JP2004225403A - Uplift preventing device for building - Google Patents

Uplift preventing device for building Download PDF

Info

Publication number
JP2004225403A
JP2004225403A JP2003015362A JP2003015362A JP2004225403A JP 2004225403 A JP2004225403 A JP 2004225403A JP 2003015362 A JP2003015362 A JP 2003015362A JP 2003015362 A JP2003015362 A JP 2003015362A JP 2004225403 A JP2004225403 A JP 2004225403A
Authority
JP
Japan
Prior art keywords
building
connecting member
attached
universal joint
prevention device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015362A
Other languages
Japanese (ja)
Inventor
Kenji Sawada
研自 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2003015362A priority Critical patent/JP2004225403A/en
Publication of JP2004225403A publication Critical patent/JP2004225403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact uplift preventing device capable of positively preventing the lift of a base-isolated building from uplifting and having a small grounding area and few binding parts. <P>SOLUTION: A base plate 21A mounted with a first universal joint 22A is mounted to the lower part of an upper skeleton 11 of the base-isolated building 10, and a base plate 21B mounted with a second universal joint 22B is mounted to the upper part of a lower skeleton 12. The respective other end sides of arms 22a, 22b of the first and second universal joints 22A, 22B are mounted in a bent state to a third universal joint 22C provided with a pin of cruciform plane shape so that the extended direction of the arm 22a and the extended direction of the arm 22b form a dog legged shape. The uplift preventing device 20 of such constitution is mounted between laminated rubber 13 provided at the base-isolated building 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建物の浮き上がりを防止するための浮き上がり防止装置に関するもので、特に、下部構造物と上部構造物との間にゴム弾性体を備えた複数の積層ゴム支承が介挿された免震建物の、地震時における浮き上がりを防止するための浮き上がり防止装置に関する。
【0002】
【従来の技術】
免震建物の支承に多く用いられる積層ゴムは、一般に、圧縮には強いが引張りに対して弱いため、地震時に上記免震建物の浮き上がりが発生して、上記積層ゴムに大きな引き抜き力が生じる形状の免震建物には採用することができなかった。例えば、図7(a)に示すように、積層ゴム51を用いた免震建物50の塔状比(高さ/幅)が4程度以上のような場合には、図7(b)に示すように、地震時に上記免震建物50に転倒モーメントが作用して、上記免震建物50が浮き上がってしまう。そこで、その対策として、免震建物50の塔状比を4程度以下になるように構造計画を行い、引く抜き力が生じないようにしたり、免震装置として、図8に示すような、ローラ支承52(あるいは、滑り支承)を用いて免震建物50の固有周期を長期化することで地震時の水平力を抑え、引き抜き力が生じないようにする方法が考えられるが、これらの方法では、設計の自由度が極めて小さく、免震であるが故に免震建物の形状を制限せざるを得ないという欠点がある。
一方、図9(a),(b)に示すように、免震建物50が転倒しないことを条件に、多少の浮き上がりは許容する代わりに、上記積層ゴム51にダボピン51Pを設けて、上記積層ゴム51に水平力・圧縮力は伝達しても引張力は伝達しないようにする方法もある。しかし、この場合には、わずかな浮き上がり量に対しては対応可能であるが、大きな浮き上がりが発生した場合には上記ダボピン51Pが抜けてしまう恐れがある。すなわち、この方法では、積層ゴム51に引き抜き力が発生することは防止できるが、上記免震建物50の転倒は防止することができないだけでなく、浮き上がりが元に戻った時点で、上記免震建物50が元の形状に復帰するという保証ができない。
【0003】
そこで、従来は、上記積層ゴム51が配置された免震部の間に、図10(a)〜(c)に示すような、機械式浮き上がり防止装置60を取付けて免震建物50のある程度の浮き上がり力を負担するようにしている。この機械式浮き上がり防止装置60は、詳細には、門型に組上げられた鉄骨材から成る、ほぼ同型の上部部材61と下部部材62とを、上記上部部材61が上方に開き、上記下部部材62が下方に開くように配設するとともに、上記上部部材61と下部部材62のそれぞれの水平片(以下、横材という)61m,62mが互いに直交するように、かつ、上記下部部材の横材62mが上記上部部材の横材61mの上側になるように組み合わせたもので、上記上部部材61の垂直片(以下、縦材という)61nは上部躯体71の下面に、上記下部部材62の縦材62nは下部躯体72の上面に、それぞれアンカーボルトなどの緊結材により固定される。
【0004】
【発明が解決しようとする課題】
しかしながら、上記機械式浮き上がり防止装置60は、装置を構成する4つの縦材61n,62nをそれぞれ2ヵ所、合計4ヵ所において、それぞれ最大引き抜き力に対応する緊結材で固定する必要があることや、上記縦材61n,62nを最大引き抜き力に抵抗する部材で構成する必要があること、更には、引き抜き力が発生する水平力が加わった場合、装置剛性が大きく設計されていないと、積層ゴム51に引き抜き力が発生することなどから、装置が大型化してしまい、設置に大きな面積を必要とするといった問題点があった。
また、引き抜きに抵抗する部材(縦材)が4つ必要であり、また、躯体に緊結する箇所が4ヵ所となるなど、不経済であった。
また、上記装置は、上記上部部材61と下部部材62のそれぞれの横材61m,62m間に隙間を設けることにより、ある程度の引き抜きが起きるまでは、上記引き抜き力に対して抵抗がないようにしておく必要がある。これは、ある程度の引き抜きが起きるまでは、水平変位を拘束しないようにするためで、上記隙間が小さすぎると、上部部材61と下部部材62との間に水平変位を拘束する摩擦力が生じてしまい、積層ゴム51の免震効果が制限される。逆に、上記隙間が大きすぎると、積層ゴム51が浮き上がってしまうといった問題点がある。
【0005】
本発明は、従来の問題点に鑑みてなされたもので、免震建物の浮き上がりを確実に防止することのできる、設置面積が小さく、かつ、緊結箇所の少ないコンパクトな浮き上がり防止装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、鋭意検討を重ねた結果、浮き上がり防止装置としての必要な、▲1▼上部構造と下部構造の間に生じる、免震層の最大60cm程度の任意方向の水平変位に追従する、▲2▼浮き上がりが発生する最大水平変位時に、有効にその引き抜き力を負担する、▲3▼免震層(積層ゴム),上下構造体の平面的な多少のねじれに追従する、という機能を満たすためには、基本的に、3つのヒンジから構成され、これらが常に曲がった状態で存在し、地震時には引き抜きが生じる水平力が発生する免震層の大変形時に直線を構成して上記引き抜き力を負担する構成とすることにより、設置面積が小さく、かつ、緊結箇所の少ないコンパクトな構造であっても、免震建物の浮き上がりを確実に防止することができることを見いだし本発明に到ったものである。
すなわち、本発明の請求項1に記載の発明は、下部構造物と上部構造物との間に介挿される、建物の浮き上がりを防止するための浮き上がり防止装置であって、上部構造物に回転可能に取付けられた第1の連結部材と、下部構造物に回転可能に取付けられた第2の連結部材と、上記第1及び第2の連結部材を互いに回転可能に結合する結合部材とを備えたことを特徴とするものである。
また、請求項2に記載の発明は、下部構造物と上部構造物との間にゴム弾性体を備えた複数の積層ゴム支承が介挿された免震建物の浮き上がりを防止するための浮き上がり防止装置であって、上部構造物に回転可能に取付けられた第1の連結部材と、下部構造物に回転可能に取付けられた第2の連結部材と、上記第1及び第2の連結部材を互いに回転可能に結合する結合部材とを備えたことを特徴とするものである。
【0007】
請求項3に記載の免震建物の浮き上がり防止装置は、上記第1及び第2の連結部材と上記結合部材とを鎖体から構成したものである。
また、請求項4に記載の免震建物の浮き上がり防止装置は、上部構造物と第1の連結部材、下部構造物と第2の連結部材、及び、上記結合部材とを、それぞれ、球軸受けで連結したものである。
【0008】
請求項5に記載の免震建物の浮き上がり防止装置は、上部構造物と下部構造物とに、それぞれ、ユニバーサルジョイントを構成するピンを装着したベースプレートを取付けるとともに、一端が上記ピンの両端部に取付けられた第1及び第2の連結部材を構成するアームのそれぞれの他端側を、十字型の平面形状を有するピンを備えたユニバーサルジョイントの上記各ピンに取付けたものである。
請求項6に記載の免震建物の浮き上がり防止装置は、上記第1の連結部材の延長方向と第2の連結部材とをくの字型に屈曲させた状態で結合したものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本発明の一実施の形態を示す図で、同図において、10は上部躯体11と下部躯体12との間に、複数の平板状のゴム弾性体と複数の鋼板とを上下方向に交互に積層して成る積層ゴム13が複数個(図では、1個のみ示した)配置された免震建物、20は上記積層ゴム13間に取付けられた上記免震建物10の浮き上がり防止装置で、この浮き上がり防止装置20は、上記上部躯体11の下部と下部躯体12の上部とにそれぞれ取付けられたベースプレート21A,21Bと、このベースプレート21A,21B上にそれぞれ装着された第1及び第2のユニバーサルジョイント22A,22Bと、この第1及び第2のユニバーサルジョイント22A,22Bのアーム22a,22bをアームとする第3のユニバーサルジョイント22Cとから構成される。
詳細には、上記ベースプレート21Aは、図2に示すように、水平板21mとこの水平板21mから上方に突出する2つの取付板21n,21nとから成り、上記水平板21mが上部躯体11の下部に複数本のアンカーボルト23により緊結される。ベースプレート21Bは上記ベースプレート21Aと同一構成であり、上記2枚のベースプレート21A,21Bは、互いに対向するように、上部躯体11の下部と下部躯体12の上部に緊結される。このベースプレート21A,21Bの互いに対向する面には、それぞれ、ユニバーサルジョイント22A,22Bを構成する十字型のピン22Pが装着される。
【0010】
図3は、上記浮き上がり防止装置20の詳細を示す図で、上記ベースプレート21Aに装着された十字型のピンの、一方のピン22kの両端側には、第1のユニバーサルジョイント22Aのアーム22a,22aの一端側がそれぞれ取付けられ、上記ベースプレート21Bに装着された十字型のピンの、上記ピン22kの延長方向と直交する方向に延長するピン22tには、第2のユニバーサルジョイント22Bのアーム22b,22bの一端側がそれぞれ取付けられる。そして、上記アーム22a,22a及び上記アーム22b,22bの他端側は、それぞれ、上記第3のユニバーサルジョイント22Cの十字型のピンの、上記ピン22k,22tに対応するピン22K,22Tにそれぞれ取付けられる。
これにより、上部躯体11の下部に回転可能に取付けられた第1の連結部材である上記アーム22a,22aと、下部躯体12の上部に回転可能に取付けられた第2の連結部材である上記アーム22b,22bとが、上記第3のユニバーサルジョイント22Cにより、互いに回転可能に結合されたことになる。
あるいは、それぞれの一端が上記第3のユニバーサルジョイント22Cにより、互いに回転可能に結合されたアーム22a,22a及びアーム22b,22bのそれぞれの他端部が、上部躯体11の下部及び下部躯体12の上部にそれぞれ回転可能に取付けられたことになる。
【0011】
このとき、上記アーム22a,22aと、アーム22b,22bとを、予め計算された浮き上がりが発生すると思われる水平変形時(以下、浮き上がり発生水平変形という)に直線を構成するように、くの字型に屈曲させた状態で連結し設置する。これにより、上部躯体11が下部躯体12に対して多少の鉛直変位(クリープによる縮みや温度変化による伸縮)にも追従できる。
また、上部躯体11が下部躯体12に対して上記水平方向に変位した場合には、図4に示すように、上記アーム22aの上部躯体11側の端部221は、上記アーム22bの下部躯体12側の端部222を頂点とする円錐Vの底面Vs上を抵抗なく移動し、そして、浮き上がり発生水平変形(例えば、最大60cm程度)に達した時点でアーム22aとアーム22bとは一直線状になる。これにより、本例の浮き上がり防止装置20は、免震層である積層ゴム13の、例えば、最大60cm程度の水平変位に追従するとともに、その時点で浮き上がり力に抵抗して、積層ゴム13に作用する引き抜き力を有効に負担する。
【0012】
したがって、上記図3に示すように、浮き上がり防止装置20を、上記アーム22a,22aと、アーム22b,22bとをくの字型に屈曲させた状態で連結することにより、地震時における水平方向の変位に追従することができるとともに、最大水平変位において発生する大きな浮き上がり力に対しても、図5に示すように、上記アーム22aとアーム22bとは一直線状になって、積層ゴム13に作用する引き抜き力を負担することができる。更には、上記のような構成を採ることにより、積層ゴム13、及び、上部躯体11−下部躯体12間に平面的な多少のねじれが生じた場合でもこれに追従することができる。
【0013】
このように、本実施の形態によれば、免震建物10の上部躯体11の下部に第1のユニバーサルジョイント22Aのピン22kを装着したベースプレート21Aを取付け、下部躯体12の上部に第2のユニバーサルジョイント22Bのピン22tを装着したベースプレート21Bを取付けるとともに、一端が上記ピン22k,22tの両端部に取付けられた上記第1及び第2のユニバーサルジョイント22A,22Bの各アーム22a,22bのそれぞれの他端側を、十字型の平面形状を有するピン22K,22Tを備えた第3のユニバーサルジョイント22Cの上記各ピン22K,22Tに、上記第1のユニバーサルジョイント22Aのアーム22aの延長方向と上記第2のユニバーサルジョイント22Bのアーム22bとをくの字型に屈曲させた状態で取付けた構成の浮き上がり防止装置20を、免震建物10に設けられた積層ゴム13間に取付け、地震時には、上記アーム22a,22bが伸び切って、上記積層ゴム13に作用する引き抜き力を負担するようにしたので、設置面積が小さく、かつ、緊結箇所の少ないコンパクトな構造であっても、上記免震建物10の浮き上がりを確実に防止することができる。
【0014】
また、本発明による浮き上がり防止装置20は、免震層である積層ゴム13の大変形時には浮き上がりを止めると同時に水平力も拘束するが、一般的に、浮き上がりが生じるのは、免震層に許容される最大変形時に近いため、変形速度は極めて小さい。したがって、水平変形を拘束することによる衝撃力は極めて小さいので、上部構造に構造上のダメージを与えることはない。
また、浮き上がり防止装置20は、免震建物10の大変形時における浮き上がりを防止する装置であるので、積層ゴムについての引張方向で10mm程度の誤差は許容できることから、浮き上がり防止装置20の精度としては数mm程度の誤差は許容できる。したがって、回転部などに高価な部品を使う必要がないという利点を有する。
また、上記アーム22a,22b及びユニバーサルジョイント22A,22Bに大きな引張力が作用するのは、アーム22a,22bが伸び切った時点であり、また、ユニバーサルジョイント22A,22B,22Cが動くのは、浮き上がり防止装置20が伸縮する時点であり、その時にはアーム22a,22bには装置の自重以外はあまり力がかからないので、耐久性にも優れている。
【0015】
なお、上記実施の形態では、アーム22a,22bが常に曲がった状態で結合された3個のヒンジ(ユニバーサルジョイント22A,22B,22C)を用いた場合について説明したが、これに限るものではなく、例えば、図6(a)に示すように、第1の腕部31と第2の腕部32とを、3個の玉軸受け33,34,35を用いて結合して、ヒンジを構成するようにしてもよい。
あるいは、図6(b)に示すように、太い鎖体41の一端を上部躯体11の下部に固定されたリング部材42に通して回転可能とするとともに、上記鎖体41と同じ鎖体43の一端を下部躯体12の上部に固定されたリング部材44に通して回転可能とし、上記鎖体41,43の他端側同士を回転可能に結合するようにしてもよい。
また、上記例では、積層ゴム支承を備えた免震建物に浮き上がり防止装置20を適用した場合について説明したが、これに限るものではなく、例えば、すべり支承を備えた免震建物においても、本装置を引き抜き防止装置として用いることができる。
【0016】
【発明の効果】
以上説明したように、本発明によれば、上部構造物に第1の連結部材を回転可能に取付けるとともに、下部構造物に第2の連結部材を回転可能に取付け、更に、上記第1の連結部材と上記第2の連結部材とを互いに回転可能に結合する構成の浮き上がり防止装置を用いて、免震建物の浮き上がりを防止するようにしたので、設置面積が小さく、かつ、緊結箇所の少ないコンパクトな構成で、上記免震建物の浮き上がりを確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す図である。
【図2】本実施の形態に係るベースプレートの構成を示す図である。
【図3】本実施の形態に係る浮き上がり防止装置の詳細を示す図である。
【図4】本実施の形態に係る浮き上がり防止装置の動作を示す図である。
【図5】最大水平変位点における浮き上がり防止装置を示す図である。
【図6】本発明による浮き上がり防止装置の他の構成を示す図である。
【図7】従来の免震建物を示す図である。
【図8】従来の免震建物の他の例を示す図である。
【図9】従来の免震建物の他の例を示す図である。
【図10】従来の機械式浮き上がり防止装置の構成を示す図である。
【符号の説明】
10 免震建物、11 上部躯体、12 下部躯体、13 積層ゴム、
20 浮き上がり防止装置、21A,21B ベースプレート、21m 水平板、21n 取付板、22A,22B,22C ユニバーサルジョイント、
22a,22b アーム、22P 十字型のピン、
22k,22K,22t,22T ピン、23 アンカーボルト。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for preventing a building from being lifted, and more particularly, to a seismic isolation device in which a plurality of laminated rubber bearings having a rubber elastic body are interposed between a lower structure and an upper structure. The present invention relates to a device for preventing a building from rising during an earthquake.
[0002]
[Prior art]
In general, laminated rubber, which is often used to support seismically isolated buildings, is strong in compression but weak in tension, so the seismic isolated building rises during an earthquake, causing a large pull-out force in the laminated rubber. Could not be adopted for seismic isolation buildings. For example, as shown in FIG. 7A, when the tower-like ratio (height / width) of the base-isolated building 50 using the laminated rubber 51 is about 4 or more, FIG. As described above, the overturning moment acts on the seismic isolation building 50 at the time of the earthquake, and the seismic isolation building 50 rises. Therefore, as a countermeasure, a structural plan is made so that the tower ratio of the seismic isolation building 50 is about 4 or less so that no pull-out force is generated, or as a seismic isolation device, a roller as shown in FIG. There is a method in which the natural force of the base-isolated building 50 is extended by using the bearing 52 (or the sliding bearing) to suppress the horizontal force at the time of the earthquake and prevent the pull-out force from being generated. However, there is a drawback that the degree of freedom of design is extremely small and the shape of the base-isolated building must be limited because of seismic isolation.
On the other hand, as shown in FIGS. 9A and 9B, on the condition that the base-isolated building 50 does not fall, instead of allowing a slight lifting, the laminated rubber 51 is provided with a dowel pin 51P and the laminated rubber 51 is provided. There is also a method in which the horizontal force / compression force is transmitted to the rubber 51 but the tension force is not transmitted. However, in this case, it is possible to cope with a slight lifting amount, but when a large lifting occurs, the dowel pin 51P may come off. That is, in this method, it is possible to prevent a pull-out force from being generated in the laminated rubber 51, but it is not possible to prevent the seismic isolation building 50 from falling down, and it is also necessary to set the seismic isolation There is no guarantee that the building 50 will return to its original shape.
[0003]
Therefore, conventionally, a mechanical lifting prevention device 60 as shown in FIGS. 10A to 10C is attached between the seismic isolation portions where the laminated rubber 51 is arranged, and a certain amount of the seismic isolation building 50 is provided. They try to bear the lifting power. More specifically, the mechanical lifting prevention device 60 is configured such that the upper member 61 and the lower member 62, which are made of a steel frame material assembled in a gate shape, are opened upward, and the lower member 62 is opened. Are arranged so as to open downward, and the horizontal pieces (hereinafter referred to as horizontal members) 61m and 62m of the upper member 61 and the lower member 62 are orthogonal to each other, and the horizontal member 62m of the lower member is provided. Are arranged above the horizontal member 61m of the upper member, and a vertical piece (hereinafter, referred to as a vertical member) 61n of the upper member 61 is provided on a lower surface of the upper body 71 and a vertical member 62n of the lower member 62. Are fixed to the upper surface of the lower frame 72 by binding materials such as anchor bolts.
[0004]
[Problems to be solved by the invention]
However, in the mechanical lifting prevention device 60, it is necessary to fix the four vertical members 61n and 62n constituting the device at two locations, that is, at a total of four locations, with a binding material corresponding to the maximum pulling force. The vertical members 61n and 62n need to be formed of members that resist the maximum pulling force. Further, when a horizontal force that generates the pulling force is applied, if the rigidity of the device is not designed to be large, the laminated rubber 51 In addition, the drawback force is generated, so that the size of the apparatus is increased and a large area is required for installation.
In addition, four members (vertical members) that resist pulling out are required, and there are four places that are tied to the frame, which is uneconomical.
In addition, the above-described device provides a gap between the horizontal members 61m and 62m of the upper member 61 and the lower member 62 so that there is no resistance to the pulling force until a certain amount of pulling occurs. Need to be kept. This is to prevent the horizontal displacement from being restrained until a certain degree of withdrawal occurs. If the gap is too small, a frictional force is generated between the upper member 61 and the lower member 62 to restrain the horizontal displacement. As a result, the seismic isolation effect of the laminated rubber 51 is limited. Conversely, if the gap is too large, there is a problem that the laminated rubber 51 rises.
[0005]
The present invention has been made in view of the conventional problems, and provides a compact floating prevention device that can surely prevent the floating of a seismic isolation building, has a small installation area, and has few binding points. With the goal.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has made intensive studies, and as a result, (1) follows the horizontal displacement of the seismic isolation layer in any direction of up to about 60 cm generated between the upper structure and the lower structure, which is necessary as a device for preventing lifting. (2) Satisfies the function of effectively bearing the pull-out force at the time of maximum horizontal displacement when lifting occurs, and (3) Following the seismic isolation layer (laminated rubber) and the flat twisting of the upper and lower structures. Basically, it consists of three hinges, which are always in a bent state, and which form a straight line at the time of large deformation of the seismic isolation layer, where horizontal force occurs when an earthquake occurs. The present invention has been found to be able to reliably prevent the seismic isolation building from rising even with a compact structure having a small installation area and few binding points by adopting a configuration that bears Those were.
That is, the invention according to claim 1 of the present invention is a lifting prevention device inserted between a lower structure and an upper structure for preventing the building from rising, and is rotatable with respect to the upper structure. A first connecting member attached to the lower structure, a second connecting member rotatably attached to the lower structure, and a connecting member for rotatably connecting the first and second connecting members to each other. It is characterized by the following.
According to a second aspect of the present invention, there is provided a lift prevention device for preventing a base-isolated building having a plurality of laminated rubber bearings provided with rubber elastic bodies between a lower structure and an upper structure from rising. An apparatus, comprising: a first connecting member rotatably mounted on an upper structure; a second connecting member rotatably mounted on a lower structure; and the first and second connecting members. And a coupling member rotatably coupled.
[0007]
According to a third aspect of the present invention, the first and second connecting members and the connecting member are formed of a chain.
In addition, in the device for preventing a seismic isolation building from rising according to claim 4, the upper structure and the first connecting member, the lower structure and the second connecting member, and the connecting member are each formed by a ball bearing. It is a concatenation.
[0008]
The device for preventing a seismic isolation building from rising according to claim 5, wherein a base plate on which a pin constituting a universal joint is mounted is mounted on each of the upper structure and the lower structure, and one end is mounted on both ends of the pin. The other ends of the arms constituting the first and second connecting members are attached to the pins of a universal joint having pins having a cross-shaped planar shape.
According to a sixth aspect of the present invention, there is provided a device for preventing a seismic isolation building from being lifted, wherein the extending direction of the first connecting member and the second connecting member are connected in a bent state in a dogleg shape.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a plurality of flat rubber elastic bodies and a plurality of steel plates between an upper frame 11 and a lower frame 12 in the vertical direction. A seismic isolation building in which a plurality of laminated rubbers 13 (only one is shown in the figure) is alternately laminated, and 20 is a device for preventing the seismic isolated building 10 from being lifted between the laminated rubbers 13 The lifting prevention device 20 includes base plates 21A and 21B attached to a lower portion of the upper skeleton 11 and an upper portion of the lower skeleton 12, respectively, and first and second mounting devices mounted on the base plates 21A and 21B, respectively. Universal joints 22A and 22B and a third universal joint 22 having arms 22a and 22b of the first and second universal joints 22A and 22B as arms. Composed of a.
Specifically, as shown in FIG. 2, the base plate 21A includes a horizontal plate 21m and two mounting plates 21n, 21n projecting upward from the horizontal plate 21m. Are tightened by a plurality of anchor bolts 23. The base plate 21B has the same configuration as the base plate 21A, and the two base plates 21A and 21B are fastened to the lower part of the upper body 11 and the upper part of the lower body 12 so as to face each other. Cross-shaped pins 22P constituting universal joints 22A and 22B are mounted on surfaces of the base plates 21A and 21B facing each other.
[0010]
FIG. 3 is a view showing the details of the lifting prevention device 20. Arms 22a, 22a of a first universal joint 22A are provided at both ends of one pin 22k of a cross-shaped pin mounted on the base plate 21A. Of the cross-shaped pin attached to the base plate 21B and extending to a direction orthogonal to the direction in which the pin 22k extends, is attached to the arm 22b of the second universal joint 22B. One end side is attached respectively. The other ends of the arms 22a, 22a and the arms 22b, 22b are respectively attached to pins 22K, 22T of the cross-shaped pins of the third universal joint 22C corresponding to the pins 22k, 22t, respectively. Can be
Thus, the arms 22a, 22a, which are first connecting members rotatably attached to the lower part of the upper skeleton 11, and the arms, which are second connecting members rotatably mounted to the upper part of the lower skeleton 12. 22b, 22b are rotatably connected to each other by the third universal joint 22C.
Alternatively, the other ends of the arms 22a and 22a and the arms 22b and 22b rotatably connected to each other by the third universal joint 22C are connected to the lower part of the upper body 11 and the upper part of the lower body 12 respectively. Respectively, so that they are rotatable.
[0011]
At this time, the arms 22a, 22a and the arms 22b, 22b are shaped like a letter so that they form a straight line at the time of horizontal deformation in which a pre-calculated lifting is considered to occur (hereinafter referred to as “lifting horizontal deformation”). Connect and install in a state of being bent into a mold. Thereby, the upper skeleton 11 can also follow a slight vertical displacement (shrinkage due to creep or expansion and contraction due to temperature change) with respect to the lower skeleton 12.
When the upper frame 11 is displaced in the horizontal direction with respect to the lower frame 12, as shown in FIG. 4, the end 221 of the arm 22a on the upper frame 11 side is connected to the lower frame 12 of the arm 22b. The arm 22a and the arm 22b move on the bottom surface Vs of the cone V having the side end 222 as the apex without any resistance, and when reaching the horizontal deformation (for example, up to about 60 cm) at which the floating occurs, the arms 22a and 22b are linear. . As a result, the lifting prevention device 20 of the present example follows the horizontal displacement of the laminated rubber 13 as the seismic isolation layer, for example, up to about 60 cm, and resists the lifting force at that time, and acts on the laminated rubber 13. To effectively bear the pulling force.
[0012]
Therefore, as shown in FIG. 3, the lifting prevention device 20 is connected in a state where the arms 22a, 22a and the arms 22b, 22b are bent in a U-shape, so that the device can be used in a horizontal direction during an earthquake. As shown in FIG. 5, the arm 22a and the arm 22b are aligned with each other and act on the laminated rubber 13 against a large lifting force generated at the maximum horizontal displacement. It can bear the pull-out force. Furthermore, by adopting the above-described configuration, even when a slight twist occurs in the plane between the laminated rubber 13 and the upper skeleton 11 and the lower skeleton 12, it can be followed.
[0013]
As described above, according to the present embodiment, the base plate 21A to which the pin 22k of the first universal joint 22A is attached is attached to the lower part of the upper body 11 of the base-isolated building 10, and the second universal The base plate 21B to which the pin 22t of the joint 22B is attached is attached, and one end of each of the arms 22a and 22b of the first and second universal joints 22A and 22B having one end attached to both ends of the pins 22k and 22t. The end side is connected to the extension direction of the arm 22a of the first universal joint 22A with the extension direction of the arm 22a of the first universal joint 22A with the pins 22K and 22T of the third universal joint 22C having the pins 22K and 22T having a cross-shaped planar shape. Arm 22b of the universal joint 22B A lifting prevention device 20 having a structure mounted in a state of being attached is attached between laminated rubbers 13 provided in the seismic isolation building 10, and in the event of an earthquake, the arms 22 a and 22 b extend completely and pull out acting on the laminated rubber 13. Since the force is borne, the floating of the seismic isolation building 10 can be reliably prevented even in a compact structure having a small installation area and few binding points.
[0014]
In addition, the lifting prevention device 20 according to the present invention stops lifting when the laminated rubber 13 which is the seismic isolation layer undergoes large deformation, and simultaneously restrains the horizontal force. However, in general, the occurrence of the lifting is allowed in the seismic isolation layer. Since the maximum deformation time is close, the deformation speed is extremely low. Therefore, since the impact force due to restraining the horizontal deformation is extremely small, no structural damage is given to the upper structure.
In addition, since the lifting prevention device 20 is a device that prevents lifting when the seismic isolation building 10 undergoes large deformation, an error of about 10 mm in the tensile direction of the laminated rubber can be tolerated. An error of about several mm is acceptable. Therefore, there is an advantage that it is not necessary to use expensive parts for the rotating part and the like.
A large tensile force acts on the arms 22a and 22b and the universal joints 22A and 22B when the arms 22a and 22b are fully extended, and the movement of the universal joints 22A, 22B and 22C is caused by lifting. This is a point in time when the prevention device 20 expands and contracts. At that time, the arms 22a and 22b do not exert much force other than the own weight of the device, so that the durability is excellent.
[0015]
In the above embodiment, a case has been described in which three hinges (universal joints 22A, 22B, 22C) in which the arms 22a, 22b are always bent are used, but the present invention is not limited to this. For example, as shown in FIG. 6A, the first arm 31 and the second arm 32 are connected using three ball bearings 33, 34, 35 to form a hinge. It may be.
Alternatively, as shown in FIG. 6B, one end of the thick chain 41 is passed through a ring member 42 fixed to the lower part of the upper frame 11 so as to be rotatable. One end may be rotatable through a ring member 44 fixed to the upper part of the lower frame 12, and the other ends of the chain members 41 and 43 may be rotatably coupled to each other.
Further, in the above example, the case where the lifting prevention device 20 is applied to the seismic isolation building having the laminated rubber bearing is described. However, the present invention is not limited to this. The device can be used as a pull-out prevention device.
[0016]
【The invention's effect】
As described above, according to the present invention, the first connecting member is rotatably attached to the upper structure, and the second connecting member is rotatably mounted to the lower structure. Since the lifting of the seismically isolated building is prevented by using a lifting prevention device having a structure in which the member and the second connecting member are rotatably connected to each other, the installation area is small, and a compact portion with few binding points is used. With such a configuration, it is possible to reliably prevent the seismic isolation building from being lifted.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a base plate according to the present embodiment.
FIG. 3 is a diagram showing details of a lifting prevention device according to the present embodiment.
FIG. 4 is a diagram showing the operation of the lifting prevention device according to the present embodiment.
FIG. 5 is a diagram showing a lifting prevention device at a maximum horizontal displacement point.
FIG. 6 is a diagram showing another configuration of the lifting prevention device according to the present invention.
FIG. 7 is a diagram showing a conventional seismic isolation building.
FIG. 8 is a diagram showing another example of a conventional base-isolated building.
FIG. 9 is a diagram showing another example of a conventional base-isolated building.
FIG. 10 is a view showing a configuration of a conventional mechanical lifting prevention device.
[Explanation of symbols]
10 seismic isolation building, 11 upper frame, 12 lower frame, 13 laminated rubber,
20 Lift prevention device, 21A, 21B base plate, 21m horizontal plate, 21n mounting plate, 22A, 22B, 22C universal joint,
22a, 22b arm, 22P cross-shaped pin,
22k, 22K, 22t, 22T pins, 23 anchor bolts.

Claims (6)

下部構造物と上部構造物との間に介挿される、建物の浮き上がりを防止するための浮き上がり防止装置であって、上部構造物に回転可能に取付けられた第1の連結部材と、下部構造物に回転可能に取付けられた第2の連結部材と、上記第1及び第2の連結部材を互いに回転可能に結合する結合部材とを備えたことを特徴とする建物の浮き上がり防止装置。What is claimed is: 1. A lifting prevention device interposed between a lower structure and an upper structure for preventing a building from floating, comprising: a first connecting member rotatably attached to the upper structure; and a lower structure. And a connecting member rotatably connecting the first and second connecting members to each other. 2. An apparatus for preventing lifting of a building, comprising: 下部構造物と上部構造物との間にゴム弾性体を備えた複数の積層ゴム支承が介挿された免震建物の浮き上がりを防止するための浮き上がり防止装置であって、上部構造物に回転可能に取付けられた第1の連結部材と、下部構造物に回転可能に取付けられた第2の連結部材と、上記第1及び第2の連結部材を互いに回転可能に結合する結合部材とを備えたことを特徴とする建物の浮き上がり防止装置。An anti-lift device for preventing a seismic isolated building from having a plurality of laminated rubber bearings with rubber elastic bodies interposed between the lower structure and the upper structure, which is rotatable with the upper structure. A first connecting member attached to the lower structure, a second connecting member rotatably attached to the lower structure, and a connecting member for rotatably connecting the first and second connecting members to each other. A device for preventing a building from being lifted. 上記第1及び第2の連結部材と上記結合部材とを鎖体から構成したことを特徴とする請求項1または請求項2に記載の建物の浮き上がり防止装置。3. The device according to claim 1, wherein the first and second connecting members and the connecting member are formed of a chain. 上部構造物と第1の連結部材、下部構造物と第2の連結部材、及び、上記結合部材とを、それぞれ、球軸受けで連結したことを特徴とする請求項1または請求項2に記載の建物の浮き上がり防止装置。The upper structure and the first connecting member, the lower structure and the second connecting member, and the connecting member are connected to each other by a ball bearing, respectively. Prevention device for building lift. 上部構造物と下部構造物とに、それぞれ、ユニバーサルジョイントを構成するピンを装着したベースプレートを取付けるとともに、一端が上記ピンの両端部に取付けられた第1及び第2の連結部材を構成するアームのそれぞれの他端側を、十字型の平面形状を有するピンを備えたユニバーサルジョイントの上記各ピンに取付けて成ることを特徴とする請求項1または請求項2に記載の建物の浮き上がり防止装置。A base plate on which a pin constituting a universal joint is mounted is attached to each of the upper structure and the lower structure, and one end of each of arms forming first and second connecting members attached to both ends of the pin. 3. The device according to claim 1, wherein the other end is attached to each of the pins of a universal joint having a pin having a cross-shaped planar shape. 4. 上記第1の連結部材の延長方向と第2の連結部材とをくの字型に屈曲させた状態で結合したことを特徴とする請求項1〜請求項5のいずれかに記載の建物の浮き上がり防止装置。The rising of the building according to any one of claims 1 to 5, wherein the extension direction of the first connection member and the second connection member are connected in a state of being bent in a dogleg shape. Prevention device.
JP2003015362A 2003-01-23 2003-01-23 Uplift preventing device for building Pending JP2004225403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015362A JP2004225403A (en) 2003-01-23 2003-01-23 Uplift preventing device for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015362A JP2004225403A (en) 2003-01-23 2003-01-23 Uplift preventing device for building

Publications (1)

Publication Number Publication Date
JP2004225403A true JP2004225403A (en) 2004-08-12

Family

ID=32903139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015362A Pending JP2004225403A (en) 2003-01-23 2003-01-23 Uplift preventing device for building

Country Status (1)

Country Link
JP (1) JP2004225403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097299A (en) * 2007-10-19 2009-05-07 Yokohama Rubber Co Ltd:The Apparatus for stopping lift force
JP2014218795A (en) * 2013-05-02 2014-11-20 ジェイアール東日本コンサルタンツ株式会社 Earthquake-resistant support section structure
JP2015158086A (en) * 2014-02-24 2015-09-03 株式会社竹中工務店 base-isolated structure
CN115450330A (en) * 2022-09-28 2022-12-09 苏州海德新材料科技股份有限公司 Shock insulation hinged tensile support

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097299A (en) * 2007-10-19 2009-05-07 Yokohama Rubber Co Ltd:The Apparatus for stopping lift force
JP2014218795A (en) * 2013-05-02 2014-11-20 ジェイアール東日本コンサルタンツ株式会社 Earthquake-resistant support section structure
JP2015158086A (en) * 2014-02-24 2015-09-03 株式会社竹中工務店 base-isolated structure
CN115450330A (en) * 2022-09-28 2022-12-09 苏州海德新材料科技股份有限公司 Shock insulation hinged tensile support
CN115450330B (en) * 2022-09-28 2023-09-05 苏州海德新材料科技股份有限公司 Shock insulation articulated tensile support

Similar Documents

Publication Publication Date Title
KR200473182Y1 (en) Friction pendulum bearing
JP2004225403A (en) Uplift preventing device for building
JP2017503943A (en) Elastic bearing
JP4706958B2 (en) Seismic isolation structure
JP3181060U (en) Tank anti-skid device
JP2012207395A (en) Base isolation bearing device using high-damping rubber based laminated rubber bearing
JP6002883B2 (en) Seismic isolation building
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
JP2004190254A (en) Base isolating device for bridge pier, and bridge equipped with the same
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JP5497574B2 (en) Connecting bridge support structure
JP2013092244A (en) Fall prevention device
JP3825923B2 (en) Seismic isolation device
JP3785593B2 (en) Rubber bearing device for bridge
JP4188347B2 (en) Seismic isolation structure
JP2004052484A (en) Supporting structure and supporter of exterior-wall panel
JP3733500B2 (en) Base-isolated building on soft ground
CN101265707A (en) Pile element with hinge mechanism
JP2000297558A (en) Base isolation device
JP4466401B2 (en) Laminated rubber support
JP2001164580A (en) Pile foundation construction
JP2004360797A (en) Base-isolated structure
JP3800339B2 (en) Seismic isolation structure of building
JP4045886B2 (en) Deformation limiting device for seismic isolation bearing device and building support structure
JP2012162869A (en) Thin bearing device for bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051209

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070606

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016