay circuit 21 does not output a high-level signal to the discharge control switch 113 even if an overcurrent state occurs temporarily for a time shorter than a predetermined delay time. In other words, the discharge control switch 113 is turned off only when the overcurrent state continues for a predetermined delay time. With this configuration, even if the overcurrent state continues for a short period of time, the discharge control switch 113 does not enter the off state, so that erroneous detection of the temporarily generated overcurrent can be prevented.
[0016]
[Patent Document 1]
Japanese Patent Application No. 2002-309470
[Problems to be solved by the invention]
In this type, the device load connected as a load to the battery unit fluctuates greatly between the operation and non-operation of the device, and as a result, the current flowing to the load in the discharge state also tends to fluctuate greatly, In such a case, a short circuit may occur between the positive terminal and the negative terminal.
[0018]
In the resistance value of the current detection resistor 112 shown in FIG. 6, since the loss due to the current detection resistor 112 is suppressed, the loss due to the discharge control switch 113 is expected to be a problem. On the other hand, the delay time in the delay circuit shown in FIG. 6 is constant regardless of the magnitude of the load current. As described above, when a delay circuit having a fixed delay time is used, a large load current instantaneously flows through the FET constituting the discharge control switch 113 of the battery unit within the fixed delay time. As a result, the FET constituting the switch 113 is adversely affected, and in some cases, the FET may be destroyed.
[0019]
The above points will be specifically described with reference to FIG. 7 shows the characteristics of the overcurrent detection circuit 10 shown in FIG. 6. In FIG. 7, the horizontal axis represents the current I flowing through the current detection resistor 112, and the vertical axis represents the current in the delay circuit 21. The delay time T is shown. As is clear from the figure, when the current I flowing through the current detection resistor 112 exceeds the set current level Id, the delay circuit 21 has a characteristic of delaying the output of the overcurrent detection unit 20 by a fixed delay time Td. I have. The current I flowing through the current detection resistor 112 is actually converted into a voltage across the current detection resistor 112 in the overcurrent detection unit 20, and the voltage across the current detection resistor 112 is compared with a threshold voltage.
[0020]
When the overcurrent detection circuit 10 having the illustrated characteristics is used, a current exceeding the set current level Id temporarily flows through the current detection resistor 112, and returns to the original normal current level within a certain delay time. The discharge control switch 113 is maintained in an on state within a fixed delay time by the output of the delay circuit 21. For this reason, a large load current flows through the discharge control switch 113, and as a result, the FET constituting the discharge control switch 113 may be broken.
[0021]
On the other hand, in a delay circuit in which a clock from a clock oscillator is counted by a counter, such as the delay circuit described in the specification of Japanese Patent Application No. 2002-309470, by setting a plurality of count values of the counter, It seems that the dead time can be changed stepwise digitally. However, such a delay circuit that digitally changes the insensitive time cannot change the delay time in real time according to the load current. Therefore, when the load current changes abruptly, for example, due to a short circuit, the above-described delay circuit cannot follow the change and cannot prevent the elements constituting the discharge control switch from being destroyed.
[0022]
It is an object of the present invention to provide an overcurrent detection circuit that can prevent the destruction of an internal element in a battery unit even when the current changes instantaneously and rapidly.
[0023]
Another object of the present invention is to provide a battery unit provided with an overcurrent detection circuit capable of preventing the discharge control switch from being destroyed even when a sudden current fluctuation occurs.
[0024]
Still another object of the present invention is to provide a delay circuit capable of continuously changing delay characteristics according to a load current.
[0025]
[Means for Solving the Problems]
According to the first aspect of the present invention, a pair of input / output terminals, a secondary battery, and a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery An overcurrent detection circuit provided in a battery unit having a current detection resistor connected between the other terminal of the pair of input / output terminals and the other electrode of the secondary battery; An overcurrent detection unit connected to both ends and comparing the voltage across the current detection resistor with a predetermined reference voltage and outputting a comparison result; and a signal indicating that the voltage across the current detection resistor exceeds the reference voltage. Is given as the comparison result, the comparison result is delayed by a predetermined delay time, and the delay circuit that turns off the discharge switch when the voltage between both ends exceeds the reference voltage for the predetermined delay time or more. With A monitoring unit that monitors a voltage drop generated between both ends of the on-resistance of the discharge control switch; and when the voltage drop between the on-resistance due to a current flowing through the on-resistance becomes equal to or higher than a predetermined voltage, An overcurrent detection circuit having an analog delay section having a characteristic that the delay time decreases in an analog manner from the predetermined delay time as the current flowing through the resistor increases is obtained.
[0026]
According to a second aspect of the present invention, the monitoring means is configured by a differential circuit connected to both ends of the discharge control switch and outputting a current corresponding to a voltage drop due to the on-resistance, The delay unit has a predetermined current source controlled by a current from the differential circuit, a capacitor connected in series to the current source, and a voltage at a common connection point between the current source and the capacitor. An overcurrent detection circuit having a comparison circuit for comparing with a voltage is obtained.
[0027]
According to a third aspect of the present invention, there is provided an overcurrent detection circuit, wherein the discharge switch is constituted by an FET.
[0028]
According to the fourth aspect of the present invention, a pair of input / output terminals, a secondary battery, a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery A current detection resistor connected between the other terminal of the pair of input / output terminals and the other electrode of the secondary battery, and connected to both ends of the current detection resistor, and a voltage across the current detection resistor. Compared with a predetermined reference voltage, an overcurrent detection unit that outputs a comparison result, and when a signal indicating that the voltage across the current detection resistor exceeds the reference voltage is given as the comparison result, the comparison result is displayed. A delay circuit that delays by a predetermined delay time, and when the voltage across the terminals exceeds the reference voltage for the predetermined delay time or more, the delay circuit turns off the discharge switch. Switch on resistance Monitoring means for monitoring a voltage drop occurring at the end; and when a voltage drop between the on-resistances due to a current flowing through the on-resistance becomes equal to or higher than a predetermined voltage, the delay time becomes longer as the current flowing through the on-resistance increases. A battery unit having an analog delay section having a characteristic of decreasing analogously from the delay time is obtained.
[0029]
According to the fifth aspect of the present invention, a pair of input / output terminals, a secondary battery, a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery An overcurrent detection circuit provided in a battery unit having a current detection resistor connected between the other terminal of the pair of input / output terminals and the other electrode of the secondary battery; An overcurrent detection unit connected to both ends and comparing the voltage across the current detection resistor with a predetermined reference voltage and outputting a comparison result; and a signal indicating that the voltage across the current detection resistor exceeds the reference voltage. Is given as the comparison result, the comparison result is delayed by a predetermined delay time, and the delay circuit that turns off the discharge switch when the voltage between both ends exceeds the reference voltage for the predetermined delay time or more. With A monitoring unit that monitors a voltage drop generated at both ends of the current detection resistor; and a current that flows through the current detection resistor when the voltage drop due to the current flowing through the current detection resistor becomes equal to or higher than a set voltage. An overcurrent detection circuit characterized by having an analog delay portion having a characteristic that the delay time decreases in an analog manner from the predetermined delay time as the delay time increases.
[0030]
According to the sixth aspect of the present invention, a current source for supplying a current according to a voltage drop across the predetermined resistance element, a capacitor connected in series to the current source, and a common source for the current source and the capacitor A delay circuit having a comparison circuit for comparing the voltage at the connection point with a predetermined voltage, wherein the delay time can be varied in an analog manner is obtained.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a schematic configuration of a battery unit 11a according to one embodiment of the present invention. The battery unit 11a shown in FIG. 1 uses a delay circuit 25 with a voltage detection function having a function of detecting a voltage drop due to the on-resistance of the discharge control switch 113 as an overcurrent detection circuit 20a. 6 is different from the overcurrent detection circuit 20 of FIG. As shown in FIG. 1, the delay circuit with voltage detection function 25 is connected to the input / output terminals of the discharge control switch 113 composed of a P-channel FET (that is, the source and drain of the P-channel FET). A voltage drop due to the ON resistance of the P-channel FET is detected, and the delay time is changed in an analog manner, that is, continuously, according to the voltage drop.
[0032]
FIG. 2 also shows the characteristics of the delay circuit 25 with a voltage detection function shown in FIG. 1, where the horizontal axis represents the current I flowing through the discharge control switch 113 and the vertical axis represents the delay circuit 25 with a voltage detection function. Represents the delay time. As is clear from FIG. 2, when the current I flowing through the discharge control switch 113 exceeds the set current level If, the delay circuit 25 shifts the output of the overcurrent detection unit 20a to a state delayed by a predetermined delay time Td. Become. Further, when the current I increases, the delay time of the delay circuit with voltage detection function 25 decreases from Td to Ta in an analog manner, that is, continuously, in accordance with the increase in the current I level. By using the delay circuit 25 with a voltage detection function having such characteristics, when a large current I flows to the discharge control switch 113 in a short time, the discharge control switch 113 is turned off after a very short delay time. As a result, the FET constituting the discharge switch 113 can be prevented from being destroyed.
[0033]
The P-channel FET constituting the discharge control switch 113 shown in FIG. 1 is connected to the drain connected to the positive terminal 101, the source connected to the cathode of the secondary battery 111, and the delay circuit with voltage detection function 25. The current detection resistor 112 is connected to the negative terminal 102.
[0034]
On the other hand, when the discharge control switch 113 is formed of an N-channel FET, the source is connected to the negative terminal 102, the drain is connected to the anode of the secondary battery 111, and the gate is opposite to that in FIG. What is necessary is just to comprise so that the signal of a polarity may be given. In this case, the current detection resistor 112 is connected between the positive terminal 101 and the cathode of the secondary battery 111. This configuration itself is known and will not be described in detail here.
[0035]
Next, a specific configuration of the delay circuit with a voltage detection function 25 shown in FIG. 1 will be described with reference to FIG. The illustrated delay circuit 25 with a voltage detection function includes a differential circuit 251 as a monitoring circuit that monitors a voltage drop due to an on-resistance between the input and output terminals of the discharge control switch 113 configured by a P-channel FET. . That is, the differential circuit 251 is connected between the source and the drain of the P-channel FET, monitors a voltage drop caused by a current flowing through the on-resistance of the FET, converts the monitored voltage into a current, and Output to The delay unit shown in FIG. 3 has an analog delay characteristic as shown in FIG. 2, and is therefore called an analog delay unit here. Here, the source and drain voltages of the P-channel FET are Vcc and CS, respectively.
[0036]
The illustrated analog delay unit includes a current source 252 that is current-controlled by a current supplied from the differential circuit 251. One end of a capacitor 253 is connected to the current source 252 in series, and the other end of the capacitor 253 is grounded. A common connection point between the current source 252 and the capacitor 253 is connected to one input terminal of the comparison circuit 254, and a voltage source for supplying a predetermined voltage to the other input terminal of the comparison circuit 254. 255 are connected. In this configuration, the capacitor 253 is charged by the current from the current source 252, and the voltage of one input terminal of the comparison circuit 254 rises according to the current of the current source 252.
[0037]
Here, when the current flowing through the discharge control switch 113 sharply increases, the current of the differential circuit 251 also sharply increases, and as a result, the current supplied from the current source 252 to the capacitor 253 also sharply increases. Therefore, the voltage of capacitor 253 rises rapidly and exceeds the voltage of voltage source 255 in a short time, and an output signal is output from comparison circuit 254 in a short time.
[0038]
If the discharge control switch 113 is configured to be turned off in accordance with the output signal of the comparison circuit 254 and the output signal of the overcurrent detection unit, the discharge control switch 113 can be turned on in a short time. A delay circuit that is switched to the off state and has a short delay time can be configured.
[0039]
On the other hand, when the current flowing through the discharge control switch 113 increases slowly, the current of the differential circuit 251 also increases slowly, and the current supplied from the current source 252 to the capacitor 253 also increases gradually. Therefore, since the voltage of the capacitor 253 also increases slowly, it takes a relatively long time to exceed the voltage set in the voltage source 255. As a result, current I and delay time T characteristics as shown in FIG. 2 are obtained.
[0040]
Referring to FIG. 4, a specific configuration example of the current source 252 shown in FIG. 3 is shown. As shown in FIG. 4, the current source 252 includes a current source circuit 31 that supplies a current according to the output from the differential circuit 251 and a first current source configured by PNP transistors Tr1, Tr2, and Tr3. A mirror circuit, and a second current mirror circuit including NPN transistors Tr4 and Tr5. A resistor is connected to each of the emitters of the transistors Tr1, Tr2, and Tr3, and the voltages Vcc, CS, and Vcc are given through the resistors.
[0041]
When a current corresponding to the output signal from the differential circuit 251 is supplied from the current source circuit 31 to the first current mirror circuit, a current proportional to the current flowing through the transistor Tr1 flows through the transistors Tr2 and Tr3. Since the transistors Tr2 and Tr3 are connected to the second current mirror circuits (Tr4 and Tr5), currents proportional to each other flow through the transistors Tr2 and Tr3. As a result, the capacitor 253 connected to the common connection point of the transistors Tr3 and Tr5 is charged with a current corresponding to the output signal of the differential circuit 251.
[0042]
A battery unit 11b according to another embodiment of the present invention will be described with reference to FIG. The overcurrent detection circuit 10b of the illustrated battery unit 11b is connected to the overcurrent detection unit 20a having the same configuration as that of FIG. 1 and to both ends of the current detection resistor 112 while being connected to the overcurrent detection unit 20a. And a delay circuit 25a with a voltage detection function. Thus, the illustrated delay circuit with voltage detection function 25a has a configuration similar to that of the battery unit 11a illustrated in FIG. 1 except that the voltage across the current detection resistor 112 is also provided. The delay circuit with voltage detection function 25a shown in FIG. 5 has a configuration similar to that of the circuit 25 shown in FIG. 3 and can be obtained by connecting two input terminals of the differential circuit 251 to both ends of the current detection resistor 112. good.
[0043]
Although the above-described embodiment mainly describes a case where a lithium ion battery is used as a secondary battery, the present invention is not limited to this, and is applicable to nickel-cadmium batteries, nickel-mercury batteries, and the like. it can.
[0044]
【The invention's effect】
According to the present invention, the delay time is varied in an analog manner according to the voltage drop across the FET or the current detection resistor, so that a large current flows through the FET due to a sudden current change occurring in a very short time. This is advantageous in that overcurrent can be detected at high speed and the destruction of the FET can be prevented as compared with a case where the delay time is digitally changed.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a battery unit according to an embodiment of the present invention.
FIG. 2 is a diagram showing characteristics of a delay circuit with a voltage detection function included in the battery unit shown in FIG. 1;
FIG. 3 is a circuit diagram specifically showing a configuration of a part of the delay circuit with a voltage detection function shown in FIG. 1;
FIG. 4 is a circuit diagram illustrating in detail a part of the circuit shown in FIG. 3;
FIG. 5 is a block diagram showing a configuration of a battery unit according to another embodiment of the present invention.
FIG. 6 is a block diagram illustrating a configuration of a conventional battery unit.
7 is a diagram illustrating characteristics of the overcurrent detection circuit shown in FIG.
[Explanation of symbols]
10, 10a, 10b Overcurrent detection circuit 11, 11a, 11b Battery unit 111 Secondary battery 112 Current detection resistor 113 Discharge control switch 101 Positive terminal 102 Negative terminal 20 Overcurrent detection unit 21 Delay circuit 25, 25a Delay with voltage detection function circuit

Claims (6)

一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗を備えた電池ユニットに設けられた過電流検出回路において、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、
前記遅延回路は、前記放電制御スイッチのオン抵抗の両端で生じる電圧降下を監視する監視手段と、前記オン抵抗に流れる電流による前記オン抵抗間の電圧降下が所定の電圧以上になると、前記オン抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする過電流検出回路。
A pair of input / output terminals, a secondary battery, a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery, and the other terminal of the pair of input / output terminals An overcurrent detection circuit provided in a battery unit having a current detection resistor connected between the current detection resistor and the other electrode of the secondary battery. An overcurrent detection unit that compares the voltage with a predetermined reference voltage and outputs a comparison result; and when a signal indicating that the voltage across the current detection resistor exceeds the reference voltage is given as the comparison result, the comparison is performed. Delaying the result by a predetermined delay time, the predetermined delay time or more, when the voltage across the terminals exceeds the reference voltage, a delay circuit that turns off the discharge switch,
The delay circuit includes a monitoring unit that monitors a voltage drop generated between both ends of the on-resistance of the discharge control switch. The on-resistance is controlled when a voltage drop between the on-resistance due to a current flowing through the on-resistance becomes equal to or more than a predetermined voltage. An overcurrent detection circuit having an analog delay section having a characteristic that the delay time decreases in an analog manner from the predetermined delay time as the current flowing through the circuit increases.
請求項1において、前記監視手段は、前記放電制御スイッチの両端に接続され、前記オン抵抗による電圧降下に応じた電流を出力する差動回路によって構成され、他方、前記アナログ遅延部は、前記差動回路からの電流によって、電流制御される電流源と、該電流源に直列に接続されたキャパシタと、当該電流源とキャパシタとの共通接続点における電圧を予め定められた電圧と比較する比較回路とを有することを特徴とする過電流検出回路。2. The monitoring device according to claim 1, wherein the monitoring unit is configured by a differential circuit connected to both ends of the discharge control switch and configured to output a current corresponding to a voltage drop due to the on-resistance. A current source controlled by a current from the driving circuit, a capacitor connected in series to the current source, and a comparison circuit for comparing a voltage at a common connection point between the current source and the capacitor with a predetermined voltage. And an overcurrent detection circuit. 請求項1又は2において、前記放電スイッチはFETによって構成されていることを特徴とする過電流検出回路。3. The overcurrent detection circuit according to claim 1, wherein the discharge switch is constituted by an FET. 一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗と、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、
前記遅延回路は、前記放電制御スイッチのオン抵抗の両端で生じる電圧降下を監視する監視手段と、前記オン抵抗に流れる電流による前記オン抵抗間の電圧降下が所定の電圧以上になると、前記オン抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする電池ユニット。
A pair of input / output terminals, a secondary battery, a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery, and the other terminal of the pair of input / output terminals And a current detection resistor connected between the other electrode of the secondary battery and the both ends of the current detection resistor, and compares the voltage across the current detection resistor with a predetermined reference voltage. An overcurrent detection unit to be output, when a signal indicating that the voltage across the current detection resistor exceeds the reference voltage is given as the comparison result, the comparison result is delayed by a predetermined delay time, and the predetermined A delay circuit for turning off the discharge switch when the voltage between both ends exceeds the reference voltage,
The delay circuit includes a monitoring unit that monitors a voltage drop generated between both ends of the on-resistance of the discharge control switch. The on-resistance is controlled when a voltage drop between the on-resistance due to a current flowing through the on-resistance becomes equal to or more than a predetermined voltage. A battery unit having an analog delay unit having a characteristic that the delay time decreases in an analog manner from the predetermined delay time as the current flowing through the battery unit increases.
一対の入出力端子、二次電池、前記一対の入出力端子の一方の端子と前記二次電池の一方の電極との間に接続された放電制御スイッチ、前記一対の入出力端子の他方の端子と前記二次電池の他方の電極との間に接続された電流検出抵抗を備えた電池ユニットに設けられた過電流検出回路において、前記電流検出抵抗の両端に接続され、当該電流検出抵抗の両端電圧を所定の基準電圧と比較し、比較結果を出力する過電流検出部と、前記電流検出抵抗の両端電圧が前記基準電圧を超えたことをあらわす信号が前記比較結果として与えられると、当該比較結果を所定の遅延時間だけ遅延させ、当該所定の遅延時間以上、前記両端電圧が前記基準電圧を超えている場合、前記放電スイッチをオフにする遅延回路とを有し、
前記遅延回路は、前記電流検出抵抗の両端で生じる電圧降下を監視する監視手段と、前記電流検出抵抗に流れる電流による前記電圧降下が設定された電圧以上になると、前記電流検出抵抗に流れる電流が大きくなるにしたがって遅延時間が前記所定の遅延時間からアナログ的に減少する特性を有するアナログ遅延部を有することを特徴とする過電流検出回路。
A pair of input / output terminals, a secondary battery, a discharge control switch connected between one terminal of the pair of input / output terminals and one electrode of the secondary battery, and the other terminal of the pair of input / output terminals An overcurrent detection circuit provided in a battery unit having a current detection resistor connected between the current detection resistor and the other electrode of the secondary battery. An overcurrent detection unit that compares the voltage with a predetermined reference voltage and outputs a comparison result; and when a signal indicating that the voltage across the current detection resistor exceeds the reference voltage is given as the comparison result, the comparison is performed. Delaying the result by a predetermined delay time, the predetermined delay time or more, when the voltage across the terminals exceeds the reference voltage, a delay circuit that turns off the discharge switch,
The delay circuit includes a monitoring unit that monitors a voltage drop that occurs at both ends of the current detection resistor. An overcurrent detection circuit comprising an analog delay section having a characteristic that the delay time decreases in an analog manner from the predetermined delay time as the delay time increases.
所定の抵抗素子両端における電圧降下に応じた電流を供給する電流源と、当該電流源に直列に接続されたキャパシタと、当該電流源とキャパシタとの共通接続点における電圧を予め定められた電圧と比較する比較回路とを有し、遅延時間をアナログ的に可変できることを特徴とする遅延回路。A current source that supplies a current according to the voltage drop across the predetermined resistance element, a capacitor connected in series to the current source, and a voltage at a common connection point between the current source and the capacitor, and a predetermined voltage. A delay circuit comprising: a comparison circuit for comparing; and a delay time can be varied in an analog manner.
JP2003013085A 2003-01-22 2003-01-22 Overcurrent detection circuit and battery unit Expired - Fee Related JP4221572B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003013085A JP4221572B2 (en) 2003-01-22 2003-01-22 Overcurrent detection circuit and battery unit
KR1020030086619A KR100975279B1 (en) 2003-01-22 2003-12-02 Overcurrent detecting circuit and its delay circuit
TW092136338A TW200415835A (en) 2003-01-22 2003-12-19 Over-current detection circuit and delay circuit thereof
CNA2004100393401A CN1518183A (en) 2003-01-22 2004-01-19 Overcurrent detecting circuit and its delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013085A JP4221572B2 (en) 2003-01-22 2003-01-22 Overcurrent detection circuit and battery unit

Publications (2)

Publication Number Publication Date
JP2004226185A true JP2004226185A (en) 2004-08-12
JP4221572B2 JP4221572B2 (en) 2009-02-12

Family

ID=32901510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013085A Expired - Fee Related JP4221572B2 (en) 2003-01-22 2003-01-22 Overcurrent detection circuit and battery unit

Country Status (4)

Country Link
JP (1) JP4221572B2 (en)
KR (1) KR100975279B1 (en)
CN (1) CN1518183A (en)
TW (1) TW200415835A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004512A1 (en) * 2004-07-02 2006-01-12 Scandinova Systems Ab Electrical power switching with efficient switch protection
JP2007043805A (en) * 2005-08-02 2007-02-15 Atsumi Electric Co Ltd Overcurrent protecting circuit of dc power supply
JP2009011040A (en) * 2007-06-27 2009-01-15 Denso Corp Vehicle load line abnormality monitoring device
JP2009044824A (en) * 2007-08-07 2009-02-26 Mitsumi Electric Co Ltd Battery pack
JP2011041177A (en) * 2009-08-18 2011-02-24 Yokogawa Electric Corp Electric apparatus
CN103033678A (en) * 2012-12-24 2013-04-10 上海电力学院 Actual measurement method for short-circuit current
US8524385B2 (en) 2008-10-10 2013-09-03 Mitsumi Electric Co., Ltd. Battery pack
CN103995175A (en) * 2014-06-04 2014-08-20 安徽江淮汽车股份有限公司 Over-current detecting circuit
JP2016165177A (en) * 2015-03-06 2016-09-08 Fdk株式会社 Load current control device
GB2554424A (en) * 2016-09-27 2018-04-04 Pulse Lighting Ltd Safety trip device
CN111384706A (en) * 2020-04-16 2020-07-07 上海南芯半导体科技有限公司 Self-adaptive output overload and output short circuit protection method of switching power supply
US10739386B2 (en) 2015-05-21 2020-08-11 Nec Corporation Storage battery monitoring device
CN115664183A (en) * 2022-11-21 2023-01-31 广东东菱电源科技有限公司 Continuous startup and shutdown non-overshoot circuit

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158754B2 (en) * 2004-09-30 2008-10-01 日産自動車株式会社 Overcurrent detection method and detection circuit
JP5064746B2 (en) * 2006-09-13 2012-10-31 株式会社リコー SECONDARY BATTERY PROTECTION SEMICONDUCTOR DEVICE, BATTERY PACK AND ELECTRONIC DEVICE CONTAINING THE SECONDARY BATTERY PROTECTION SEMICONDUCTOR
JP5441389B2 (en) * 2008-10-14 2014-03-12 キヤノン株式会社 Electrical equipment and programs
KR101129470B1 (en) * 2009-10-05 2012-03-28 엘지이노텍 주식회사 Deferring Circuit for Protector of Arc
JP5370090B2 (en) * 2009-11-12 2013-12-18 アンデン株式会社 Switch circuit with overcurrent detection function
JP5770979B2 (en) * 2010-06-03 2015-08-26 セイコーインスツル株式会社 Battery state monitoring circuit and battery device
US8779735B2 (en) * 2011-03-15 2014-07-15 Infineon Technologies Ag System and method for an overcurrent protection and interface circuit between an energy source and a load
KR20130017278A (en) 2011-08-10 2013-02-20 삼성디스플레이 주식회사 Light unit and driving method thereof
CN104052258B (en) * 2013-03-12 2017-10-24 万国半导体股份有限公司 The fault-tolerant power supply of the introducing load switch of uninterrupted power source is provided
CN104065028B (en) * 2013-03-19 2017-03-01 台达电子工业股份有限公司 Electronic insurance silk device and its operational approach
JP6329741B2 (en) * 2013-09-06 2018-05-23 デクセリアルズ株式会社 Protection circuit
JP6322957B2 (en) * 2013-10-30 2018-05-16 株式会社オートネットワーク技術研究所 Overcurrent protection circuit
CN103647323A (en) * 2013-12-13 2014-03-19 海能达通信股份有限公司 Cell discharge overcurrent protection circuit and cell discharge overcurrent protection method
EP3082209B1 (en) 2013-12-13 2022-05-11 Hytera Communications Corp., Ltd. Overcurrent protection circuit and method for battery discharge
TWI661631B (en) * 2014-11-20 2019-06-01 力智電子股份有限公司 Battery protection device and operation method thereof
JP6041031B1 (en) * 2015-10-02 2016-12-07 ミツミ電機株式会社 Secondary battery protection integrated circuit, secondary battery protection device and battery pack
CN109586242B (en) * 2017-09-29 2020-03-10 昆山国显光电有限公司 Circuit protection method, protection circuit and circuit protection device
TWI702589B (en) * 2018-12-12 2020-08-21 財團法人工業技術研究院 Organic semiconductor device, driving device and driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303728A (en) * 1993-04-09 1994-10-28 Sanyo Electric Co Ltd Overcurrent protective circuit for battery
JP3195555B2 (en) * 1997-02-10 2001-08-06 セイコーインスツルメンツ株式会社 Charge / discharge control circuit
JP4392103B2 (en) * 2000-03-30 2009-12-24 セイコーインスツル株式会社 Charge / discharge control circuit and rechargeable power supply
JP3794547B2 (en) 2000-12-13 2006-07-05 株式会社リコー Semiconductor device having test function, charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic apparatus using the battery pack

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279571B2 (en) 2004-07-02 2012-10-02 Scandinova Systems Ab Electrical power switching with efficient switch protection
JP2008505595A (en) * 2004-07-02 2008-02-21 スカンジノヴァ システムズ エイビー High efficiency switch protection power switching
US7885049B2 (en) 2004-07-02 2011-02-08 Scandinova Systems Ab Electrical power switching with efficient switch protection
WO2006004512A1 (en) * 2004-07-02 2006-01-12 Scandinova Systems Ab Electrical power switching with efficient switch protection
JP4654242B2 (en) * 2004-07-02 2011-03-16 スカンジノヴァ システムズ エイビー Electronic power switching system
JP2007043805A (en) * 2005-08-02 2007-02-15 Atsumi Electric Co Ltd Overcurrent protecting circuit of dc power supply
JP2009011040A (en) * 2007-06-27 2009-01-15 Denso Corp Vehicle load line abnormality monitoring device
JP2009044824A (en) * 2007-08-07 2009-02-26 Mitsumi Electric Co Ltd Battery pack
US8524385B2 (en) 2008-10-10 2013-09-03 Mitsumi Electric Co., Ltd. Battery pack
JP2011041177A (en) * 2009-08-18 2011-02-24 Yokogawa Electric Corp Electric apparatus
CN103033678A (en) * 2012-12-24 2013-04-10 上海电力学院 Actual measurement method for short-circuit current
CN103995175A (en) * 2014-06-04 2014-08-20 安徽江淮汽车股份有限公司 Over-current detecting circuit
JP2016165177A (en) * 2015-03-06 2016-09-08 Fdk株式会社 Load current control device
WO2016143419A1 (en) * 2015-03-06 2016-09-15 Fdk株式会社 Load current control device
US10522997B2 (en) 2015-03-06 2019-12-31 Fdk Corporation Load current control apparatus
US10739386B2 (en) 2015-05-21 2020-08-11 Nec Corporation Storage battery monitoring device
GB2554424A (en) * 2016-09-27 2018-04-04 Pulse Lighting Ltd Safety trip device
GB2554424B (en) * 2016-09-27 2020-04-08 Pulse Lighting Ltd Safety trip device
CN111384706A (en) * 2020-04-16 2020-07-07 上海南芯半导体科技有限公司 Self-adaptive output overload and output short circuit protection method of switching power supply
CN115664183A (en) * 2022-11-21 2023-01-31 广东东菱电源科技有限公司 Continuous startup and shutdown non-overshoot circuit

Also Published As

Publication number Publication date
TW200415835A (en) 2004-08-16
KR100975279B1 (en) 2010-08-12
JP4221572B2 (en) 2009-02-12
TWI328325B (en) 2010-08-01
KR20040067807A (en) 2004-07-30
CN1518183A (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP4221572B2 (en) Overcurrent detection circuit and battery unit
JP3592674B2 (en) Charge / discharge control circuit and rechargeable power supply
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
US8183836B2 (en) Lithium battery pack
JP2872365B2 (en) Rechargeable power supply
JPH0767263A (en) Overdischarge preventive circuit for secondary battery
JP2009131020A (en) Overcurrent protection circuit and battery pack
JPH06245406A (en) Charging/discharging circuit
JP3559020B2 (en) Charge / discharge control circuit and rechargeable power supply
JP2002238173A (en) Charging/discharging control circuit and chargeable power supply
JPH10224997A (en) Charge/discharge control circuit
JP3862012B2 (en) Secondary battery unit with external protection circuit
US6605925B2 (en) Power source circuit
JP3190597B2 (en) Charge / discharge control circuit and rechargeable power supply
JP2004127532A (en) Battery pack
JPH11307138A (en) Battery state monitoring circuit and battery device
JPH08265985A (en) Charging method for pack battery
JP3622243B2 (en) Charge / discharge protection device for secondary battery
JP2000152510A (en) Charge and discharge control circuit and charge system of power unit
KR101892950B1 (en) Battery protection circuit and battery protection apparatus and battery pack
US6940256B2 (en) Battery state monitoring circuit and battery device
JP3434759B2 (en) Charge / discharge control circuit and rechargeable power supply
KR100389163B1 (en) Battery voltage detection circuit
JP2002238172A (en) Secondary battery protecting circuit
JP2008054412A (en) Charge/discharge control circuit and charging-type power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees