JP2004225778A - Sealing unit - Google Patents

Sealing unit Download PDF

Info

Publication number
JP2004225778A
JP2004225778A JP2003013255A JP2003013255A JP2004225778A JP 2004225778 A JP2004225778 A JP 2004225778A JP 2003013255 A JP2003013255 A JP 2003013255A JP 2003013255 A JP2003013255 A JP 2003013255A JP 2004225778 A JP2004225778 A JP 2004225778A
Authority
JP
Japan
Prior art keywords
annular
sealing device
peripheral surface
sealing
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013255A
Other languages
Japanese (ja)
Other versions
JP4193498B2 (en
Inventor
Yosuke Kondo
洋介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2003013255A priority Critical patent/JP4193498B2/en
Publication of JP2004225778A publication Critical patent/JP2004225778A/en
Application granted granted Critical
Publication of JP4193498B2 publication Critical patent/JP4193498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing unit prepared into a circular gap between a shaft member and an outer enclosure member, which is capable of assuring a high sealing capability for a long term from an initial stage of mounting. <P>SOLUTION: The sealing unit 10 such as a seal used for a high pressure fuel injection pump has a gap S1 between an outer periphery and a sealing face of a first circular member 40 and an inner periphery and a sealing face of a second circular member 50 in a contact face 43B (53B) of the first circular member 40 and the second circular member 50. The first circular member 40 and the second circular member 50 are made of a material with high rigidity such as metal, resin or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば高圧燃料噴射ポンプ用シール等の環境下でもシール性を発揮する密封装置に関する。
【0002】
【従来の技術】
近年、ディーゼルエンジンやガソリンエンジン等において、低燃費や高出力等の性能向上を図るために、シリンダ内に高圧の燃料を直接噴射して燃焼させる筒内直接噴射方式のものが開発されている。
【0003】
そして、この様な筒内直接噴射方式のエンジンでは、燃料を高圧力に加圧するための高圧燃料ポンプが必要であり、この高圧燃料ポンプに高圧なシール性が要求される往復動用密封装置が使用されている。
【0004】
従来の密封装置としては、図4に示すようなものがある。図4に示す密封装置100は、燃料噴射を行うエンジンに使用される高圧燃料ポンプから軸方向に往復動する軸120の密封対象側である高圧側に供給される高圧燃料のシールを目的として採用されるものである。
【0005】
同図4に示すように、密封装置100は、軸部材120の外周面121に周設された環状溝122に収容され、この環状溝122の底面122aと、外郭部材130の筒状の内周面131との間で押しつぶされることによって発生する面圧により、両部材120,130の隙間を封止する。
【0006】
ここで、密封装置100の形状や大きさは、当該密封装置100が軸部材(環状溝の底面)および外郭部材(内周面)に対し所定の面圧を発生させるように、所定のつぶし代を見込んで設計される。
【0007】
このような密封装置100では、長期に亘る使用により、つぶし代が低下(クリープ)し、シール性が低下するといった問題があった。
【0008】
また、例えば図5に示すように、軸部材120の環状溝122と外郭部材130の内周面131とによって形成される空間S100で密封装置200にある程度の動きが許容されるような構造も知られている。このような構造では、軸部材120および外郭部材130の隙間に軸方向に沿って流体圧P100又は流体圧P200が付与されると、その流体圧の付与方向に向かって密封装置200が移動し、両部材120,130の隙間を封止するようになる(図5(a)および図5(b)を参照)。一般にこのような密封構造は、軸方向に沿って相対的に異なる運動をする軸部材120および外郭部材130の隙間を封止するために用いられる。ところが、この密封構造を、軸部材120および外郭部材130の軸方向に沿って両側から交互に流体圧が付与される条件下で採用すると、流体圧の付与される方向が切り替わる際に流体の漏れが発生する(図5(c)を参照。なお、図中の点線は、付与される流体圧がP100方向からP200方向に切り替わる際に発生する漏れの流路を示す)。すなわち、この場合も十分な密封性を確保するのが困難となっていた。
【0009】
このような問題に対し、例えば特許文献1には、図6(a)および図6(b)に示すように、軸方向に沿ってテーパ面を有する2つの環状部材を、各々のテーパ面を対峙させた状態で重ね合わせた密封装置が記載されている。
【0010】
このような密封装置300では、軸部材120および外郭部材130の隙間に、軸方向に沿って流体圧P100又は流体圧P200が付与されると、当該密封装置を構成する各環状部材340,350に対して軸部材120の径方向に力F10,F20が働くことで、密封装置300を構成する2つの環状部材340,350のうち一方の環状部材350の一部が、他方の環状部材340と外郭部材130の内周面131との間に適度に食い込む。これにより、密封装置300および軸部材120(環状溝122の底面122a)の間、また、密封装置300および外郭部材130(内周面131)の間に高い面圧が発生し、軸部材120および外郭部材130の隙間に高い密封性が確保される。
【0011】
【特許文献1】
実開昭63−008476号公報
【特許文献2】
実開昭56−101258号公報
【0012】
【発明が解決しようとする課題】
ところで、図6に示すような密封装置300では、一方の環状部材350の一部が他方の環状部材340と外郭部材130の内周面131との間に食い込むようになるまで、軸部材120および外郭部材130が軸方向に沿った相対運動を暫し繰り返す必要がある。言い換えれば、密封装置300を軸部材120および外郭部材130の隙間に装着した後、使用初期の段階でその隙間に高い密封性を期待することができない。更に、環状部材350は環状溝122から突出する所定のつぶし代を有しているため、固定用シール部材以外(例えば回転用、往復動用、揺動用)に用いた場合、その使用に伴い徐々につぶし代が摩耗する。この結果、長期にわたって密封性を確保することができない。
【0013】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、ゴムなどの低強度材が使用できないような環境下においてでも、環状隙間に、装着初期の段階から、長期に亘って高い密封性を保証することのできる密封装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明は、外郭部材と該外郭部材の筒状孔に装着される軸部材との環状隙間を封止すべく、前記外郭部材及び軸部材の一方に設けられた環状溝に装着される密封装置であって、高剛性の第1環状部材と、前記第1環状部材に接触配置される高剛性の第2環状部材と、を備えて、前記第1環状部材と前記第2環状部材との接触部において、前記第1環状部材の外周面及び封止面の間と、前記第2環状部材の内周面及び封止面の間とに、隙間を有することを要旨とする。
【0015】
【発明の実施の形態】
以下に図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨ではない。また、以下の説明で一度説明した部材についての材質、形状などは、特に改めて記載しない限りはじめの説明と同様のものである。
【0016】
(第1の実施の形態)
図1は、本発明にかかる密封装置の好適な第1の実施の形態について、その一部断面を示す略図である。すなわち、本形態の密封装置10は、例えば内燃機関に搭載される高圧燃料ポンプのシール部位に用いられ、図1に示されるように、軸部材20と、この軸部材20の外周面21を取り囲む筒状の内周面31を有する外郭部材30との隙間において、軸部材20の外周面21に形成された環状溝22に配置される。
【0017】
密封装置10は、第1環状部材40と第2環状部材50からなる。第1環状部材40は、内周面42、外周面41、テーパ状周面43を有する。第2環状部材50は、外周面52、内周面51、テーパ状周面53を有する。テーパ状周面43の一部(当接面)43Aと、テーパ状周面53の一部(当接面)53Aとは互いに当接する。第1環状部材40の端面44と、軸部材20の環状溝底22aと、第2環状部材50のテーパ状周面53の一部(当接面53Aを除いた部分)53Bとによって、隙間S1が周方向に形成される。また、第2環状部材50の端面54と、外郭部材30の内周面31と、第1環状部材40のテーパ状周面53の一部(当接面43Aを除いた部分)43Bとによって、隙間S2が周方向に形成される。
【0018】
第1環状部材40及び第2環状部材50は、金属(例えば銅、アルミ等)或いは樹脂(例えばPTFE、ETFE、PEEK、ナイロン等)等を主材料とする高剛性材料によって形成される。なお、これら材料の硬度は、使用条件(圧力等)や寸法使用(環状溝や環状部材の寸法、部材を軸方向に互いにオーバーラップさせる量等)によって適宜選択するのが好ましい。
【0019】
ここで、図2(a)、図2(b)及び図2(c)に示すように、軸部材20の軸方向(以下、単に軸方向という)に沿って第1環状部材40又は第2環状部材50に対し、流体圧P1若しくは流体圧P2が、又は流体圧P1と流体圧P2とが交互に、又は流体圧P1と流体圧P2の両方が付与されると、第1環状部材40および第2環状部材50が各々のテーパ面(当接面)43A,53Aにおいて接触し、相互に押し合うことになる。すると、第1環状部材40には環状溝22の底面22aに向かう力F1が作用し、当該第1環状部材40は速やかにその頂角部分の隙間S1に(矢印D1の方向に)食い込む。また、第2環状部材50には外郭部材30の内周面31に向かう力F2が作用し、当該第2環状部材50は、これも速やかにその頂角部分の隙間S2に(矢印D2の方向に)食い込む。
【0020】
従って、使用初期の段階から、第1環状部材40によるその頂角部分の隙間への食い込みと、第2環状部材50によるその頂角部分への食い込みが発生する。故に、使用初期の段階から軸部材20および外郭部材30の環状隙間において、高い密封性を確保できる。
【0021】
さらに、上記密封装置10によれば、このような食い込み現象により密封装置10(環状部材40,50の組み合わせ)自体が塑性変形することで、密封装置10の形状や大きさの設定に際し、つぶし代を設ける必要がなくなる。従って、シールの装着性が向上し、また固定用シール以外の用途、例えば回転用、往復動用、揺動用など低摺動抵抗を求められる様なあらゆる運動条件下での使用が長期に渡って可能になる。
【0022】
また、本実施の形態にかかる密封装置10において、第1環状部材40の軸方向断面の形状および大きさは、第2環状部材50の軸方向断面を180度回転したものと略同一である。
【0023】
このため、軸方向に沿って第1環状部材40および第2環状部材50のうち何れの側に流体圧が付与される場合であれ、軸部材20および外郭部材30の環状隙間に同等の密封性を保証することができる。
【0024】
ここで、第1環状部材40のテーパ状周面43と前記第2環状部材50のテーパ状周面53とが対峙して当接面43A(53A)を形成し、その当接面43A(53A)の軸方向長さH1と、第1環状部材40のテーパ状周面43の軸方向長さH2とが、「H1≧(1/2)×H2」なる関係を有し、且つ、第1環状部材40のテーパ状周面43および第2環状部材53のテーパ状周面53Aのテーパ角θは45°以下に設定するのが好ましい。
【0025】
同構成によれば、付与される流体圧P1、流体圧P2が個別に作用する場合や、流体圧P1と流体圧P2とが同時に作用する場合に高い密封性能が保証されることはもちろん、流体圧P1と流体圧P2とが交互に作用する(交互作用)場合にも、流体圧P1(P2)から流体圧P2(P1)へ切り替わる瞬間に、第1環状部材40と第2環状部材50との食い込み現象によって塑性変形後の形状が安定に保持されるため、高い密封性能が確保できる。
【0026】
また、前記接触面の軸方向長さH1と、前記第1環状部材のテーパ状周面の軸方向長さH2とは、「(2/3)×H2≧H1≧(1/3)×H2」なる関係を有して、且つ、当接面43A(53A)のテーパ角θは30°以上60°以下であるのが一層好ましい。
【0027】
同構成によれば、付与される流体圧P1、流体圧P2が個別に作用する場合や、流体圧P1と流体圧P2とが同時に作用する場合に高い密封性能が保証されることは勿論、流体圧P1と流体圧P2とが交互に作用する(交互作用)場合にも、流体圧P1(P2)から流体圧P2(P1)へ切り替わる瞬間に、第1環状部材40と第2環状部材50との食い込み現象によって変形後の形状が安定に保持されるといった効果が得られるばかりでなく、長期使用に際しての形状の安定性や耐久性とが両立して図られ、もって、密封性能が一層向上する。
【0028】
なお、本実施の形態において説明した他、密封装置10は、各種態様で使用され得る。
【0029】
(第2の実施の形態)
例えば、図3(a)に示すように、軸部材20の外周面において軸方向に沿って2つの環状溝23,24を並設し、一方の環状溝23に密封装置10を装着し、他方の環状溝にゴム状弾性体(パッキン:本実施の形態ではゴムを使用)等、他の密封装置60を装着することもできる。このような構造によれば、密封装置10が、図中の左側から付与される流体圧(P10)をカットすることにより、他の密封装置60に対する負担を効果的に低減する。
【0030】
(第3の実施の形態)
また、図3(b)に示すように、軸部材20の外周面に設けられる一つの環状溝25に、密封装置10と、他の密封装置60とを並べて装着することもできる。このような構造によれば、密封装置10が、軸方向に沿って図中の左側から付与される流体圧(P10)をカットし、他の密封装置60に対する負担を効果的に低減する他、他の密封装置60のはみ出しを防止するバックアップリングとしての機能も果たす。
【0031】
(第4の実施の形態)
また、図3(c)に示すように、軸部材20の外周面において軸方向に沿って3つの環状溝26,27,28を並設し、両側の環状溝26,28に密封装置10を装着し、中央の環状溝27に他の環状密封装置60を装着することもできる。このような構造によれば、密封装置10が、軸方向に沿って何れの側から付与される流体圧(P30,P40)をもカットし、他の密封装置60に対する負担を効果的に低減する。
【0032】
(第5の実施の形態)
さらに、図3(d)に示すように、軸部材20の外周面に設けられる一つの環状溝29において、2つの密封装置10の間に他の密封装置60を挟持するように配置することもできる。このような構造によれば、密封装置10が、軸方向に沿って何れの側から付与される流体圧(P50,P60)をもカットすることにより、他の密封装置60に対する負担を効果的に低減する他、他の密封装置60のはみ出しを防止するバックアップリングとしての機能も果たす。
【0033】
なお、第1の実施の形態(図1、図2)、第2の実施の形態(図3(a))、第4の実施の形態(図3(c))のように、密封装置10と他の密封装置60とは、別個の環状溝に収容する方が、相互間の干渉による摩耗や変形によるシール性の低下を抑制するといった点では有利である。しかし、密封装置10及び他の密封装置60の装着スペースのコンパクト化を図るといった点では、第3の実施の形態(図3(b))や第5の実施の形態(図3(d))のように、一つの環状溝に密封装置10と他の密封装置60とを収容する構造に優位性が認められる。
【0034】
また、上記各実施の形態にかかる密封装置10は、軸方向に沿って、密封装置10自体に外部から流体圧が付与される場合、軸部材20と外郭部材30とが軸方向に沿って相対的に異なる運動する場合、軸部材20と外郭部材30とが軸周りの方向に沿って相対的に異なる回転運動をする場合、軸部材20又は外郭部材30が軸周りの方向に沿って他方の部材(20又は30)に対し揺動運動をする場合の何れにおいても、密封性能を発揮する。すなわち、軸部材20および外郭部材30の間隙において、軸方向に沿って一方向又は両方向から付与される流体圧、或いは両方から交互に付与される流体圧を、当該密封装置10の装着部位において装着初期から長期に亘り効果的に封止することができる。
【0035】
また、上記各実施の形態にかかる密封装置10は、軸部材20と、この軸部材20の外周面21を取り囲む筒状の内周面31を有する外郭部材30との隙間において、軸部材20の外周面21に形成された環状溝22に配置され、軸部材20および外郭部材30の隙間(環状の隙間)を封止するものであった。これに対し、本発明の密封装置は、軸部材と、この軸部材の外周面を取り囲む筒状の内周面を有する外郭部材との隙間において、外郭部材の内周面に形成された環状溝に配置され、軸部材および外郭部材の隙間(環状の隙間)を封止する実施の形態として具体化することも容易である。
【0036】
【発明の効果】
本発明によれば、当該密封装置の密封対象、すなわち軸部材および外郭部材を含む装置の使用初期の段階から、第1環状部材によるテーパ状周面の内縁部分の隙間への食い込みと、第2環状部材によるテーパ状周面の外縁部分への食い込みが発生する。この食い込み現象により、ゴムなどの低強度材が使用できないような環境下であれ、軸部材および前記外郭部材の環状隙間において、装着初期段階から長期に渡って高い密封性を安定して得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる密封装置の一部断面を示す略図。
【図2】同実施の形態にかかる密封装置の作用を示す略図。
【図3】他の実施の形態にかかる密封装置の作用を説明する略図。
【図4】従来の密封装置の一例について、その一部断面を示す略図。
【図5】従来の密封装置の一例について、その一部断面を示す略図。
【図6】従来の密封装置の一例について、その一部断面を示す略図。
【符号の説明】
10 密封装置
20 軸部材
21 外周面
22 環状溝
30 外郭部材
31 内周面
40 第1環状部材
41 外周面
42 内周面
43 テーパ状周面(テーパ面)
43A テーパ状周面の一部(当接面)
44 端面
50 第2環状部材
51 内周面
52 外周面
53 テーパ状周面
53A テーパ状周面の一部(当接面)
54 端面
H1 第1環状部材と第2環状部材の当接面の軸方向長さ
H2 第1環状部材のテーパ状周面の軸方向長さ
S1,S2 隙間
θ テーパ角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing device that exhibits sealing properties even in an environment such as a seal for a high-pressure fuel injection pump.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in a diesel engine, a gasoline engine, and the like, in-cylinder direct injection systems in which high-pressure fuel is directly injected into a cylinder and burned have been developed in order to improve performance such as low fuel consumption and high output.
[0003]
Such a direct injection type engine requires a high-pressure fuel pump for pressurizing the fuel to a high pressure, and the high-pressure fuel pump uses a reciprocating sealing device that requires high-pressure sealing. Have been.
[0004]
FIG. 4 shows a conventional sealing device. The sealing device 100 shown in FIG. 4 is used for sealing high-pressure fuel supplied from a high-pressure fuel pump used in an engine that performs fuel injection to a high-pressure side of the shaft 120 that reciprocates in the axial direction. Is what is done.
[0005]
As shown in FIG. 4, the sealing device 100 is housed in an annular groove 122 provided around an outer peripheral surface 121 of a shaft member 120, and a bottom surface 122 a of the annular groove 122 and a cylindrical inner periphery of the outer member 130. The gap between the two members 120 and 130 is sealed by the surface pressure generated by being crushed between the surfaces 131.
[0006]
Here, the shape and size of the sealing device 100 are determined so that the sealing device 100 generates a predetermined surface pressure on the shaft member (the bottom surface of the annular groove) and the outer member (the inner peripheral surface). It is designed with anticipation.
[0007]
In such a sealing device 100, there has been a problem that the crushing allowance is reduced (creep) due to long-term use, and the sealing performance is reduced.
[0008]
Further, as shown in FIG. 5, for example, a structure is also known in which a certain amount of movement is allowed in the sealing device 200 in a space S100 formed by the annular groove 122 of the shaft member 120 and the inner peripheral surface 131 of the outer member 130. Have been. In such a structure, when the fluid pressure P100 or the fluid pressure P200 is applied to the gap between the shaft member 120 and the outer member 130 along the axial direction, the sealing device 200 moves in the direction in which the fluid pressure is applied, The gap between the two members 120 and 130 is sealed (see FIGS. 5A and 5B). Generally, such a sealing structure is used to seal a gap between the shaft member 120 and the outer member 130 that move relatively differently along the axial direction. However, if this sealing structure is adopted under the condition that the fluid pressure is alternately applied from both sides along the axial direction of the shaft member 120 and the outer shell member 130, the leakage of the fluid when the direction in which the fluid pressure is applied is switched. (Refer to FIG. 5 (c). Note that the dotted line in the figure indicates the flow path of leakage that occurs when the applied fluid pressure switches from the P100 direction to the P200 direction.) That is, also in this case, it has been difficult to secure sufficient sealing performance.
[0009]
In order to solve such a problem, for example, Patent Document 1 discloses that two annular members having tapered surfaces along the axial direction are formed as shown in FIGS. 6 (a) and 6 (b). It describes a sealing device that is superimposed in an opposed state.
[0010]
In such a sealing device 300, when the fluid pressure P100 or the fluid pressure P200 is applied to the gap between the shaft member 120 and the outer member 130 along the axial direction, the annular members 340 and 350 configuring the sealing device are provided. On the other hand, when the forces F10 and F20 act in the radial direction of the shaft member 120, a part of one of the two annular members 340 and 350 constituting the sealing device 300 becomes partially outer with the other annular member 340. It bites into the inner peripheral surface 131 of the member 130 appropriately. Accordingly, a high surface pressure is generated between the sealing device 300 and the shaft member 120 (the bottom surface 122a of the annular groove 122), and between the sealing device 300 and the outer member 130 (the inner peripheral surface 131). High sealing performance is secured in the gap between the outer members 130.
[0011]
[Patent Document 1]
JP-A-63-008476 [Patent Document 2]
JP-A-56-101258 [0012]
[Problems to be solved by the invention]
By the way, in the sealing device 300 as shown in FIG. 6, the shaft member 120 and the shaft member 120 until the part of the one annular member 350 bites between the other annular member 340 and the inner peripheral surface 131 of the outer member 130. The outer member 130 needs to repeat the relative movement along the axial direction for a while. In other words, after the sealing device 300 is mounted in the gap between the shaft member 120 and the outer shell member 130, high sealing properties cannot be expected in the gap at an early stage of use. Further, since the annular member 350 has a predetermined squeeze allowance protruding from the annular groove 122, when the annular member 350 is used for a member other than the fixing seal member (for example, for rotation, reciprocating movement, and swinging), it is gradually used. Squeeze allowance is worn. As a result, it is not possible to ensure the sealing performance for a long time.
[0013]
The present invention has been made in view of such circumstances, and its purpose is to provide an annular gap even in an environment where low-strength materials such as rubber cannot be used, from the initial stage of mounting. Another object of the present invention is to provide a sealing device capable of guaranteeing high sealing performance over a long period of time.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is provided on one of the outer shell member and the shaft member so as to seal an annular gap between the outer shell member and a shaft member attached to a cylindrical hole of the outer shell member. A sealing device mounted in an annular groove, comprising: a first rigid member having a high rigidity; and a second rigid member having a high rigidity disposed in contact with the first annular member. In a contact portion with the second annular member, a gap is provided between an outer peripheral surface and a sealing surface of the first annular member and between an inner peripheral surface and a sealing surface of the second annular member. Make a summary.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to them unless otherwise specified. The materials, shapes, and the like of the members once described in the following description are the same as those in the first description unless otherwise specified.
[0016]
(First Embodiment)
FIG. 1 is a schematic view showing a partial cross section of a first preferred embodiment of a sealing device according to the present invention. That is, the sealing device 10 of the present embodiment is used, for example, in a sealing portion of a high-pressure fuel pump mounted on an internal combustion engine, and surrounds a shaft member 20 and an outer peripheral surface 21 of the shaft member 20 as shown in FIG. It is arranged in an annular groove 22 formed on the outer peripheral surface 21 of the shaft member 20 in a gap between the outer peripheral member 30 having a cylindrical inner peripheral surface 31.
[0017]
The sealing device 10 includes a first annular member 40 and a second annular member 50. The first annular member 40 has an inner peripheral surface 42, an outer peripheral surface 41, and a tapered peripheral surface 43. The second annular member 50 has an outer peripheral surface 52, an inner peripheral surface 51, and a tapered peripheral surface 53. A part (contact surface) 43A of the tapered peripheral surface 43 and a part (contact surface) 53A of the tapered peripheral surface 53 contact each other. The gap S1 is defined by the end surface 44 of the first annular member 40, the annular groove bottom 22a of the shaft member 20, and a part (a portion excluding the contact surface 53A) 53B of the tapered peripheral surface 53 of the second annular member 50. Are formed in the circumferential direction. Further, the end surface 54 of the second annular member 50, the inner peripheral surface 31 of the outer shell member 30, and a part (a portion excluding the contact surface 43 </ b> A) 43 </ b> B of the tapered peripheral surface 53 of the first annular member 40, A gap S2 is formed in the circumferential direction.
[0018]
The first annular member 40 and the second annular member 50 are formed of a highly rigid material whose main material is metal (for example, copper, aluminum, or the like) or resin (for example, PTFE, ETFE, PEEK, nylon, or the like). The hardness of these materials is preferably selected as appropriate according to the conditions of use (pressure, etc.) and the size used (dimensions of the annular groove and the annular member, the amount of the members overlapping each other in the axial direction, etc.).
[0019]
Here, as shown in FIGS. 2A, 2B, and 2C, the first annular member 40 or the second annular member 40 extends along the axial direction of the shaft member 20 (hereinafter, simply referred to as the axial direction). When the fluid pressure P1 or the fluid pressure P2, the fluid pressure P1 and the fluid pressure P2 alternately, or both the fluid pressure P1 and the fluid pressure P2 are applied to the annular member 50, the first annular member 40 and The second annular member 50 comes into contact with each of the tapered surfaces (contact surfaces) 43A and 53A and presses each other. Then, a force F1 is applied to the first annular member 40 toward the bottom surface 22a of the annular groove 22, and the first annular member 40 quickly bites (in the direction of arrow D1) into the gap S1 at the apex of the first annular member. In addition, a force F2 toward the inner peripheral surface 31 of the outer member 30 is applied to the second annular member 50, and the second annular member 50 is also quickly moved to the gap S2 at the apex portion (in the direction of arrow D2). Into).
[0020]
Therefore, from the initial stage of use, the first annular member 40 bites into the gap at the apex of the apex and the second annular member 50 bites into the apex of the apex. Therefore, high sealing performance can be secured in the annular gap between the shaft member 20 and the outer shell member 30 from the initial stage of use.
[0021]
Further, according to the sealing device 10, the sealing device 10 (combination of the annular members 40 and 50) itself is plastically deformed by such a biting phenomenon, so that when setting the shape and size of the sealing device 10, a crushing allowance is obtained. There is no need to provide Therefore, the sealability can be improved, and it can be used for a long period of time under all kinds of motion conditions that require low sliding resistance such as rotation, reciprocating motion, swinging, etc. become.
[0022]
Further, in the sealing device 10 according to the present embodiment, the shape and size of the axial section of the first annular member 40 are substantially the same as those obtained by rotating the axial section of the second annular member 50 by 180 degrees.
[0023]
For this reason, even when fluid pressure is applied to either of the first annular member 40 and the second annular member 50 along the axial direction, the same sealing performance is provided in the annular gap between the shaft member 20 and the outer member 30. Can be guaranteed.
[0024]
Here, the tapered peripheral surface 43 of the first annular member 40 and the tapered peripheral surface 53 of the second annular member 50 face each other to form a contact surface 43A (53A), and the contact surface 43A (53A). ) And the axial length H2 of the tapered peripheral surface 43 of the first annular member 40 have a relationship of “H1 ≧ (1 /) × H2”, and It is preferable that the taper angle θ of the tapered peripheral surface 43 of the annular member 40 and the tapered peripheral surface 53A of the second annular member 53 be set to 45 ° or less.
[0025]
According to the configuration, high sealing performance is ensured when the applied fluid pressures P1 and P2 act individually or when the fluid pressure P1 and the fluid pressure P2 act simultaneously. Even when the pressure P1 and the fluid pressure P2 act alternately (alternating action), at the moment when the fluid pressure is switched from the fluid pressure P1 (P2) to the fluid pressure P2 (P1), the first annular member 40 and the second annular member 50 Since the shape after the plastic deformation is stably held by the biting phenomenon of, high sealing performance can be secured.
[0026]
In addition, the axial length H1 of the contact surface and the axial length H2 of the tapered peripheral surface of the first annular member are represented by “(2/3) × H2 ≧ H1 ≧ (1/3) × H2 And the taper angle θ of the contact surface 43A (53A) is more preferably 30 ° or more and 60 ° or less.
[0027]
According to the configuration, it is possible to ensure a high sealing performance when the applied fluid pressure P1 and the fluid pressure P2 individually act on or when the fluid pressure P1 and the fluid pressure P2 act simultaneously. Even when the pressure P1 and the fluid pressure P2 act alternately (alternating action), at the moment when the fluid pressure is switched from the fluid pressure P1 (P2) to the fluid pressure P2 (P1), the first annular member 40 and the second annular member 50 In addition to the effect that the shape after deformation is stably maintained by the biting phenomenon, the shape stability and durability during long-term use are achieved at the same time, and the sealing performance is further improved. .
[0028]
In addition to the description in the present embodiment, the sealing device 10 can be used in various modes.
[0029]
(Second embodiment)
For example, as shown in FIG. 3A, two annular grooves 23 and 24 are arranged in the outer peripheral surface of the shaft member 20 along the axial direction, and the sealing device 10 is mounted on one of the annular grooves 23 and the other is installed. Another sealing device 60 such as a rubber-like elastic body (packing: rubber is used in the present embodiment) can be attached to the annular groove. According to such a structure, the sealing device 10 cuts the fluid pressure (P10) applied from the left side in the drawing, thereby effectively reducing the burden on the other sealing devices 60.
[0030]
(Third embodiment)
Further, as shown in FIG. 3B, the sealing device 10 and another sealing device 60 can be mounted side by side in one annular groove 25 provided on the outer peripheral surface of the shaft member 20. According to such a structure, the sealing device 10 cuts the fluid pressure (P10) applied from the left side in the figure along the axial direction, and effectively reduces the load on the other sealing devices 60. It also functions as a backup ring for preventing the other sealing device 60 from protruding.
[0031]
(Fourth embodiment)
As shown in FIG. 3 (c), three annular grooves 26, 27, 28 are provided along the axial direction on the outer peripheral surface of the shaft member 20, and the sealing device 10 is inserted into the annular grooves 26, 28 on both sides. It is also possible to mount another annular sealing device 60 in the central annular groove 27. According to such a structure, the sealing device 10 cuts the fluid pressure (P30, P40) applied from any side along the axial direction, and effectively reduces the burden on the other sealing devices 60. .
[0032]
(Fifth embodiment)
Further, as shown in FIG. 3D, in one annular groove 29 provided on the outer peripheral surface of the shaft member 20, another sealing device 60 may be arranged so as to be sandwiched between the two sealing devices 10. it can. According to such a structure, the sealing device 10 cuts the fluid pressure (P50, P60) applied from any side along the axial direction, thereby effectively reducing the burden on the other sealing devices 60. In addition to the reduction, the sealing device 60 also functions as a backup ring for preventing the sealing device 60 from protruding.
[0033]
Note that, as in the first embodiment (FIGS. 1 and 2), the second embodiment (FIG. 3A), and the fourth embodiment (FIG. 3C), the sealing device 10 It is more advantageous to house the sealing device 60 and the other sealing device 60 in separate annular grooves in terms of suppressing wear and deformation due to mutual interference and deterioration in sealing performance due to deformation. However, the third embodiment (FIG. 3 (b)) and the fifth embodiment (FIG. 3 (d)) in terms of making the mounting space of the sealing device 10 and the other sealing device 60 compact. As described above, the advantage that the structure in which the sealing device 10 and the other sealing device 60 are housed in one annular groove is recognized.
[0034]
Further, in the sealing device 10 according to each of the above-described embodiments, when a fluid pressure is externally applied to the sealing device 10 itself along the axial direction, the shaft member 20 and the outer shell member 30 move relative to each other along the axial direction. When the shaft member 20 and the outer member 30 make relatively different rotational movements along the direction around the axis, the shaft member 20 and the outer member 30 move in the other direction along the direction around the axis. The sealing performance is exhibited in any of the swinging motions with respect to the member (20 or 30). That is, in the gap between the shaft member 20 and the outer shell member 30, the fluid pressure applied from one direction or both directions along the axial direction, or the fluid pressure applied alternately from both, is mounted at the mounting site of the sealing device 10. It is possible to seal effectively from the beginning to the long term.
[0035]
In addition, the sealing device 10 according to each of the above-described embodiments is configured such that the gap between the shaft member 20 and the outer shell member 30 having the cylindrical inner circumferential surface 31 surrounding the outer circumferential surface 21 of the shaft member 20 is reduced. It is arranged in an annular groove 22 formed on the outer peripheral surface 21 and seals a gap (annular gap) between the shaft member 20 and the outer shell member 30. On the other hand, in the sealing device of the present invention, the annular groove formed in the inner peripheral surface of the outer member in the gap between the shaft member and the outer member having a cylindrical inner peripheral surface surrounding the outer peripheral surface of the shaft member. , And can easily be embodied as an embodiment for sealing the gap (annular gap) between the shaft member and the outer shell member.
[0036]
【The invention's effect】
According to the present invention, from the initial stage of use of the object to be sealed by the sealing device, that is, from the initial stage of use of the device including the shaft member and the outer shell member, the first annular member bites into the gap of the inner edge portion of the tapered peripheral surface, The annular member cuts into the outer edge of the tapered peripheral surface. Due to this biting phenomenon, even in an environment where a low-strength material such as rubber cannot be used, in the annular gap between the shaft member and the outer member, it is possible to stably obtain a high sealing property for a long period from the initial stage of mounting. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a partial cross section of a sealing device according to an embodiment of the present invention.
FIG. 2 is a schematic view showing the operation of the sealing device according to the embodiment;
FIG. 3 is a schematic diagram illustrating the operation of a sealing device according to another embodiment.
FIG. 4 is a schematic view showing a partial cross section of an example of a conventional sealing device.
FIG. 5 is a schematic view showing a partial cross section of an example of a conventional sealing device.
FIG. 6 is a schematic view showing a partial cross section of an example of a conventional sealing device.
[Explanation of symbols]
Reference Signs List 10 sealing device 20 shaft member 21 outer peripheral surface 22 annular groove 30 outer member 31 inner peripheral surface 40 first annular member 41 outer peripheral surface 42 inner peripheral surface 43 tapered peripheral surface (tapered surface)
43A Part of tapered peripheral surface (contact surface)
44 End surface 50 Second annular member 51 Inner peripheral surface 52 Outer peripheral surface 53 Tapered peripheral surface 53A Part of tapered peripheral surface (contact surface)
54 End surface H1 Axial length H2 of the contact surface between the first annular member and the second annular member H2 Axial length S1, S2 of the tapered peripheral surface of the first annular member Gap θ Taper angle

Claims (1)

外郭部材と該外郭部材の筒状孔に装着される軸部材との環状隙間を封止すべく、前記外郭部材及び軸部材の一方に設けられた環状溝に装着される密封装置であって、
高剛性の第1環状部材と、前記第1環状部材に接触配置される高剛性の第2環状部材と、を備えて、
前記第1環状部材と前記第2環状部材との接触部において、前記第1環状部材の外周面及び封止面の間と、前記第2環状部材の内周面及び封止面の間とに、隙間を有する
ことを特徴とする密封装置。
A sealing device mounted in an annular groove provided in one of the outer shell member and the shaft member to seal an annular gap between the outer shell member and a shaft member mounted in a cylindrical hole of the outer shell member,
A first annular member having high rigidity, and a second annular member having high rigidity disposed in contact with the first annular member,
At the contact portion between the first annular member and the second annular member, between the outer peripheral surface and the sealing surface of the first annular member and between the inner peripheral surface and the sealing surface of the second annular member. A sealing device having a gap.
JP2003013255A 2003-01-22 2003-01-22 Sealing device Expired - Fee Related JP4193498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013255A JP4193498B2 (en) 2003-01-22 2003-01-22 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013255A JP4193498B2 (en) 2003-01-22 2003-01-22 Sealing device

Publications (2)

Publication Number Publication Date
JP2004225778A true JP2004225778A (en) 2004-08-12
JP4193498B2 JP4193498B2 (en) 2008-12-10

Family

ID=32901635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013255A Expired - Fee Related JP4193498B2 (en) 2003-01-22 2003-01-22 Sealing device

Country Status (1)

Country Link
JP (1) JP4193498B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501804A (en) * 2006-08-25 2010-01-21 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Low friction constant bias packing
JP2010190314A (en) * 2009-02-18 2010-09-02 Nok Corp Sealing device
WO2014054473A1 (en) * 2012-10-03 2014-04-10 Nok株式会社 Sealing device
JP5556978B1 (en) * 2012-09-21 2014-07-23 Nok株式会社 Sealing device
WO2015133595A1 (en) * 2014-03-06 2015-09-11 Nok株式会社 Seal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115099B2 (en) * 2012-11-22 2017-04-19 Nok株式会社 Sealing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501804A (en) * 2006-08-25 2010-01-21 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Low friction constant bias packing
JP2010190314A (en) * 2009-02-18 2010-09-02 Nok Corp Sealing device
JP5556978B1 (en) * 2012-09-21 2014-07-23 Nok株式会社 Sealing device
WO2014054473A1 (en) * 2012-10-03 2014-04-10 Nok株式会社 Sealing device
JP5547354B1 (en) * 2012-10-03 2014-07-09 Nok株式会社 Sealing device
US9080672B2 (en) 2012-10-03 2015-07-14 Nok Corporation Sealing device
WO2015133595A1 (en) * 2014-03-06 2015-09-11 Nok株式会社 Seal device
CN106068415A (en) * 2014-03-06 2016-11-02 Nok株式会社 Sealing device
EP3115657A1 (en) * 2014-03-06 2017-01-11 NOK Corporation Seal device
EP3115657A4 (en) * 2014-03-06 2017-03-29 NOK Corporation Seal device
JPWO2015133595A1 (en) * 2014-03-06 2017-04-06 Nok株式会社 Sealing device
US10344865B2 (en) 2014-03-06 2019-07-09 Nok Corporation Sealing device

Also Published As

Publication number Publication date
JP4193498B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP6255142B2 (en) Sealing device
JPH0942463A (en) Sealing device
JP4853633B2 (en) Sealing device
JP2008267449A (en) Backup ring
JP2004225778A (en) Sealing unit
JP2007107571A (en) Sealing device
JP4253924B2 (en) Valve stem seal
JP2006300191A (en) Seal device
JP2002295689A (en) Sealing device
JP6031753B2 (en) Sealing device
JP4032730B2 (en) Sealing device
JP2003240126A (en) Seal ring
JP2005054827A (en) Sealing device
JP2004036711A (en) Sealing device
JP2006002768A (en) Hydraulic motor having propelling member held sealedly to relevant contacting surface by internal resilient means and capable of being drawn out and inserted
US10934970B2 (en) Crankshaft seal
JP4143786B2 (en) Sealing device
JP2005009584A (en) Sealing device
JP2007285428A (en) Oil seal
JP2005016627A (en) Sealing device
JP6458905B2 (en) Seal ring
JP2001304423A (en) Lip type seal for high pressure
JP2008169933A (en) Sealing device
JPH0996366A (en) Oil seal
JP2004169766A (en) Sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees