JP2004225006A - Film resistant to atomic oxygen - Google Patents

Film resistant to atomic oxygen Download PDF

Info

Publication number
JP2004225006A
JP2004225006A JP2003017699A JP2003017699A JP2004225006A JP 2004225006 A JP2004225006 A JP 2004225006A JP 2003017699 A JP2003017699 A JP 2003017699A JP 2003017699 A JP2003017699 A JP 2003017699A JP 2004225006 A JP2004225006 A JP 2004225006A
Authority
JP
Japan
Prior art keywords
film
aluminum
atomic oxygen
irradiation
polyimide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003017699A
Other languages
Japanese (ja)
Other versions
JP4016844B2 (en
Inventor
Hiroaki Yamaguchi
裕章 山口
Ryoichi Sato
亮一 佐藤
Nobuo Ozawa
修生 小沢
Masafumi Koda
政文 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003017699A priority Critical patent/JP4016844B2/en
Publication of JP2004225006A publication Critical patent/JP2004225006A/en
Application granted granted Critical
Publication of JP4016844B2 publication Critical patent/JP4016844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve resistance to atomic oxygen of a polyimide film used as a thermally controlled material of a space flying vehicle such as an artificial satellite, a space shuttle and a space station. <P>SOLUTION: This film resistant to the atomic oxygen is obtained by forming an aluminum-containing film on a polyimide film through a process of coating an organic solvent solution of an aluminum compound on a self-supporting film formed by casting a polyamic acid solution and heating it. The film is also provided with UV resistance of especially solar light absorptivity (αs) change rate of ≤3% by a thermo-optical characteristic measurement after UV irradiation of about 100 ESD(solar). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、ポリイミドフィルム系の耐原子状酸素フィルムに係わるものである。
この発明によれば、簡単な処理によって、良好な耐原子状酸素性を有するポリイミドフィルムを得ることができる。
【0002】
【従来技術の説明】
人工衛星、スペ−スシャトル、宇宙ステ−ションなどには熱制御材料として多くの耐熱性フィルムが使用されている。代表的なものとしては、ポリイミドフィルム、フッ素樹脂フィルムなどが挙げられる。
これらの耐熱性フィルムは宇宙空間において、イオン、電子線、紫外線、原子状酸素などに長期間晒されることにより劣化が徐々に進行して、熱制御材料としての初期機能を発揮できなくなる。
例えば、ポリイミドフィルム[例えば、カプトン(デュポン社製)]は、電子線、紫外線に対する耐性は比較的高いが、十分ではないことが知られている。
【0003】
このため、これらの欠点を克服すべく種々の試みがなされている。例えば、ポリイミドフィルムの耐原子状酸素性を改良する試みも提案されている。
しかし、これらの改良法は処理工程が複雑であり、しかも耐原子状酸素性の改良効果は充分ではない。
【0004】
【発明が解決しようとする課題】
この発明は、人工衛星、スペ−スシャトル、宇宙ステ−ションなどの宇宙飛行体の熱制御材料として使用されているポリイミドフィルムの耐原子状酸素性を改良することを目的とするものである。
【0005】
【問題点を解決するための手段】
この発明は、ポリイミドフィルムにアルミニウム含有膜を形成した耐原子状酸素フィルムに関する。
この明細書において、100ESD(solar)の紫外線照射とは、試料に対して垂直に光を照射した際の波長:200〜400nmの積分値であり、真空中での太陽光100日分に相当する。
を意味する。
また、この明細書において、太陽光吸収率(α)とは、透過材の測定時には直接測定することができないため、拡散反射率:光を透過し拡散反射する試料の太陽光反射率(ρ)および拡散透過率:透過材の太陽光透過率(τ)を測定し、次式により求めたものである。
α=1−(ρ+τ
【0006】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記する。
1)約100ESD(solar)の紫外線照射後の熱光学特性測定による太陽光吸収率(αs)の変化率が3%以下である耐紫外線性を兼ね備えた前記の耐原子状酸素フィルム。
2)アルミニウム含有膜が、酸化アルミニウムからなる硬化膜である前記の耐原子状酸素フィルム。
3)アルミニウム含有膜が、アルミニウム化合物の有機溶媒溶液を加熱して形成したものである前記の耐原子状酸素フィルム。
【0007】
この発明において使用されるポリイミドフィルムとしては、特に制限はなく、例えば芳香族テトラカルボン酸成分としてピロメリット酸二無水物を必須成分とし場合により3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を併用し芳香族ジアミン成分として4,4’−ジアミノジフェニルエ−テルを必須成分とし場合によりパラフェニレンジアミンを併用して得られるポリアミック酸溶液を原料ド−プとするもの(東レ・デュポン社:カプトンH、カプトンE、カプトンEN、カプトンVなど、鐘淵化学工業社:各種アピカル)、芳香族テトラカルボン酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を必須成分とし芳香族ジアミン成分としてパラフェニレンジアミンを必須成分として得られるポリアミック酸溶液を原料ド−プとするもの(宇部興産社製:ユ−ピレックス−R、ユ−ピレックス−S)などが挙げられる。前記のポリイミドフィルムは、厚みが7.5〜125μm程度であるものが好適である。
前記のポリイミドフィルムは接着性改良のためにプラズマ放電処理やコロナ放電処理などの放電処理、アルカリ処理などの表面処理が施されていてもよいが、この発明においては必須ではない。
【0008】
この発明においては、ポリイミドフィルムにアルミニウム含有膜を形成することが必要である。
前記のアルミニウム含有膜としては、ポリイミドフィルムの表面に形成されたアルミニウムを必須成分とする無機膜が挙げられ、好適には酸化アルミニウムからなる硬化膜が挙げられる。
前記の酸化アルミニウムからなる硬化膜は、好適にはアルミニウム化合物の有機溶媒溶液をポリイミドフィルム表面に塗布し、塗膜を加熱することによって形成することができる。
【0009】
前記のアルミニウム化合物の有機溶媒溶液をポリイミドフィルム表面に塗布し、塗膜を加熱してアルミニウム含有膜を形成する方法としては、好適には次の方法を挙げることができる。
すなわち、フィルム形成用ポリアミック酸溶液を流延製膜、乾燥して得られた有機溶媒を含有する自己支持性フィルムにアルミニウム化合物を含む溶液を塗布した後乾燥して得られた表面にアルミニウム成分を含有する乾燥フィルムを、420℃以上の温度、好ましくは430〜520℃の温度で、好適には2〜30分間程度加熱してイミド化を完了させての温度で加熱してイミド化を完了させてポリイミドフィルムにアルミニウム含有膜を形成する。
【0010】
前記のアルミニウム化合物としては、無機アルミニウム化合物、例えば水酸化アルミニウムや、有機アルミニウム化合物、例えばアルミニウムモノエチルアセテ−トジイソプロピレ−ト、アルミニウムジエチルアセテ−トモノイソプロピレ−ト、アルミニウムトリアセチルアセトネ−ト、アルミニウムトリエチルアセトアセテ−ト、アルミニウムイソプロピレ−ト、アルミニウムブチレ−トなどが挙げられ、特に有機アルミニウム化合物としてはアルミニウムトリアセチルアセトナ−トが好ましい。
【0011】
前記の方法において、自己支持性フィルムにアルミニウム化合物を含む溶液を塗布する場合には、塗布するアルミニウム化合物の濃度は0.01〜5重量%程度、特に0.02〜5重量%程度であることが好ましい。前記の塗布液に使用する溶媒としては、特に制限はなく、アルコ−ル、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、ケトン系溶媒、エ−テリ系溶媒、アミド系溶媒を使用することができる。
【0012】
前記の自己支持性フィルムは、例えば前記の酸成分およびジアミン成分を有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用し、そのド−プ液を支持体に流延し、70〜200℃程度に乾燥して薄膜を形成し、支持体から剥離して得ることができる。この剥離を容易に行うことができるように、有機リン化合物、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。
【0013】
前記のポリアミック酸製造に使用する有機溶媒は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタムなどが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
【0014】
また、前記のイミド化促進の目的で、原料溶液中に塩基性有機化合物を添加することができる。例えば、イミダゾ−ル、2−メチルイミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ル、トリエチルアミン等をポリアミック酸重合時に固形分濃度に対して0.1〜10重量%の割合で使用することができる。
【0015】
あるいは、場合によっては、前記のアルミニウム含有膜は、前述の樹脂成分の全てが有機極性溶媒に均一に溶解されているアルミニウム化合物の溶液組成物を、表面処理した芳香族ポリイミドフィルム面上に塗布し、その塗布層を例えば120〜200℃の温度で20秒〜10分間程度乾燥することによって、溶媒が除去された薄硬化膜を形成することによって得ることができる。
【0016】
この発明によれば、50μm厚みのフィルムについて約8km/secの速度で約3×1020atoms/cmの照射量の原子状酸素を照射して、質量減少割合が10%以下であり、耐原子状酸素特性が良好であるポリイミドフィルムを得ることができる。
また、この発明によれば、約100ESD(solar)の紫外線照射後の熱光学特性測定による太陽光吸収率(αs)の変化率が3%以下である耐紫外線性を兼ね備えたポリイミドフィルムを得ることができる。
【0017】
【実施例】
以下、実施例を示し、この発明をさらに詳しく説明する。
参考例1
撹拌機、窒素導入管および還流管を備えた300mlガラス製反応容器に、N,N−ジメチルアセトアミド(DMAc)183gおよび0.1gのリン酸化合物(セパ−ル365−100 中京油脂株式会社製)を加え、撹拌および窒素流通下、パラフェニレンジアミン0.1000モルを添加し、50℃に保温し完全に溶解させた。この溶液に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物0.09935モルを発熱に注意しながら除々に添加し、添加終了後50℃に保ったまま5時間反応を続けた。この後、3,3’,4,4’−ビフェニルテトラカルボン酸2水和物0.00065モルを溶解させた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。
【0018】
得られたポリアミック酸溶液をガラス基板上に流延塗布し、150℃で10分間乾燥し、ガラス基板から剥がしてフレ−ム上に拘束した後、2%DMAc溶液としたアルミニウムキレ−ト化合物(川研ファインケミカル株式会社製AlCH)を塗布し、200℃で3分間、300℃で3分間、480℃で4分間熱処理して、厚み50μmのポリイミドフィルムを得た。TEM観察によるこのフィルム上に形成されたアルミニウム含有膜の厚さは約30nmであり、蛍光X線分析によるアルミニウムのカウント数は60であった。
【0019】
実施例1
参考例1で得られたアルミニウム含有膜を形成したポリイミドフィルムについて、原子状酸素および紫外線を照射した。
1)耐原子状酸素性
原子状酸素(AO)照射装置(NASDA−PSPC−18219)を使用し、下記の条件でアルミニウム含有膜を形成した面への原子状酸素照射を行った。
レ−ザ−装置:LT−612(Luminocs)
レ−ザ−波長:COレ−ザ−(10.6μm)
照射実績を以下に示す。
平均酸素量:52.7sccm/6Hz
AO速度:8.15km/s
照射時間:35.5時間
照射量(別途質量変化から算出):3.17×1020atoms/cm
照射面積:3.14cm
照射温度:室温
【0020】
フィルムの原子状酸素照射照射前と照射後の質量変化、および質量変化率(3回についての測定結果の平均値)
測定前:35.102mg
照射後:33.838mg
差:1.264mg
変化率:−3.6%
【0021】
2)耐紫外線性
紫外線照射装置として小型スペ−スチャンバ装置(NASDA−PSPC−7466)を使用し、下記の条件でアルミニウム含有膜を形成した面への紫外線(UV)照射を行った。
真空度:4.4×10−3〜2.3×10−5Pa
試料温度:7.2〜17.5℃
光源:6kW Xeショ−トア−クランプ
焦点距離:400〜450nm
均一性:誤差±3%
紫外線域光量:10solar(400nm以下)
照射量:104.6solar
レ−ザ−装置:LT−612(Luminocs)
レ−ザ−波長:COレ−ザ−(10.6μm)
レ−ザ−出力:最大12J
【0022】
フィルムの太陽光吸収率(αs)の測定は太陽光吸収率測定装置(NASDA−PSPC−7844)を使用し、下記の条件でUV照射前と照射後の太陽光吸収率(αs)を測定した。
走査波長:250〜2500nm
測定方式:シングルビ−ム方式
走査幅:1nm
波長精度:±0.5nm
検出器:光電子増倍管/硫化鉛素子
【0023】
フィルムのUV照射前と照射後の太陽光吸収率(αs)変化、および変化率(3回についての測定結果の平均値)
測定前:0.327
照射後:0.330
差:0.003
変化率:1.0%
【0024】
比較例1
未処理のポリイミドフィルム(デュポン社、カプトン100H厚み25μm)について、実施例1と同様に原子状酸素照射、耐紫外線性についての評価を行った。
得られた結果を次に示す。
【0025】
フィルムの原子状酸素照射照射前と照射後の質量変化、および質量変化率(3回についての測定結果の平均値)
測定前:18.279mg
照射後:13.722mg
差:4.557mg
変化率:−24.9%
フィルムのUV照射前と照射後の太陽光吸収率(αs)変化、および変化率(3回についての測定結果の平均値)
測定前:0.233
照射後:0.250
差:0.017
変化率:7.1%
【発明の効果】
この発明によれば、簡単な処理によって、良好な耐原子状酸素性を有するポリイミドフィルムを得ることができる。
[0001]
[Industrial applications]
The present invention relates to a polyimide film-based atomic oxygen resistant film.
According to the present invention, a polyimide film having good resistance to atomic oxygen can be obtained by a simple treatment.
[0002]
[Description of the Prior Art]
Many heat-resistant films are used as heat control materials in artificial satellites, space shuttles, space stations, and the like. Typical examples include a polyimide film and a fluororesin film.
When these heat-resistant films are exposed to ions, electron beams, ultraviolet rays, atomic oxygen, and the like in space for a long period of time, the deterioration gradually progresses, and the initial function as a heat control material cannot be exhibited.
For example, it is known that a polyimide film [for example, Kapton (manufactured by DuPont)] has relatively high resistance to electron beams and ultraviolet rays, but is not sufficient.
[0003]
For this reason, various attempts have been made to overcome these disadvantages. For example, an attempt to improve the atomic oxygen resistance of a polyimide film has been proposed.
However, these improvement methods require complicated treatment steps, and the effect of improving atomic oxygen resistance is not sufficient.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to improve the atomic oxygen resistance of a polyimide film used as a thermal control material for spacecraft such as satellites, space shuttles, and space stations.
[0005]
[Means for solving the problem]
The present invention relates to an atomic oxygen resistant film in which an aluminum-containing film is formed on a polyimide film.
In this specification, the term “irradiation of 100 ESD (solar) ultraviolet rays” refers to an integrated value of a wavelength of 200 to 400 nm when a sample is irradiated with light perpendicularly, and corresponds to 100 days of sunlight in a vacuum. .
Means
In this specification, the solar absorptivity (α s ) cannot be directly measured at the time of measurement of a transmitting material. Therefore, the diffuse reflectance is the solar reflectance (ρ) of a sample that transmits and diffuses and reflects light. s ) and diffuse transmittance: The transmittance of sunlight (τ s ) of the transmission material was measured and determined by the following equation.
α s = 1− (ρ s + τ s )
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention are listed below.
1) The above-mentioned atomic oxygen-resistant film having ultraviolet resistance, in which the rate of change in solar absorptivity (αs) measured by thermo-optical properties after irradiation of ultraviolet rays of about 100 ESD (solar) is 3% or less.
2) The atomic oxygen resistant film, wherein the aluminum-containing film is a cured film made of aluminum oxide.
3) The above atomic oxygen resistant film, wherein the aluminum-containing film is formed by heating an organic solvent solution of an aluminum compound.
[0007]
The polyimide film used in the present invention is not particularly limited. For example, 3,3 ′, 4,4′-biphenyltetracarboxylic acid containing pyromellitic dianhydride as an essential component as an aromatic tetracarboxylic acid component A polyamic acid solution obtained by using a dianhydride in combination with 4,4'-diaminodiphenyl ether as an aromatic diamine component and optionally using a paraphenylenediamine as a raw material dope (Toray Co., Ltd.) DuPont: Kapton H, Kapton E, Kapton EN, Kapton V, etc .; Kanebuchi Chemical Industry Co., Ltd .: various apicals); 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic tetracarboxylic acid component Is a polyamic acid solution obtained with paraphenylenediamine as an essential component and aromatic diamine as an essential component. The raw materials de - those to be flops (manufactured by Ube Industries, Ltd.: Yu - Pirekkusu -R, Yu - Pirekkusu -S) and the like. Preferably, the polyimide film has a thickness of about 7.5 to 125 μm.
The polyimide film may be subjected to a discharge treatment such as a plasma discharge treatment or a corona discharge treatment, or a surface treatment such as an alkali treatment for improving the adhesiveness, but is not essential in the present invention.
[0008]
In the present invention, it is necessary to form an aluminum-containing film on the polyimide film.
Examples of the aluminum-containing film include an inorganic film having aluminum as an essential component formed on the surface of a polyimide film, and preferably a cured film made of aluminum oxide.
The above-mentioned cured film made of aluminum oxide can be preferably formed by applying an organic solvent solution of an aluminum compound to the surface of a polyimide film and heating the coating film.
[0009]
The following method can be preferably mentioned as a method for applying the organic solvent solution of the aluminum compound to the surface of the polyimide film and heating the coating film to form an aluminum-containing film.
That is, casting a film of a polyamic acid solution for film formation, applying a solution containing an aluminum compound to a self-supporting film containing an organic solvent obtained by drying, and then coating the aluminum component on the surface obtained by drying. The contained dry film is heated at a temperature of 420 ° C. or higher, preferably at a temperature of 430 to 520 ° C., preferably for about 2 to 30 minutes to complete the imidization by heating at a temperature at which the imidization is completed. To form an aluminum-containing film on the polyimide film.
[0010]
Examples of the aluminum compound include inorganic aluminum compounds such as aluminum hydroxide and organic aluminum compounds such as aluminum monoethyl acetate diisopropylate, aluminum diethyl acetate monoisopropylate, aluminum triacetylacetonate and aluminum. Examples thereof include triethyl acetoacetate, aluminum isopropylate, and aluminum butyrate. As the organic aluminum compound, aluminum triacetylacetonate is preferred.
[0011]
In the above method, when a solution containing an aluminum compound is applied to the self-supporting film, the concentration of the aluminum compound to be applied is about 0.01 to 5% by weight, particularly about 0.02 to 5% by weight. Is preferred. The solvent used in the coating solution is not particularly limited, and may include alcohol, aromatic hydrocarbon, aliphatic hydrocarbon, alicyclic hydrocarbon, ketone solvent, ether solvent, and amide solvent. Can be used.
[0012]
The self-supporting film is prepared by, for example, reacting the acid component and the diamine component in an organic solvent at a temperature of about 100 ° C. or less, particularly at a temperature of 20 to 60 ° C. to form a polyamic acid solution. It can be obtained by casting the dope solution on a support, drying it at about 70 to 200 ° C. to form a thin film, and peeling it from the support. An organic phosphorus compound such as triphenyl phosphite, triphenyl phosphate or the like is used in an amount of 0.01 to 1% with respect to the solid content (polymer) concentration at the time of polyamic acid polymerization so that the peeling can be easily performed. It can be added in a range.
[0013]
Organic solvents used for the production of the polyamic acid include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam and the like. These organic solvents may be used alone or in combination of two or more.
[0014]
Further, a basic organic compound can be added to the raw material solution for the purpose of promoting the imidization. For example, imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, triethylamine, and the like are used in an amount of 0.1 to 10% by weight based on the solid content during polymerization of polyamic acid. Can be used in proportions.
[0015]
Alternatively, in some cases, the aluminum-containing film is formed by applying a solution composition of an aluminum compound in which all of the above resin components are uniformly dissolved in an organic polar solvent onto a surface-treated aromatic polyimide film surface. For example, by drying the coating layer at a temperature of 120 to 200 ° C. for about 20 seconds to 10 minutes to form a thin cured film from which the solvent has been removed.
[0016]
According to the present invention, a film having a thickness of 50 μm is irradiated with atomic oxygen at a dose of about 3 × 10 20 atoms / cm 2 at a rate of about 8 km / sec, and the mass reduction ratio is 10% or less. A polyimide film having good atomic oxygen characteristics can be obtained.
Further, according to the present invention, to obtain a polyimide film having both ultraviolet resistance and a change rate of solar absorptivity (αs) of 3% or less by thermo-optical property measurement after irradiation of ultraviolet rays of about 100 ESD (solar). Can be.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
Reference Example 1
183 g of N, N-dimethylacetamide (DMAc) and 0.1 g of a phosphoric acid compound (Separ 365-100 manufactured by Chukyo Yushi Co., Ltd.) are placed in a 300 ml glass reaction vessel equipped with a stirrer, a nitrogen inlet tube and a reflux tube. Was added, and 0.1000 mol of paraphenylenediamine was added under stirring and nitrogen flow, and the mixture was kept at 50 ° C. and completely dissolved. To this solution, 0.09935 mol of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride was gradually added while paying attention to heat generation, and after completion of the addition, the reaction was continued for 5 hours while keeping at 50 ° C. . Thereafter, 0.00065 mol of 3,3 ′, 4,4′-biphenyltetracarboxylic acid dihydrate was dissolved. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise.
[0018]
The resulting polyamic acid solution was applied onto a glass substrate by casting, dried at 150 ° C. for 10 minutes, peeled off from the glass substrate and restrained on a frame, and then aluminum chelate compound (2% DMAc solution) was prepared. (Applied by Kawaken Fine Chemical Co., Ltd.) and heat-treated at 200 ° C. for 3 minutes, 300 ° C. for 3 minutes, and 480 ° C. for 4 minutes to obtain a polyimide film having a thickness of 50 μm. The thickness of the aluminum-containing film formed on this film by TEM observation was about 30 nm, and the count number of aluminum by fluorescent X-ray analysis was 60.
[0019]
Example 1
The polyimide film on which the aluminum-containing film obtained in Reference Example 1 was formed was irradiated with atomic oxygen and ultraviolet light.
1) Atomic oxygen resistance A surface on which an aluminum-containing film was formed was irradiated with atomic oxygen using an atomic oxygen (AO) irradiation apparatus (NASDA-PSPC-18219) under the following conditions.
Laser device: LT-612 (Luminocs)
Laser wavelength: CO 2 laser (10.6 μm)
The irradiation results are shown below.
Average oxygen content: 52.7 sccm / 6 Hz
AO speed: 8.15 km / s
Irradiation time: 35.5 hours Irradiation amount (calculated separately from mass change): 3.17 × 10 20 atoms / cm 2
Irradiation area: 3.14 cm 2
Irradiation temperature: room temperature
Changes in mass before and after atomic oxygen irradiation of the film, and mass change rate (average of measurement results for three times)
Before measurement: 35.102 mg
After irradiation: 33.838 mg
Difference: 1.264mg
Rate of change: -3.6%
[0021]
2) Ultraviolet resistance A small space chamber apparatus (NASDA-PSPC-7466) was used as an ultraviolet irradiation apparatus, and the surface on which the aluminum-containing film was formed was irradiated with ultraviolet light (UV) under the following conditions.
Degree of vacuum: 4.4 × 10 −3 to 2.3 × 10 −5 Pa
Sample temperature: 7.2-17.5 ° C
Light source: 6 kW Xe short-clamp focal length: 400-450 nm
Uniformity: error ± 3%
Ultraviolet light quantity: 10 solar (400 nm or less)
Irradiation dose: 104.6 solar
Laser device: LT-612 (Luminocs)
Laser wavelength: CO 2 laser (10.6 μm)
Laser output: up to 12J
[0022]
The solar absorptance (αs) of the film was measured using a solar absorptivity measuring device (NASDA-PSPC-7844) under the following conditions before and after UV irradiation. .
Scanning wavelength: 250-2500 nm
Measuring method: Single beam method Scanning width: 1 nm
Wavelength accuracy: ± 0.5 nm
Detector: photomultiplier tube / lead sulfide element
Change in solar absorptivity (αs) before and after UV irradiation of film, and change rate (average of measurement results for 3 times)
Before measurement: 0.327
After irradiation: 0.330
Difference: 0.003
Change rate: 1.0%
[0024]
Comparative Example 1
An untreated polyimide film (Dupont, Kapton 100H, 25 μm thickness) was evaluated for atomic oxygen irradiation and UV resistance in the same manner as in Example 1.
The results obtained are shown below.
[0025]
Changes in mass before and after atomic oxygen irradiation of the film, and mass change rate (average of measurement results for three times)
Before measurement: 18.279 mg
After irradiation: 13.722 mg
Difference: 4.557 mg
Rate of change: -24.9%
Change in solar absorptivity (αs) before and after UV irradiation of film, and change rate (average of measurement results for 3 times)
Before measurement: 0.233
After irradiation: 0.250
Difference: 0.017
Rate of change: 7.1%
【The invention's effect】
According to the present invention, a polyimide film having good resistance to atomic oxygen can be obtained by a simple treatment.

Claims (4)

ポリイミドフィルムにアルミニウム含有膜を形成した耐原子状酸素フィルム。Atomic oxygen resistant film in which an aluminum-containing film is formed on a polyimide film. 約100ESD(solar)の紫外線照射後の熱光学特性測定による太陽光吸収率(αs)の変化率が3%以下である耐紫外線性を兼ね備えた請求項1に記載の耐原子状酸素フィルム。2. The atomic oxygen-resistant film according to claim 1, which has ultraviolet light resistance in which the rate of change in solar absorptivity ([alpha] s) measured by thermo-optical properties after irradiation with ultraviolet light of about 100 ESD (solar) is 3% or less. アルミニウム含有膜が、酸化アルミニウムからなる硬化膜である請求項1に記載の耐原子状酸素フィルム。The atomic oxygen resistant film according to claim 1, wherein the aluminum-containing film is a cured film made of aluminum oxide. アルミニウム含有膜が、アルミニウム化合物の有機溶媒溶液を加熱して形成したものである請求項1に記載の耐原子状酸素フィルム。The atomic oxygen resistant film according to claim 1, wherein the aluminum-containing film is formed by heating a solution of an aluminum compound in an organic solvent.
JP2003017699A 2003-01-27 2003-01-27 Polyimide film for spacecraft thermal control materials Expired - Fee Related JP4016844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017699A JP4016844B2 (en) 2003-01-27 2003-01-27 Polyimide film for spacecraft thermal control materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017699A JP4016844B2 (en) 2003-01-27 2003-01-27 Polyimide film for spacecraft thermal control materials

Publications (2)

Publication Number Publication Date
JP2004225006A true JP2004225006A (en) 2004-08-12
JP4016844B2 JP4016844B2 (en) 2007-12-05

Family

ID=32904789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017699A Expired - Fee Related JP4016844B2 (en) 2003-01-27 2003-01-27 Polyimide film for spacecraft thermal control materials

Country Status (1)

Country Link
JP (1) JP4016844B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253399A (en) * 2006-03-22 2007-10-04 Ube Ind Ltd Heat control film, heat control film with metallic layer, and space flying object and space instrument equipped with them
CN111157585A (en) * 2020-01-03 2020-05-15 北京卫星环境工程研究所 Space atomic oxygen fluence detection method based on graphene
CN113122000A (en) * 2018-09-12 2021-07-16 中国地质大学(北京) Preparation method of composite atomic oxygen resistant polyimide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253399A (en) * 2006-03-22 2007-10-04 Ube Ind Ltd Heat control film, heat control film with metallic layer, and space flying object and space instrument equipped with them
CN113122000A (en) * 2018-09-12 2021-07-16 中国地质大学(北京) Preparation method of composite atomic oxygen resistant polyimide film
CN111157585A (en) * 2020-01-03 2020-05-15 北京卫星环境工程研究所 Space atomic oxygen fluence detection method based on graphene
CN111157585B (en) * 2020-01-03 2022-10-28 北京卫星环境工程研究所 Space atomic oxygen fluence detection method based on graphene

Also Published As

Publication number Publication date
JP4016844B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP7033171B2 (en) Polyimide film with voids and its manufacturing method
Kozuka Stress evolution on gel-to-ceramic thin film conversion
Latthe et al. TMOS based water repellent silica thin films by co-precursor method using TMES as a hydrophobic agent
Hovish et al. Open air plasma deposition of superhydrophilic titania coatings
Feenstra et al. Flexible shielding layers for solar cells in space applications
JP6883393B2 (en) Polyimide-based resin film cleaning solution, method for cleaning polyimide-based resin film, method for manufacturing polyimide film, method for manufacturing filter, filter media or filter device, and method for manufacturing chemical solution for lithography
JP5161299B2 (en) Surface treatment apparatus and surface treatment method
Xing et al. Preparation and atomic oxygen erosion resistance of silica film formed on silicon rubber by sol–gel method
Tan et al. Paper surface modification by plasma deposition of double layers of organic silicon compoundsElectronic Supplementary information (ESI) available: atomic force micrograph and optical micrograph of HMDS–TEOS film (90 seconds deposition). See http://www. rsc. org/suppdata/jm/b0/b008050k
WO2019044525A1 (en) Laminate and sealing member using same
JPWO2018012609A1 (en) METHOD FOR MANUFACTURING POLYIMIDE LAMINATE AND METHOD FOR MANUFACTURING FLEXIBLE CIRCUIT BOARD
WO2016056595A1 (en) Polyimide precursor composition and method for producing insulating coating layer using same
JP4016844B2 (en) Polyimide film for spacecraft thermal control materials
Arima-Osonoi et al. Gas-flow humidity control system for neutron reflectivity measurements
US9966283B2 (en) Pressurizing-type lamp annealing device, method for producing thin film, and method for using pressurizing-type lamp annealing device
Xie et al. Preparation and properties of atomic oxygen protective films deposited on Kapton by solvothermal and sol–gel methods
Horowitz et al. Towards better control of sol-gel film processing for optical device applications
WO2019181970A1 (en) Organic silica thin film, method for producing the same, laser desorption/ionization mass spectrometric substrate using the same, and laser desorption/ionization mass spectrometric method
JPH10140087A (en) Applying solution for forming insulating film between layers and formation of the same film using the same solution
JPH01194980A (en) Formation of silica coating film and formed coating film
TW201921503A (en) Method and apparatus for producing a polyimide layer on a substrate
JP2011102200A (en) Method of forming transparent photooxidation layer thin film
Hashimoto et al. Subsurface investigation of the surface modification of polydimethylsiloxane by 172‐nm vacuum ultraviolet irradiation using ToF‐SIMS and VUV spectrometry
Kim et al. Highly Transparent, Flexible, and Hydrophobic Polytetrafluoroethylene Thin Film Passivation for ITO/AgPdCu/ITO Multilayer Electrodes
Yanagishita et al. Preparation of polyimide composite membrane by chemical vapor deposition and polymerization technique (CVDP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees