JP2004224927A - Method for producing detergent particle group - Google Patents

Method for producing detergent particle group Download PDF

Info

Publication number
JP2004224927A
JP2004224927A JP2003015152A JP2003015152A JP2004224927A JP 2004224927 A JP2004224927 A JP 2004224927A JP 2003015152 A JP2003015152 A JP 2003015152A JP 2003015152 A JP2003015152 A JP 2003015152A JP 2004224927 A JP2004224927 A JP 2004224927A
Authority
JP
Japan
Prior art keywords
base granules
base
detergent particles
liquid surfactant
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015152A
Other languages
Japanese (ja)
Other versions
JP4145154B2 (en
Inventor
Teruo Kubota
輝夫 窪田
Masato Baba
正人 馬場
Shuichi Nitta
秀一 新田
Hiroyuki Yamashita
博之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003015152A priority Critical patent/JP4145154B2/en
Publication of JP2004224927A publication Critical patent/JP2004224927A/en
Application granted granted Critical
Publication of JP4145154B2 publication Critical patent/JP4145154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a detergent particle group by which detergent particle group stabilized in quality and physical properties can be produced in good productivity. <P>SOLUTION: In the method for producing the detergent particle group comprising supporting a liquid surfactant on base granules obtained by spray-drying, a step for controlling oil-absorbing ability of the base granules is provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、噴霧乾燥によって得られるベース顆粒に界面活性剤組成物を担持してなる洗剤粒子群の製造方法に関する。さらに詳しくは、ベース顆粒の吸油能を制御することで、品質・物性の安定した洗剤粒子群を得る洗剤粒子群の製造方法に関する。
【0002】
【従来の技術】
粒状洗剤組成物の製造に関しては、安定した物性(例えば流動性等)を得る方法として、粒状ノニオン洗剤組成物の製造に際し、造粒機又は混練/押出機の負荷を検出することにより造粒物の流動性を把握し、負荷に応じてバインダー成分の供給量を制御する方法が開示されている(例えば、特許文献1参照)。また、粉体原料に液体原料を添加しながら攪拌し造粒する攪拌造粒に際し、造粒の進行状態を検知し、検出値に応じて造粒条件(ミキサーの回転数、バインダーの添加速度)を制御する方法が開示されている(例えば、特許文献2参照)。しかしながら、いずれの例においても、安定した物性を得るために、洗剤粒子の組成を変化させているため、得られる洗剤粒子群の組成が安定せず、設計通りの性能が発現しないという問題があった。また、前記いずれの公報にも、制御因子として洗剤原料(ベース顆粒)の物性(吸油能)に着目するという記載は無く、また、粉体原料中に液体原料を担持する(液体原料が粉体原料の細孔に浸透して保持されること)ベース顆粒というものに関する記載も無い。
【0003】
【特許文献1】
特開平11−343498号公報
【特許文献2】
特開2000−84391号公報
【0004】
【発明が解決しようとする課題】
そこで、本発明者らは、噴霧乾燥によって得られるベース顆粒に界面活性剤組成物を担持してなる洗剤粒子群の製造方法において、従来何ら着目されていなかったベース顆粒の吸油能を制御することで、品質・物性の安定した洗剤粒子群を得られることを初めて見いだした。
従って、本発明の課題は、品質・物性の安定した洗剤粒子群を生産性よく製造することができる洗剤粒子群の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
即ち、本発明の要旨は、噴霧乾燥によって得られるベース顆粒に液状界面活性剤を担持してなる洗剤粒子群の製法において、該ベース顆粒の吸油能を制御する工程を有する洗剤粒子群の製造方法に関する。
【0006】
【発明の実施の形態】
(ベース顆粒の態様 組成)
ベース顆粒は、例えば、水不溶性無機物、水溶性ポリマー、及び水溶性塩類を含むスラリーであって、各成分の含有量が該スラリー中の固形分基準でそれぞれ20〜90重量%、2〜30重量%、5〜78重量%であるスラリーを噴霧乾燥して得ることができる。上記組成範囲にて乾燥方法並びに乾燥条件等の調整により平均粒径、嵩密度、細孔容積、粒子強度の制御が可能となる。スラリー中の水不溶性無機物、水溶性ポリマー、及び水溶性塩類の含有量は、スラリー中の固形分基準でそれぞれ、30〜75重量%、3〜20重量%、及び10〜67重量%の範囲がより好ましく、40〜70重量%、5〜20重量%、及び20〜55重量%の範囲が特に好ましい。なお、スラリー中の水分量は、40〜60重量%が好ましく、42〜58重量%がより好ましい。
【0007】
ここで、水不溶性無機物としては、結晶性又は非晶質のアルミノケイ酸塩;二酸化ケイ素、水和ケイ酸化合物、パーライト、ベントナイト等の粘土化合物等が挙げられる。水溶性ポリマーとしては、カルボン酸系ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられる。水溶性塩類としては、炭酸根、炭酸水素根、硫酸根、亜硫酸根、硫酸水素根、塩酸根、又はリン酸根等をそれぞれ有するアルカリ金属塩、アンモニウム塩、又はアミン塩に代表される水溶性の無機塩類や、クエン酸やフマル酸塩などの低分子量の水溶性有機塩類等が挙げられる。
【0008】
また、スラリーを噴霧乾燥する方法、その条件等については、公知の方法、条件であればよい。
【0009】
(平均粒径及び嵩密度)
ベース顆粒の平均粒径は、溶解性並びに流動性に優れた洗剤粒子群が得られる点で150〜500μmが好ましく、更に好ましくは180〜350μmである。嵩密度は、特に限定されずに実施できる。例えば、コンパクト化の点から400g/L以上が好ましく、更に好ましくは500g/L以上である。溶解性の点から1500g/L以下が好ましく、1200g/L以下が更に好ましい。
本発明のベース顆粒の平均粒径については、所望の洗剤粒子の平均粒径との関係から適宜選択できる。特に、ベース顆粒の高速溶解性等の性能を保持するためには、その形状を可能な限り保持することが好ましい。よって、洗剤粒子の平均粒径はベース顆粒の平均粒径の1.5倍以下が好ましく、1.3倍以下がより好ましい。
【0010】
(粒子強度)
また、該ベース顆粒に液状界面活性剤を担持させている間にベース顆粒が崩壊するのを抑制する観点から、ベース顆粒はより硬いものが好ましい。具体的には、ベース顆粒の粒子強度は、100kg/cm以上が好ましく、200kg/cm以上が更に好ましい。
【0011】
(物性測定方法)
ベース顆粒の平均粒径は、JIS Z 8801に規定の標準篩を用いて試料を5分間振動させた後、篩目のサイズによる重量分率から測定する。ベース顆粒の嵩密度は、JIS K 3362により規定された方法で測定する。
【0012】
粒子強度の測定法は、以下の通りである。
内径3cm×高さ8cmの円柱状の容器に、試料20gを入れ、30回タッピング(筒井理化学器機(株)、TVP1型タッピング式密充填嵩密度測定器、タッピング条件;周期36回/分、60mmの高さから自由落下)を行う。タッピング操作終了直後の試料高さを測定し、初期試料高さとする。その後、加圧試験機にて容器内に保持した試料の上端面全体を10mm/minの速度で加圧し、荷重−変位曲線の測定を行う。該曲線における変位率が5%以下での直線部における傾きに初期試料高さをかけ、得られる値を加圧面積で除した値を粒子強度とする。
【0013】
(液状界面活性剤)
本発明でベース顆粒と混合する界面活性剤は、混合時に液状であり、その例としては、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、陽イオン性界面活性剤の1種又は組み合わせを挙げることができる。好ましくは、非イオン性界面活性剤100重量部に対して、硫酸基又はスルホン酸基を有する陰イオン性界面活性剤0〜300重量部、該非イオン性界面活性剤の固定化剤1〜100重量部である。本明細書において固定化剤とは、常温で液状の非イオン性界面活性剤の流動性を抑え、且つ該組成物が流動性を失った状態での硬度を著しく高めることができる基剤を意味する。なお、固定化剤としては、脂肪酸塩、ヒドロキシ脂肪酸塩、アルキルリン酸塩等の陰イオン性界面活性剤、ポリオキシアルキレン型非イオン性化合物、ポリエーテル系非イオン性化合物等が挙げられる。上記液状界面活性剤組成物を使用すると、洗剤粒子群の溶解性及び流動特性の向上、混合時のベース顆粒の崩壊の抑制、保存時(常温)での界面活性剤組成物のシミ出しを抑制することができる。硫酸基又はスルホン酸基を有する陰イオン性界面活性剤の配合は、洗剤粒子群の流動特性の向上、保存時(常温)での界面活性剤組成物のシミ出し抑制に更に有利となる。
【0014】
液状界面活性剤の配合量は、洗浄力を発揮させる点からベース顆粒100重量部に対して界面活性剤10〜100重量部が好ましく、より好ましくは12〜80重量部、更に好ましくは15〜70重量部である。この範囲において、溶解性並びに流動特性に優れた洗剤粒子群が得られる。
【0015】
(ベース顆粒の吸油能)
本明細書でいうベース顆粒の吸油能とは、ベース顆粒内部での液状界面活性剤の保持力を表し、ベース顆粒の吸油能が大きいとは、より多くの液状界面活性剤をベース顆粒内部に担持できることを意味する。
【0016】
本発明の洗剤粒子群の製造方法では、前記のように、ベース顆粒の吸油能を制御する工程を有することに一つの大きな特徴があり、かかる工程を有することにより、品質・物性の安定した洗剤粒子群を生産性よく製造することができるという効果が発現される。
【0017】
ベース顆粒の吸油能が変動したり、ベース顆粒の吸油能の変動がなくとも、液状界面活性剤やベース顆粒と共に使用し得るその他の洗剤原料の影響等により、液状界面活性剤担持後の洗剤粒子表面の性状(シミ出し状態)が変化すると、洗剤粒子群の品質に影響を及ぼす。つまり、吸油能が高く変化した場合(シミ出し状態が少ない場合)は、製造された洗剤粒子群の液状界面活性剤のシミ出しは抑制され、耐ケーキング性は向上するが、余剰の表面改質剤(表面改質剤量が一定の場合)により流動性が低下する。また、逆に吸油能が低く変化した場合(シミ出し状態が多い場合)は、ある程度までは流動性は良好に保たれるが、液状界面活性剤のシミ出しにより耐ケーキング性が低下する傾向となる。そのため品質を安定化させるためには、液状界面活性剤担持後の洗剤粒子表面への液状界面活性剤のシミ出し状態を常に最適値(範囲)に保つ必要がある。そこで、ベース顆粒の吸油能を制御することで液状界面活性剤担持後の洗剤粒子表面への液状界面活性剤のシミ出し状態を制御することができる。液状界面活性剤担持後の洗剤粒子表面が所望の状態よりもシミ出し量が多い(粒子表面の液の残存が多い)状態であれば、ベース顆粒の吸油能を大きくすることで表面状態を調整でき、逆に液状界面活性剤担持後の洗剤粒子表面が所望の状態よりもシミ出し量が少ない(粒子表面の液の残存が少ない)状態であれば、ベース顆粒の吸油能を小さくすることで表面状態を調整できる。
【0018】
(シミ出し状態の検知方法)
液状界面活性剤担持後の洗剤粒子表面への液状界面活性剤のシミ出し状態を検知する方法として、液状界面活性剤担持後の粒子を観察したり、物性(例えば流動性)を測定することでもある程度は把握できる。また、本発明の製造方法が、攪拌翼を有する攪拌型混合機を用いてベース顆粒と液状界面活性剤を混合する工程を有する場合は、混合時の攪拌型混合機の負荷を検出することにより液状界面活性剤担持後の洗剤粒子表面への液状界面活性剤のシミ出し状態を検知することができる。粒子表面へのシミ出しが少ない状態であるほど検出時の負荷は低くなり、粒子表面へのシミ出しが多い状態であるほど負荷は高くなる。従って負荷により液状界面活性剤担持後の洗剤粒子表面のシミ出し状態を検知し、負荷の値が所定の範囲内になるようにベース顆粒の吸油能を制御するのが好ましい。
【0019】
(吸油能の制御因子)
ベース顆粒の吸油能と相関する制御因子として、例えばベース顆粒の温度が挙げられる。液状界面活性剤が担持されるときのベース顆粒の温度が高いほどベース顆粒の吸油能は大きくなり、ベース顆粒の温度が低いほどベース顆粒の吸油能は小さくなる。即ち液状界面活性剤が担持されるときのベース顆粒の温度を制御することで吸油能の制御が可能となる。ベース顆粒の制御温度範囲は、液状界面活性剤の種類により一概に限定されないが、液状界面活性剤の流動点以上が好ましく、120℃以下がより好ましく、100℃以下がさらに好ましい。該流動点は、JIS K 2269の方法により測定することができる。ベース顆粒の温度の制御方法としては、噴霧乾燥条件の調整、噴霧乾燥後のベース顆粒を例えば温冷風と直接接触させたり、混合機のジャケット等により温度を調整することができる。また、ベース顆粒の空気輸送を伴う製造設備の場合は同伴エアーの温度により調整する方法が好ましい。
【0020】
ベース顆粒の吸油能と相関するその他の制御因子として、例えばベース顆粒を製造する際に噴霧乾燥するスラリーの水分が挙げられる。スラリー水分が、ある範囲内において高いほどベース顆粒の吸油能は大きくなる。吸油能がアップする理由はスラリー水分を高くすると、ベース顆粒の細孔容積が大きくなるためと考えられる。スラリー水分の制御範囲は特に限定されないが、噴霧液滴径や乾燥条件への影響が少ない範囲において標準のスラリー水分(標準量、即ち、所望のスラリー水分量)に対してその範囲を設定する必要がある。例えば、前記範囲としては、標準量±3重量%が好ましく、標準量±2重量%がより好ましい。
【0021】
また、標準量のスラリー水分で調製したベース顆粒の細孔容積は0.2cc/g以上が好ましく、更に好ましくは0.3cc/g以上である。細孔容積がこの範囲であれば、所望の液状界面活性剤を担持するのに好適である。
ベース顆粒の細孔容積は、水銀ポロシメーター〔「PORE SIZER 9320」(株)島津製作所製〕にて測定することができる。
【0022】
ベース顆粒の吸油能と相関するその他の制御因子として、例えばベース顆粒の水分が挙げられる。ベース顆粒の水分が低いほど吸油能は大きくなる。水分の制御範囲はベース顆粒の粒子強度の観点から5重量%以下が好ましく、3重量%以下がより好ましく、1重量%以下が更に好ましい。ベース顆粒の水分を低くするには、噴霧圧力の低下、送風温度のアップ、送風量のアップ等の乾燥速度を早くする操作により調整することが好ましい。
【0023】
前記のベース顆粒の吸油能と相関する因子は単独で操作してもよいし、組み合わせて操作してもよい。また、優先順位をつけて操作することもできる。例えば、操作順位としては、▲1▼ベース顆粒温度、▲2▼スラリー水分、▲3▼ベース顆粒の水分が挙げられる。
【0024】
また、ベース顆粒の吸油能の直接的な制御因子ではないが、担持される液状界面活性剤の温度もシミ出し状態の制御に使用することができる。担持される液状界面活性剤の温度が高いほどシミ出し状態は小さくなり、液状界面活性剤の温度が低いほどシミ出し状態は大きくなる。例えば、液状界面活性剤の温度としては、界面活性剤の流動点〜90℃が好ましく、該流動点より10℃高い温度〜85℃がより好ましい。
【0025】
また、ベース顆粒の吸油能の制御因子ではないが、ベース顆粒と液状界面活性剤の添加量を調整することでもシミ出し状態は制御できる。例えば、ベース顆粒100重量部に対する液状界面活性剤の添加量が標準量(設計)±3重量部が好ましく、標準量(設計)±2重量部がより好ましい。
【0026】
(ベース顆粒以外の洗剤原料)
本発明においては、前記ベース顆粒以外の洗剤原料も所望によりベース顆粒と同時あるいは前後で配合して混合され得る。かかる洗剤原料としては、ゼオライト、クエン酸等の金属イオン封鎖能を示す基剤、炭酸ナトリウム、炭酸カリウム等のアルカリ能を示す基剤、結晶性珪酸塩等の金属イオン封鎖能、アルカリ能いずれも有する基剤等や、高い吸油能を有する非晶質シリカや非晶質アルミノシリケート等の粉末原料が挙げられる。その場合の配合量は、所望の効果を発揮させる点からベース顆粒100重量部に対して好ましくは1重量部以上、より好ましくは3重量部以上である。また、ベース顆粒の吸油能制御効果の観点から好ましくは20重量部以下、より好ましくは10重量部以下である。
【0027】
(洗剤粒子群の製造方法 担持工程)
本発明においては、ベース顆粒と液状界面活性剤を混合することで、液状界面活性剤がベース顆粒に担持される。好ましい混合条件としては、液状界面活性剤の担持促進の点から、混合時の混合物のピーク温度が液状界面活性剤の流動点以上になることである。なお、ピーク温度とは、液状界面活性剤添加後の混合工程中で最も混合物の温度が高くなった温度をいう。流動点は、JIS K 2269の方法により測定される。また、混合時の負荷を検出することにより液状界面活性剤担持後の粒子表面への液状界面活性剤のシミ出し状態を検知する場合は、攪拌翼を有する攪拌型混合機を用いることが好ましい。この場合、攪拌負荷検出時の回転数を適宜設定すればよい。
【0028】
攪拌型混合機としては、回分式で混合を行う場合、特に限定されないが、例えば、(1)混合槽で内部に攪拌軸を有し、この軸に攪拌羽根を取り付けて粉末の混合を行う形式のミキサー:例えばヘンシェルミキサー(三井三池化工機(株)製)、ハイスピードミキサー(深江工業(株)製)、バーチカルグラニュレーター((株)パウレック製)、レディゲミキサー(松坂技研(株)製)、プロシェアミキサー(太平洋機工(株)製)等がある。(2)円筒型又は半円筒型の固定された容器内でスパイラルを形成したリボン状の羽根が回転することにより混合を行う形式のミキサー:例えばリボンミキサー(日和機械工業(株)製)、バッチニーダー(佐竹化学機械工業(株)製)等、(3)コニカル状の容器に沿ってスクリューが容器の壁と平行の軸を中心として自転しながら公転することにより混合を行う形式のミキサー、例えばナウターミキサー(ホソカワミクロン(株)製)等がある。
【0029】
上記の攪拌型混合機の中で特に好ましくは、混合槽で内部に攪拌軸を有し、この軸に攪拌羽根を取り付けて粉末の混合を行う形式のミキサーでレディゲミキサー(松坂技研(株)製)、プロシェアミキサー(太平洋機工(株)製)等である。また、円筒型の固定された容器内でスパイラルを形成したリボン状の羽根が回転することにより混合を行う形式のミキサー:例えばリボンミキサー(日和機械工業(株)製)が好ましい。
【0030】
また、連続式で混合を行う場合、本発明を満足できる連続式攪拌型混合機を用いれば、特に限定されないが、例えば上記の攪拌型混合機のうちで連続型の装置を用いてベース顆粒と液状界面活性剤を混合させてもよい。
【0031】
好適な混合時間(回分式の場合)及び平均滞留時間(連続式の場合)は、例えば1〜20分間が好ましく、特に2〜10分間が好ましい。
【0032】
(表面改質工程)
本発明は、更に、液状界面活性剤を担持した洗剤粒子群に微粉体を混合する工程(表面改質工程)を有するのが好ましい。本工程において、微粉体が該混合物の表面を被覆し、流動性に優れた洗剤粒子群を得ることができ、また、液状界面活性剤担持後の洗剤粒子表面への液状界面活性剤のシミ出し状態に応じて添加する微粉体の量を調整して洗剤粒子群の品質を安定化することができる。即ち、表面状態が所望よりもシミ出しが多い場合は、添加する微粉体の量を多くし、所望よりもシミ出しが少ない場合は添加する微粉体の量を少なくする。微粉体の調整量は表面のシミ出しに応じて予め設定しておいてもよいし、複数回添加することで適量を判断してもよい。
【0033】
シミ出し状態の検知は、表面改質工程に入る前に行ってもよいし、表面改質工程にて行うこともできる。即ち、微粉体を添加する前の負荷、所定量の微粉体の一部を添加して混合する負荷、微粉体の所定量を添加して混合する負荷のどれか一つ以上を検出することで検知することができる。そのなかで、微粉体の一部を添加する方法は、より感度良くシミ出し状態を検出することができる。
【0034】
好ましい混合条件としては、攪拌機と解砕翼を両方具備した攪拌型混合機を用いることであり、攪拌翼と解砕翼の運転条件(回転数等)はベース顆粒をなるべく崩壊しない様に適宜設定すればよいが、本工程にて液状界面活性剤担持後の洗剤粒子表面のシミ出し状態を検知する場合、負荷検知中は解砕翼は停止した方が好ましい。また、負荷検出時の回転数は適宜設定すればよい。
【0035】
好ましい混合装置としては、前記攪拌型混合機のうち、攪拌翼と解砕翼を両方具備したものが挙げられる。このような攪拌型混合機を用いた場合には、ベース顆粒と液状界面活性剤を混合する工程と表面改質工程を同一の装置を用いて行うことができるので、設備の簡略化の点から好ましく、そのような装置としてレディゲミキサー(松坂技研(株)製)、プロシェアミキサー(太平洋機工(株)製)等が挙げられる。
【0036】
表面改質工程において、微粉体との混合時間は、0.5〜3分程度が好ましい。
【0037】
(微粉体)
本明細書において微粉体とは、洗剤粒子群の表面に被覆され、洗剤粒子群の流動性を向上させるために配合する粉体であり、高いイオン交換能や高いアルカリ能を有するものが洗浄面から好ましい。具体的には、アルミノケイ酸塩が望ましい。アルミノケイ酸塩以外では、ケイ酸カルシウム、二酸化ケイ素、ベントナイト、タルク、クレイ、非晶質シリカ誘導体、結晶性ケイ酸塩化合物等のケイ酸塩化合物のような無機微粉体も好ましい。また、一次粒子が10μm以下の金属石鹸も同様に用いることができる。
【0038】
微粉体は、洗剤粒子群表面の被覆率が向上し、洗剤粒子群の流動性が向上する点で、その一次粒子の平均粒径が0.1〜10μmのものが好ましい。該微粉体の平均粒径は、光散乱を利用した方法、例えばパーティクルアナライザー(堀場製作所(株)製)、又は顕微鏡観察により測定される。
【0039】
微粉体の使用量としては、表面被覆の効率性の点から液状界面活性剤担持後の混合物100重量部に対して5重量部以上が好ましく、10重量部以上がより好ましい。また、流動性の点から100重量部以下が好ましく、75重量部以下がより好ましく、50重量部が更に好ましい。
【0040】
以上のような、本発明の洗剤粒子群の製造方法としては、例えば、以下に説明する方法で行われることが好ましい。なお、本発明の洗剤粒子群の製造方法の各工程の流れをまとめたフローチャートを図1に示す。また、本発明の洗剤粒子群の製造方法の制御ブロック図を図2に示す。
【0041】
洗剤粒子群の造粒開始とともに、攪拌型混合機1にベース顆粒と必要に応じて、粉体原料を仕込む(図1の▲1▼)。一定時間混合を行った後(図1の▲2▼)、ポンプ2aにより液状界面活性剤貯槽用タンク3中の液状界面活性剤を攪拌型混合機1に仕込む(図1の▲3▼)。液状界面活性剤仕込み後、一定時間混合した後(図1の▲4▼)、粉体供給機4を用いて、微粉体貯槽用ホッパー5中の表面改質用の微粉体を一定量添加する(図1の▲5▼)。
【0042】
一定時間混合(図1の▲6▼)した後、混合終了直前の混合時の負荷を攪拌型混合機1のモーター6aに接続した負荷検出器7を用いて計測し、予め制御計算機8のメモリにインプットしておいた負荷と必要微粉体量の関係から、追加添加すべき微粉体量を決定する。微粉体量の調整は、制御計算機8に電気的に接続した(図示せず)重量調節積算計19aの設定を調節し、これに電気的に接続したモーター6bの回転数を制御することで行なう。
尚、攪拌型混合機1の負荷は制御計算機8の信号入力部において平均化の処理が行われることが好ましい。
【0043】
また、計測した混合時の負荷を、予め制御計算機8のメモリにインプットしておいた目標となる負荷の上下限値と比較を行ってベース顆粒のシミ出し状態の検出を行い、以下のようにして、ベース顆粒の吸油能の制御を行う。なお、この目標となる上下限値は、装置種類やスケールによって異なるが、所望の洗剤粒子の品質を基準に適宜設定する。
【0044】
1.混合負荷が目標の上限値を超えている場合は、ベース顆粒の吸油能がアップするよう制御を行う(図1の▲7▼)。即ち、ベース顆粒温度調節計9の設定値を上げる操作、又はスラリー水分の流量調節積算計10aの設定値を上げる操作、又はベース顆粒水分調節計11の設定値を下げる操作を行う。これらの操作の変更量は、予め制御計算機8のメモリにインプットしておいた混合時の負荷の値(混合負荷)とベース顆粒温度、混合負荷とスラリー水分、混合負荷とベース顆粒水分とのそれぞれの関係(例えば、後述の実施例では、
【0045】
【数1】

Figure 2004224927
【0046】
を満たす関係)を用いて決定を行う。
【0047】
尚、ベース顆粒温度調節計9は、蒸気の流量コントロールバルブ12aと電気的に接続しており、前記のようにベース顆粒温度調節計9の設定値を上げることで、流量コントロールバルブ12aの開度が大きくなり、ベース顆粒温度が上昇する。
【0048】
また、流量調節積算計10aは、ポンプ2bと電気的に接続しており、前記のように流量調節積算計10aの設定値を上げることで、スラリータンク13への水供給量が上がる。
【0049】
また、ベース顆粒水分調節計11は、圧力指示調節計24、温度指示調節計22及び流量指示調節計23に電気的に接続している(図示せず)。そして、前記のように、ベース顆粒水分調節計11の設定値を下げることで、以下の(1) 〜(3) の制御操作を行なうことによりベース顆粒の水分が低下する:
(1) 圧力指示調節計24の設定値が下がり、これに接続した噴霧圧力調節用インバータ14の出力が減少して噴霧圧力が下がる、
(2) 温度指示調節計22の設定値が上がり、これに接続した流量コントロールバルブ12bの開度が大きくなり、噴霧乾燥装置15に流入する熱風(ガス)の温度が上昇する、
(3) 流量指示調節計23の設定値が上がり、これに接続した送風ブロワ用インバータ18の出力が上がり噴霧乾燥装置15に流入する風量が上がる。
【0050】
2.混合負荷が目標の下限値より小さい場合は、ベース顆粒の吸油能がダウンするよう制御を行う(図1の▲8▼)。即ち、ベース顆粒温度調節計9の設定値を下げる操作、又はスラリー水分の流量調節積算計10aの設定値を下げる操作、又はベース顆粒水分調節計11の設定値を上げる操作を行う。この際、操作の変更量は、予め制御計算機8のメモリにインプットしておいた混合負荷とベース顆粒温度、混合負荷とスラリー水分、混合負荷とベース顆粒水分とのそれぞれの関係を用いて決定を行う。なお、これらの具体的な調整は、前記負荷が目標の上限値を超えている場合の反対の操作を行う。
【0051】
上記操作は、これ以降に製造されるベース顆粒の吸油能を現時点の吸油能から変更する操作であり、現時点の吸油能が目標値をオーバーしているベース顆粒に対しては、製品の流動性を確保するために次の操作を行う。
1.混合負荷が目標の上限値を超えている場合は、粒子表面の液状界面活性剤のシミだし量が多く、表面改質用の微粉体が既定量となるように、残りの表面改質用の微粉体を添加すると、表面改質用微粉体が足りない状況となり、製品の流動性は劣化する。このような場合は、表面改質用の微粉体量が既定量以上となるように、残りの微粉体量を多くする添加を行う(図1の▲9▼A)。添加量の増分は、制御計算機8のメモリに予めインプットしておいた値を用いて決定を行う。例えば、この増加量は、テスト生産を行い、そのデータに基づいて決定する。
【0052】
2.混合負荷が目標の下限値より小さい場合は、粒子表面の液状界面活性剤のシミだし量が少なく、表面改質用の微粉体が既定量となるように、残りの表面改質用の微粉体を添加すると、表面改質用微粉体が過剰な状況となり、この場合も製品の流動性は劣化する。このような場合は、表面改質用の微粉体量が既定量以下となるように、残りの微粉体量を少なくする添加を行う(図1の▲9▼B)。添加量の減分は、制御計算機8のメモリに予めインプットしておいた値を用いて決定を行う。例えば、この減少量は、テスト生産を行い、そのデータに基づいて決定する。
【0053】
なお、混合負荷が目標の範囲内である場合、微粉体の量は既定量のままでよい(図1の▲9▼C)。
【0054】
以上のようにして微粉体を添加した後、一定時間混合し、洗剤粒子群の造粒を終了する。
【0055】
(洗剤粒子群の好ましい物性/測定方法)
本発明において製造される洗剤粒子群は、洗剤粒子群の平均粒径がベース顆粒の平均粒径の1.5倍以下である単核性洗剤粒子群であることが好ましい。
単核性洗剤粒子群とはベース顆粒を核として製造された洗剤粒子群であって、実質的に1個の洗剤粒子の中に1個のベース顆粒を核として有する洗剤粒子群をいう。実質的に1個とはベース顆粒同士が予め2個以上凝集したものも1個とみなすものとする。
【0056】
洗剤粒子群の単核性を表す指標として、下式で定義される粒子成長度を用いることができる。ここで言う単核性洗剤粒子群は、粒子成長度が、1.5以下が好ましく、1.3以下がより好ましい。
粒子成長度=(最終の洗剤粒子群の平均粒径)/(ベース顆粒の平均粒径)
最終の洗剤粒子群とは、液状界面活性剤担持後の洗剤粒子群、もしくは表面改質工程を有するならば表面改質工程を得た粒子群のことである。
【0057】
単核性洗剤粒子群の嵩密度は、特に限定されずに実施できる。例えば、コンパクト化のためには、500g/L以上が好ましく、より好ましくは500〜1000g/L、更に好ましくは600〜1000g/L、特に好ましくは650〜850g/Lである。単核性洗剤粒子群の平均粒径は、好ましくは150〜500μm、より好ましくは180〜380μmである。嵩密度及び平均粒径の測定方法はベース顆粒の場合と同様である。
【0058】
洗剤粒子群の流動時間としては、7秒以下が好ましく、6.5秒以下がより好ましい。流動時間は、JIS K 3362により規定された嵩密度測定用のホッパーから、100mlの粉末が流出するのに要する時間とする。
【0059】
洗剤粒子群の耐ケーキング性は、好ましくは篩通過率が90%以上、より好ましくは95%以上である。ケーキング性の試験法は次の通りである。
濾紙(ADVANTEC社製、No.2)で長さ10.2cm×幅6.2cm×高さ4cmの天部のない箱を作り、四隅をステープラーでとめた。試料50gを入れた該箱の上にアクリル樹脂板(15g)と鉛板(250g)をのせる。これを温度35℃、湿度40%雰囲気下2週間放置した後のケーキング状態について下記の通過率を求めることによって行う。
<通過率>
試験後の試料を篩(JIS Z 8801規定の目開き4760μm)上に静かにあけ、通過した粉末重量を計り、試験後の試料に対する通過率(%)を求める。
【0060】
洗剤粒子群のシミ出し性は、下記の試験法による評価が、好ましくは2ランク以上、より好ましくは1ランクであれば搬送系での機器への非イオン性界面活性剤含有粉末の付着防止、容器にシミ出し防止の工夫が不要となり好ましい。
シミ出し性の試験法:耐ケーキング試験を行った濾紙の容器の底部(粉体と非接触面)でのシミ出し状態を目視評価する。評価は、底部の濡れ面積で判定し、下記の1〜5ランクとする。
ランク1:濡れていない。ランク2:1/4程度の面が濡れている。ランク3:1/2程度の面が濡れている。ランク4:3/4程度の面が濡れている。ランク5:全面が濡れている。
【0061】
洗剤粒子群の溶解率は、好ましくは90%以上、より好ましくは95%以上である。溶解率の測定方法は次の通りである。
【0062】
5℃に冷却した71.2mgCaCO/リットルに相当する1リットルの硬水(Ca/Mgのモル比7/3)を1リットルビーカー(内径105mm、高さ150mmの円筒型、例えば岩城硝子社製1リットルガラスビーカー)の中に満たし、5℃の水温をウオーターバスにて一定に保った状態で、攪拌子(長さ35mm、直径8mm、例えば型式:ADVANTEC社製、テフロン丸型細型)にて水深に対する渦巻きの深さが略1/3となる回転数(800rpm)で攪拌する。1.0000±0.0010gとなるように縮分・秤量した単核性洗剤粒子群を攪拌下に水中に投入・分散させ攪拌を続ける。投入から60秒後にビーカー中の単核性洗剤粒子群分散液を重量既知のJIS Z 8801(ASTM No.200に相当)規定の目開き74μmの標準篩(直径100mm)で濾過し、篩上に残留した含水状態の単核性洗剤粒子群を篩と共に重量既知の開放容器に回収する。尚、濾過開始から篩を回収するまでの操作時間を10±2秒とする。回収した単核性洗剤粒子群の溶残物を105℃に加熱した電気乾燥機にて1時間乾燥し、その後、シリカゲルを入れたデシケーター(25℃)内で30分間保持して冷却する。冷却後、乾燥した洗剤の溶残物と篩と回収容器の合計の重量を測定し、次式によって単核性洗剤粒子群の溶解率(%)を算出する。尚、重量の測定は精密天秤を用いて行うこととする。
溶解率(%)={1−(T/S)}×100 (1)
S : 単核性洗剤粒子群の投入重量(g)
T : 上記攪拌条件にて得られた水溶液を上記篩に供したときに、篩上の残存する洗剤粒子群の溶残物の乾燥重量(乾燥条件:105℃の温度下に1時間保持した後、シリカゲルを入れたデシケーター(25℃)内で30分間保持する)(g)
【0063】
【実施例】
(検知運転)
攪拌装置を具備したジャケット付き混合槽に水5393kgを入れ、温度を50℃に調整した。これに硫酸ナトリウム(無水中性芒硝、四国化成(株)製)1296kg、亜硫酸ナトリウム(亜硫酸ソーダ、三井東圧(株)製)60kg、蛍光染料(チノパールCBS−X、チバガイギー社製)24kgを添加した。10分間攪拌後、炭酸ナトリウム(デンス灰(平均粒径:290μm)、セントラル硝子(株)製)1536kgを添加した後に40重量%ポリアクリル酸ナトリウム水溶液(特公平2−24283号公報の実施例に記載の方法に従って製造した。平均分子量10000、花王(株)製)1950kgを添加し、更に10分間攪拌後、塩化ナトリウム(やき塩:日本精塩(株)製)480kgを添加し、ゼオライト(トヨビルダー(4A型、平均粒径:3.5μm)、東ソー(株)製)1644kgを加えた。更に30分間攪拌してスラリーを得た。このスラリーの最終温度は、50℃に調整した。尚、このスラリーは水溶性塩類の一部が未溶解の状態で存在し、このスラリーの水分量は53重量%であった。
【0064】
スラリーをポンプで8000kg/Hrで噴霧乾燥塔(向流式)に供給し、塔頂及び塔中付近に設置した6本の圧力噴霧ノズルから噴霧圧2.5MPaで噴霧を行った。噴霧乾燥塔に供給する高温ガスは塔下部より温度が280℃で供給され、塔頂より105℃で排出された。得られたベース顆粒の水分量は1重量%、温度は120℃であった。
【0065】
ベース顆粒を70℃の熱風を用いてベース顆粒貯槽用ホッパーに空気輸送した。輸送後のベース顆粒の温度は80℃であった。
【0066】
レディゲミキサー(松坂技研(株)製、容量4200L、ジャケット付)に上記ベース顆粒500kgと炭酸ナトリウム(デンス灰(平均粒径:290μm)、セントラル硝子(株)製)100kgを投入し、主軸(20rpm)の攪拌を開始した。尚、ジャケットに80℃の温水を150L/分で流した。
【0067】
1分間攪拌した後に(攪拌は継続)、界面活性剤組成物(80℃で混合下のポリオキシエチレンアルキルエーテル10重量部に対してポリエチレングリコール1.2重量%、パルミチン酸ナトリウム0.7重量%に相当するパルミチン酸(ルナックP−95、花王(株)製)及びドデシルベンゼンスルホン酸ナトリウム12重量部に相当するドデシルベンゼンスルホン酸前駆体(ネオペレックスGS、花王(株)製)及び中和剤として水酸化ナトリウム水溶液を添加することによって作製したもの)250kgを3分間で投入し、その後6分間攪拌を行った。
【0068】
次に、ゼオライト50kg(規定量1)を投入し、主軸(60rpm)とチョッパー(3600rpm)の攪拌を1分間行った後、主軸(60rpm)の攪拌を0.5分間行った。このとき混合終了時の負荷は20.5kwであった。この値は目標とする混合負荷の上限値(19.0kw)よりも1.5kw高くなった。そこで、製品の物性を所望の状態に保持するために、ゼオライト70kg(規定量2+10kg)を投入し、主軸(60rpm)とチョッパー(3600rpm)の攪拌を0.5分間行った後、主軸(60rpm)の攪拌を1分間行い、造粒を終了した。得られた造粒物の流動性は5.8秒と良好であった。
【0069】
制御比較例1
規定量1のゼオライトを投入し攪拌するまでは、前記検知運転と同様の方法で製剤化を行った。このとき混合終了時の負荷は20.4kwであった。この値は目標とする混合負荷の上限値(19.0kw)よりも1.4kw高くなった。次に、しかしながら製品の物性を所望の状態に保持する微粉体量の調節を行なわずに、規定量のゼオライト60kg(規定量2)を投入し、主軸(60rpm)とチョッパー(3600rpm)の攪拌を0.5分間行った後、主軸(60rpm)の攪拌を1分間行い、造粒を終了した。得られた造粒物の流動性は7.3秒となり、好ましい流動性とはならなかった。これは、物性安定化の方法を行わなかったためである。
【0070】
制御実施例1
ベース顆粒をベース顆粒貯槽用ホッパーに空気輸送する熱風の温度を70℃→80℃にアップした。その結果、ベース顆粒の温度が80℃→85℃となった。このベース顆粒を用いて、規定量1のゼオライトの投入、攪拌まで前記検知運転の方法と同様に製剤化を行った結果、負荷は18.7kwとなった。この値は目標とする混合負荷の範囲内(17.0kw〜19.0kw)であった。そこで、規定量のゼオライト60kg(規定量2)を投入し、主軸(60rpm)とチョッパー(3600rpm)の攪拌を0.5分間行った後、主軸(60rpm)の攪拌を1分間行い、造粒を終了した。得られた造粒物の流動性は6.0秒と良好であった。
【0071】
制御実施例2
スラリーの水分量を0.5%増加する操作として、水の投入量を5393kg→5526kgにしてスラリーを調製し、ベース顆粒を得た(乾燥条件は変更しなかった)。このベース顆粒を用いて、規定量1のゼオライトの投入、攪拌まで前記検知運転の方法と同様に製剤化を行った結果、負荷は18.0kwとなった。この値は目標とする混合負荷の範囲内(17.0kw〜19.0kw)であった。そこで、規定量のゼオライト60kg(規定量2)を投入し、主軸(60rpm)とチョッパー(3600rpm)の攪拌を0.5分間行った後、主軸(60rpm)の攪拌を1分間行い、造粒を終了した。得られた造粒物の流動性は5.7秒と良好であった。
【0072】
【発明の効果】
本発明により、品質・物性の安定した洗剤粒子群を生産性よく製造することができるという効果が奏される。
【図面の簡単な説明】
【図1】図1は、本発明の洗剤粒子群の製造方法の各工程の流れをまとめたフローチャート図を示す。
【図2】図2は、本発明の洗剤粒子群の製造方法の制御ブロック図を示す。
【符号の説明】
1 攪拌型混合機
2 ポンプ
3 液状界面活性剤貯槽用タンク
4 粉体供給機
5 微粉体貯槽用ホッパー
6 モーター
7 負荷検出器
8 制御計算機
9 ベース顆粒温度調節計
10 流量調節積算計
11 ベース顆粒水分調節計
12 流量コントロールバルブ
13 スラリータンク
14 噴霧圧力調節用インバータ
15 噴霧乾燥装置
16 燃焼炉
17 送風ブロワ
18 送風ブロワ用インバータ
19 重量調節積算計
20 ベース顆粒貯槽用ホッパー
21 排風ブロワ
22 温度指示調節計
23 流量指示調節計
24 圧力指示調節計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a detergent particle group in which a surfactant composition is supported on base granules obtained by spray drying. More specifically, the present invention relates to a method for producing detergent particles that obtains detergent particles having stable quality and physical properties by controlling the oil absorbing ability of base granules.
[0002]
[Prior art]
Regarding the production of the granular detergent composition, as a method for obtaining stable physical properties (eg, fluidity, etc.), the production of the granular nonionic detergent composition is performed by detecting the load of a granulator or a kneading / extruder. A method has been disclosed in which the fluidity of the binder is grasped and the supply amount of a binder component is controlled according to the load (for example, see Patent Document 1). In addition, during the agitation granulation in which the liquid raw material is added to the powder raw material while stirring and granulating, the progress of the granulation is detected, and the granulation conditions (the number of rotations of the mixer, the addition speed of the binder) are determined according to the detected value. (For example, see Patent Document 2). However, in any of the examples, the composition of the detergent particles is changed in order to obtain stable physical properties. Therefore, there is a problem that the composition of the obtained detergent particles is not stable and the performance as designed does not appear. Was. In addition, none of the above publications disclose that attention is paid to the physical properties (oil absorption capacity) of the detergent raw material (base granule) as a control factor, and that a liquid raw material is supported on a powder raw material (when the liquid raw material is a powder). There is no description about base granules.
[0003]
[Patent Document 1]
JP-A-11-343498
[Patent Document 2]
JP-A-2000-84391
[0004]
[Problems to be solved by the invention]
Therefore, the present inventors have proposed a method for producing a detergent particle group in which a surfactant composition is supported on a base granule obtained by spray drying, by controlling the oil-absorbing ability of the base granule, which has hitherto not received any attention. It was found for the first time that a group of detergent particles having stable quality and physical properties could be obtained.
Accordingly, an object of the present invention is to provide a method for producing detergent particles capable of producing detergent particles having stable quality and physical properties with high productivity.
[0005]
[Means for Solving the Problems]
That is, the gist of the present invention is to provide a method for producing a detergent particle group comprising a base granule obtained by spray drying and carrying a liquid surfactant, the method comprising the step of controlling the oil absorption capacity of the base granule. About.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
(Aspect composition of base granule)
The base granule is, for example, a slurry containing a water-insoluble inorganic substance, a water-soluble polymer, and a water-soluble salt, and the content of each component is 20 to 90% by weight and 2 to 30% by weight, respectively, based on the solid content in the slurry. %, 5 to 78% by weight of the slurry can be obtained by spray drying. The average particle size, bulk density, pore volume, and particle strength can be controlled by adjusting the drying method and drying conditions in the above composition range. The contents of the water-insoluble inorganic substance, the water-soluble polymer, and the water-soluble salts in the slurry are in the ranges of 30 to 75% by weight, 3 to 20% by weight, and 10 to 67% by weight, respectively, based on the solid content in the slurry. More preferably, ranges from 40 to 70% by weight, 5 to 20% by weight, and 20 to 55% by weight are particularly preferred. The amount of water in the slurry is preferably 40 to 60% by weight, and more preferably 42 to 58% by weight.
[0007]
Here, examples of the water-insoluble inorganic substance include crystalline or amorphous aluminosilicates; clay compounds such as silicon dioxide, hydrated silicate compounds, pearlite, and bentonite. Examples of the water-soluble polymer include a carboxylic acid polymer, carboxymethyl cellulose, soluble starch, and saccharides. Examples of the water-soluble salts include water-soluble salts represented by alkali metal salts, ammonium salts, or amine salts each having a carbonate group, a hydrogen carbonate group, a sulfate group, a sulfite group, a hydrogen sulfate group, a hydrochloric acid group, or a phosphate group. Inorganic salts and low-molecular-weight water-soluble organic salts such as citric acid and fumarate are exemplified.
[0008]
The method for spray-drying the slurry and its conditions may be any known methods and conditions.
[0009]
(Average particle size and bulk density)
The average particle size of the base granules is preferably from 150 to 500 μm, more preferably from 180 to 350 μm, from the viewpoint of obtaining detergent particles having excellent solubility and fluidity. The bulk density can be implemented without any particular limitation. For example, it is preferably 400 g / L or more, more preferably 500 g / L or more from the viewpoint of compactness. From the viewpoint of solubility, the content is preferably 1500 g / L or less, and more preferably 1200 g / L or less.
The average particle size of the base granules of the present invention can be appropriately selected from the relationship with the desired average particle size of the detergent particles. In particular, in order to maintain performance such as high-speed dissolution of the base granules, it is preferable to maintain the shape as much as possible. Therefore, the average particle size of the detergent particles is preferably 1.5 times or less the average particle size of the base granules, and more preferably 1.3 times or less.
[0010]
(Particle strength)
From the viewpoint of suppressing the base granules from disintegrating while the base granules carry the liquid surfactant, the base granules are preferably harder. Specifically, the particle strength of the base granules is 100 kg / cm 2 More preferably, 200 kg / cm 2 The above is more preferred.
[0011]
(Method of measuring physical properties)
The average particle size of the base granules is measured from the weight fraction based on the size of the sieve after shaking the sample for 5 minutes using a standard sieve specified in JIS Z8801. The bulk density of the base granule is measured by a method specified by JIS K3362.
[0012]
The method for measuring the particle strength is as follows.
20 g of a sample is placed in a cylindrical container having an inner diameter of 3 cm and a height of 8 cm, and the tapping is performed 30 times (Tsutsui Rikakiki Co., Ltd., TVP1 type tapping-type close-packed bulk density measuring instrument, tapping conditions; Free fall from the height of the Measure the sample height immediately after the tapping operation is completed, and use it as the initial sample height. Thereafter, the entire upper end surface of the sample held in the container is pressurized at a speed of 10 mm / min by a pressurizing tester, and a load-displacement curve is measured. The initial sample height is multiplied by the slope of the linear portion where the displacement rate is 5% or less in the curve, and the value obtained by dividing the obtained value by the pressurized area is defined as the particle strength.
[0013]
(Liquid surfactant)
The surfactant to be mixed with the base granules in the present invention is liquid at the time of mixing, and examples thereof include anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants. One or a combination may be mentioned. Preferably, based on 100 parts by weight of the nonionic surfactant, 0 to 300 parts by weight of an anionic surfactant having a sulfate group or a sulfonic acid group, 1 to 100 parts by weight of a fixing agent for the nonionic surfactant Department. As used herein, the term "fixing agent" refers to a base that can suppress the fluidity of a nonionic surfactant that is liquid at normal temperature and can significantly increase the hardness of the composition in a state where the composition has lost fluidity. I do. Examples of the fixing agent include anionic surfactants such as fatty acid salts, hydroxy fatty acid salts, and alkyl phosphates, polyoxyalkylene-type nonionic compounds, and polyether-based nonionic compounds. Use of the above liquid surfactant composition improves the solubility and flow characteristics of the detergent particles, suppresses the disintegration of the base granules during mixing, and suppresses the appearance of the surfactant composition during storage (normal temperature). can do. The incorporation of an anionic surfactant having a sulfate group or a sulfonic acid group is more advantageous for improving the flow characteristics of the detergent particles and for suppressing the appearance of the surfactant composition during storage (at room temperature).
[0014]
The amount of the liquid surfactant is preferably from 10 to 100 parts by weight, more preferably from 12 to 80 parts by weight, and still more preferably from 15 to 70 parts by weight, based on 100 parts by weight of the base granules from the viewpoint of exhibiting detergency. Parts by weight. Within this range, a group of detergent particles having excellent solubility and flow characteristics can be obtained.
[0015]
(Oil absorption capacity of base granules)
The oil-absorbing ability of the base granule as used herein refers to the holding power of the liquid surfactant inside the base granule, and the large oil-absorbing ability of the base granule means that more liquid surfactant is contained inside the base granule. It means that it can be carried.
[0016]
In the method for producing detergent particles according to the present invention, as described above, there is one major feature in having a step of controlling the oil absorption capacity of the base granules. By having such a step, a detergent having stable quality and physical properties is provided. The effect that the particle group can be manufactured with high productivity is exhibited.
[0017]
Even if the oil absorption capacity of the base granules does not fluctuate, or even if the oil absorption capacity of the base granules does not fluctuate, due to the influence of the liquid surfactant and other detergent raw materials that can be used together with the base granules, the detergent particles after carrying the liquid surfactant Changes in the surface properties (stained state) affect the quality of the detergent particles. In other words, when the oil absorption capacity is changed to a high level (when the stain removal state is small), the removal of the stain of the liquid surfactant of the manufactured detergent particles is suppressed, and the caking resistance is improved, but the surplus surface modification is performed. The fluidity is reduced by the agent (when the amount of the surface modifier is constant). On the other hand, when the oil absorption capacity is changed low (when there are many stains), the fluidity is kept good to some extent, but the caking resistance tends to decrease due to the stain of the liquid surfactant. Become. Therefore, in order to stabilize the quality, it is necessary to always keep the state of the stain of the liquid surfactant on the surface of the detergent particles after carrying the liquid surfactant at an optimum value (range). Therefore, by controlling the oil absorbing ability of the base granules, the state of the liquid surfactant being stained on the surface of the detergent particles after carrying the liquid surfactant can be controlled. If the surface of the detergent particles after carrying the liquid surfactant carries more stain than the desired state (there is more liquid remaining on the surface of the particles), the surface state is adjusted by increasing the oil absorption capacity of the base granules If the surface of the detergent particles after carrying the liquid surfactant is less stained than the desired state (there is less residual liquid on the particle surface), the oil absorption capacity of the base granules can be reduced. The surface condition can be adjusted.
[0018]
(Method of detecting the spotting state)
As a method of detecting the state of stains of the liquid surfactant on the surface of the detergent particles after the liquid surfactant is loaded, it is also possible to observe the particles after the liquid surfactant is loaded or to measure physical properties (eg, fluidity). Can understand to some extent. Further, when the production method of the present invention has a step of mixing the base granules and the liquid surfactant using a stirring mixer having stirring blades, by detecting the load of the stirring mixer at the time of mixing. It is possible to detect the state of stain of the liquid surfactant on the surface of the detergent particles after the liquid surfactant is loaded. The load at the time of detection decreases as the amount of stains on the particle surface decreases, and the load increases as the amount of stains on the particle surface increases. Therefore, it is preferable to detect the spotting state on the surface of the detergent particles after loading the liquid surfactant by the load, and to control the oil absorbing ability of the base granules so that the load value falls within a predetermined range.
[0019]
(Control factor of oil absorption capacity)
Control factors that correlate with the oil absorption capacity of the base granules include, for example, the temperature of the base granules. The higher the temperature of the base granules when the liquid surfactant is supported, the higher the oil absorption capacity of the base granules, and the lower the temperature of the base granules, the smaller the oil absorption capacity of the base granules. That is, the oil absorbing ability can be controlled by controlling the temperature of the base granules when the liquid surfactant is loaded. The control temperature range of the base granules is not necessarily limited by the type of the liquid surfactant, but is preferably equal to or higher than the pour point of the liquid surfactant, more preferably 120 ° C or lower, and further preferably 100 ° C or lower. The pour point can be measured by the method of JIS K 2269. As a method for controlling the temperature of the base granules, it is possible to adjust the spray-drying conditions, bring the base granules after spray-drying into direct contact with, for example, hot or cold air, or adjust the temperature by using a jacket of a mixer or the like. In addition, in the case of a production facility involving pneumatic transportation of the base granules, a method of adjusting the temperature by the temperature of the accompanying air is preferable.
[0020]
Other control factors that correlate with the oil absorption capacity of the base granules include, for example, the water content of the slurry that is spray-dried when producing the base granules. The higher the slurry moisture within a certain range, the greater the oil absorption capacity of the base granules. It is considered that the reason why the oil absorbing ability is improved is that when the slurry water content is increased, the pore volume of the base granules increases. The control range of the slurry water content is not particularly limited, but it is necessary to set the range with respect to the standard slurry water content (standard amount, that is, the desired slurry water amount) in a range where the influence on the spray droplet diameter and the drying conditions is small. There is. For example, the range is preferably a standard amount ± 3% by weight, and more preferably a standard amount ± 2% by weight.
[0021]
The pore volume of the base granules prepared with a standard amount of slurry water is preferably 0.2 cc / g or more, more preferably 0.3 cc / g or more. When the pore volume is in this range, it is suitable for supporting a desired liquid surfactant.
The pore volume of the base granules can be measured by a mercury porosimeter [“PORE Sizer 9320” manufactured by Shimadzu Corporation].
[0022]
Other controlling factors that correlate with the oil absorption capacity of the base granules include, for example, the water content of the base granules. The lower the water content of the base granules, the greater the oil absorption capacity. The moisture control range is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less from the viewpoint of the particle strength of the base granules. In order to lower the water content of the base granules, it is preferable to adjust the drying speed by lowering the spray pressure, increasing the blowing temperature, or increasing the blowing amount.
[0023]
The factors correlated with the oil absorption capacity of the base granules may be operated alone or in combination. In addition, it is also possible to perform operations with priorities. For example, the operation order includes (1) base granule temperature, (2) slurry water content, and (3) base granule water content.
[0024]
Also, although not a direct control of the oil absorption capacity of the base granules, the temperature of the loaded liquid surfactant can also be used to control the spotting state. The higher the temperature of the liquid surfactant carried, the smaller the spotting state becomes, and the lower the temperature of the liquid surfactant, the larger the spotting state becomes. For example, the temperature of the liquid surfactant is preferably from the pour point of the surfactant to 90 ° C, and more preferably from 10 ° C to 85 ° C higher than the pour point.
[0025]
Although it is not a controlling factor of the oil absorption capacity of the base granules, the stain removal state can be controlled by adjusting the amounts of the base granules and the liquid surfactant. For example, the amount of the liquid surfactant added to 100 parts by weight of the base granules is preferably a standard amount (design) ± 3 parts by weight, and more preferably a standard amount (design) ± 2 parts by weight.
[0026]
(Detergent ingredients other than base granules)
In the present invention, detergent raw materials other than the above-mentioned base granules may be mixed with the base granules simultaneously or before and after as desired. As such a detergent raw material, a base having sequestering ability such as zeolite and citric acid, a base having alkaline ability such as sodium carbonate and potassium carbonate, a sequestering ability with crystalline silicate and the like, and both alkaline ability And powdered raw materials such as amorphous silica and amorphous aluminosilicate having high oil absorbing ability. In this case, the amount is preferably at least 1 part by weight, more preferably at least 3 parts by weight, based on 100 parts by weight of the base granules from the viewpoint of exhibiting a desired effect. Also, from the viewpoint of the effect of controlling the oil absorption capacity of the base granules, it is preferably at most 20 parts by weight, more preferably at most 10 parts by weight.
[0027]
(Detergent particle group manufacturing method loading step)
In the present invention, the liquid surfactant is supported on the base granules by mixing the base granules and the liquid surfactant. A preferable mixing condition is that the peak temperature of the mixture at the time of mixing is equal to or higher than the pour point of the liquid surfactant from the viewpoint of promoting the loading of the liquid surfactant. The peak temperature is the temperature at which the temperature of the mixture becomes highest in the mixing step after the addition of the liquid surfactant. The pour point is measured according to the method of JIS K 2269. In addition, when detecting the state of stain of the liquid surfactant on the surface of the particles after the liquid surfactant is supported by detecting the load at the time of mixing, it is preferable to use a stirring mixer having stirring blades. In this case, the rotation speed at the time of detecting the stirring load may be set as appropriate.
[0028]
When the mixing is performed in a batch type, the stirring type mixer is not particularly limited. For example, (1) a type in which a mixing tank has a stirring shaft inside and a stirring blade is attached to this shaft to mix powder. Mixers: For example, Henschel mixer (manufactured by Mitsui Miike Kakoki Co., Ltd.), high speed mixer (manufactured by Fukae Kogyo Co., Ltd.), vertical granulator (manufactured by Powrex Co., Ltd.), Ladyge mixer (manufactured by Matsuzaka Giken Co., Ltd.) ), Proshare mixer (manufactured by Taiheiyo Kiko Co., Ltd.) and the like. (2) A mixer of the type in which mixing is performed by rotation of a ribbon-shaped blade forming a spiral in a cylindrical or semi-cylindrical fixed container: for example, a ribbon mixer (manufactured by Nichiwa Machine Industry Co., Ltd.); (3) A mixer of a type in which a screw rotates and revolves around a shaft parallel to a wall of a container along a conical container to perform mixing, such as a batch kneader (manufactured by Satake Chemical Machinery Co., Ltd.). For example, there is a Nauta mixer (manufactured by Hosokawa Micron Corporation).
[0029]
Among the above-mentioned stirrer-type mixers, it is particularly preferable to use a mixer of the type in which a mixing tank has a stirring shaft inside and a stirring blade is attached to this shaft to mix powders. And ProShare mixer (made by Taiheiyo Kiko Co., Ltd.). Further, a mixer of a type in which the mixing is performed by rotating a ribbon-like blade forming a spiral in a cylindrical fixed container: for example, a ribbon mixer (manufactured by Nichiwa Machine Industry Co., Ltd.) is preferable.
[0030]
In addition, when performing mixing in a continuous manner, the use of a continuous stirring mixer that can satisfy the present invention is not particularly limited, but, for example, the base granules using a continuous apparatus in the stirring mixer described above. A liquid surfactant may be mixed.
[0031]
Suitable mixing time (in the case of a batch type) and average residence time (in the case of a continuous type) are, for example, preferably 1 to 20 minutes, and particularly preferably 2 to 10 minutes.
[0032]
(Surface modification process)
The present invention preferably further includes a step of mixing the fine powder with the detergent particles carrying the liquid surfactant (surface modification step). In this step, the fine powder coats the surface of the mixture to obtain a group of detergent particles having excellent fluidity, and stains of the liquid surfactant on the surface of the detergent particles after the liquid surfactant is loaded. The quality of the detergent particles can be stabilized by adjusting the amount of the fine powder added according to the state. That is, when the surface condition causes more stains than desired, the amount of fine powder to be added is increased, and when the surface condition is less than desired, the amount of fine powder to be added is decreased. The adjustment amount of the fine powder may be set in advance in accordance with the appearance of stains on the surface, or an appropriate amount may be determined by adding a plurality of times.
[0033]
The detection of the stain appearance state may be performed before the surface modification step or may be performed in the surface modification step. That is, by detecting at least one of the load before adding the fine powder, the load for adding and mixing a part of the predetermined amount of the fine powder, and the load for adding and mixing the predetermined amount of the fine powder. Can be detected. Among them, the method of adding a part of the fine powder can detect the spotting state with higher sensitivity.
[0034]
A preferable mixing condition is to use a stirrer-type mixer provided with both a stirrer and a crushing blade, and the operating conditions (such as the number of rotations) of the stirring blade and the crushing blade may be appropriately set so as not to disintegrate the base granules as much as possible. When detecting the state of stains on the surface of the detergent particles after carrying the liquid surfactant in this step, it is preferable that the crushing blade be stopped during the load detection. Further, the number of rotations at the time of load detection may be set as appropriate.
[0035]
As a preferable mixing device, among the above-mentioned stirring type mixers, a device provided with both a stirring blade and a crushing blade is exemplified. When such a stirring type mixer is used, the step of mixing the base granules and the liquid surfactant and the surface modification step can be performed using the same apparatus, so that the equipment is simplified. Preferably, examples of such an apparatus include a Ladyge mixer (manufactured by Matsuzaka Giken Co., Ltd.) and a pro-share mixer (manufactured by Taiheiyo Kiko Co., Ltd.).
[0036]
In the surface modification step, the mixing time with the fine powder is preferably about 0.5 to 3 minutes.
[0037]
(Fine powder)
In the present specification, the fine powder is a powder that is coated on the surface of the detergent particles and is blended to improve the fluidity of the detergent particles. Is preferred. Specifically, aluminosilicate is desirable. In addition to aluminosilicates, inorganic fine powders such as silicate compounds such as calcium silicate, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, and crystalline silicate compounds are also preferable. Further, a metal soap having primary particles of 10 μm or less can be used in the same manner.
[0038]
The fine powder preferably has an average primary particle size of 0.1 to 10 μm from the viewpoint that the coverage of the surface of the detergent particles is improved and the fluidity of the detergent particles is improved. The average particle size of the fine powder is measured by a method using light scattering, for example, a particle analyzer (manufactured by HORIBA, Ltd.) or microscopic observation.
[0039]
The amount of the fine powder to be used is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, based on 100 parts by weight of the mixture after the liquid surfactant is supported from the viewpoint of the efficiency of surface coating. Further, from the viewpoint of fluidity, the amount is preferably 100 parts by weight or less, more preferably 75 parts by weight or less, and even more preferably 50 parts by weight.
[0040]
As a method for producing the detergent particle group of the present invention as described above, for example, it is preferable to carry out the method described below. FIG. 1 is a flowchart summarizing the flow of each step of the method for producing detergent particles according to the present invention. FIG. 2 is a control block diagram of the method for producing detergent particles according to the present invention.
[0041]
At the same time as the start of granulation of the detergent particles, the base granules and, if necessary, the powdery raw materials are charged into the stirring mixer 1 ((1) in FIG. 1). After mixing for a certain period of time ((2) in FIG. 1), the liquid surfactant in the liquid surfactant storage tank 3 is charged into the stirring type mixer 1 by the pump 2a ((3) in FIG. 1). After charging the liquid surfactant and mixing for a certain time ((4) in FIG. 1), a certain amount of the fine powder for surface modification in the hopper 5 for the fine powder storage tank is added using the powder feeder 4. ((5) in FIG. 1).
[0042]
After mixing for a certain period of time ((6) in FIG. 1), the load at the time of mixing immediately before the end of mixing is measured using the load detector 7 connected to the motor 6a of the stirring type mixer 1, and the memory of the control computer 8 is stored in advance. The amount of the fine powder to be additionally added is determined from the relationship between the load and the required fine powder input to the above. The adjustment of the amount of fine powder is performed by adjusting the setting of a weight adjustment integrator 19a (not shown) electrically connected to the control computer 8, and controlling the number of revolutions of the motor 6b electrically connected thereto. .
It is preferable that the load of the agitating mixer 1 be averaged at the signal input section of the control computer 8.
[0043]
Further, the measured load at the time of mixing is compared with the upper and lower limit values of a target load previously input to the memory of the control computer 8 to detect a stained state of the base granules, and the following is performed. Thus, the oil absorption capacity of the base granules is controlled. The target upper and lower limits vary depending on the type of the apparatus and the scale, but are appropriately set based on the desired quality of the detergent particles.
[0044]
1. If the mixing load exceeds the target upper limit, control is performed so that the oil absorption capacity of the base granules is increased ((7) in FIG. 1). That is, an operation of increasing the set value of the base granule temperature controller 9, an operation of increasing the set value of the slurry moisture flow rate integrator 10a, or an operation of decreasing the set value of the base granule moisture controller 11 is performed. The amounts of change in these operations are the load value at the time of mixing (mixing load) and the base granule temperature, the mixing load and the slurry moisture, and the mixing load and the base granule moisture, which have been input to the memory of the control computer 8 in advance. (For example, in the embodiment described below,
[0045]
(Equation 1)
Figure 2004224927
[0046]
Is determined using the relationship that satisfies.
[0047]
The base granule temperature controller 9 is electrically connected to the steam flow control valve 12a, and the opening of the flow control valve 12a is increased by increasing the set value of the base granule temperature controller 9 as described above. And the base granule temperature rises.
[0048]
Further, the flow rate adjusting integrator 10a is electrically connected to the pump 2b, and the water supply amount to the slurry tank 13 is increased by increasing the set value of the flow rate adjusting integrator 10a as described above.
[0049]
The base granule moisture controller 11 is electrically connected to a pressure indicating controller 24, a temperature indicating controller 22, and a flow rate indicating controller 23 (not shown). Then, as described above, by lowering the set value of the base granule moisture controller 11, the following control operations (1) to (3) reduce the moisture content of the base granule:
(1) The set value of the pressure indicating controller 24 decreases, the output of the spray pressure adjusting inverter 14 connected thereto decreases, and the spray pressure decreases.
(2) The set value of the temperature indicating controller 22 increases, the opening of the flow control valve 12b connected thereto increases, and the temperature of the hot air (gas) flowing into the spray dryer 15 increases.
(3) The set value of the flow rate indicator controller 23 increases, the output of the blower blower inverter 18 connected thereto increases, and the amount of air flowing into the spray dryer 15 increases.
[0050]
2. When the mixing load is smaller than the target lower limit value, control is performed so that the oil absorption capacity of the base granules decreases ([8] in FIG. 1). That is, an operation of decreasing the set value of the base granule temperature controller 9, an operation of decreasing the set value of the slurry moisture flow rate adjusting integrator 10 a, or an operation of increasing the set value of the base granule moisture controller 11 is performed. At this time, the change amount of the operation is determined using the respective relationships between the mixing load and the base granule temperature, the mixing load and the slurry moisture, and the mixing load and the base granule moisture, which are input to the memory of the control computer 8 in advance. Do. In addition, these specific adjustments perform the opposite operation when the load exceeds the target upper limit value.
[0051]
The above operation is an operation for changing the oil absorption capacity of the base granules manufactured thereafter from the current oil absorption capacity, and for the base granules in which the current oil absorption capacity exceeds the target value, the flowability of the product is changed. Perform the following operations to secure
1. When the mixing load exceeds the target upper limit, the amount of the liquid surfactant on the particle surface is large, and the remaining amount of the surface modification powder is adjusted so that the fine powder for the surface modification becomes a predetermined amount. When the fine powder is added, there is a shortage of the fine powder for surface modification, and the fluidity of the product deteriorates. In such a case, addition is performed to increase the amount of the remaining fine powder so that the amount of the fine powder for surface modification is equal to or more than the predetermined amount ([9] A in FIG. 1). The increment of the addition amount is determined by using a value previously input to the memory of the control computer 8. For example, the increase amount is determined based on data obtained by performing test production.
[0052]
2. When the mixing load is smaller than the target lower limit value, the remaining amount of the fine powder for surface modification is such that the amount of the liquid surfactant on the particle surface is small and the fine powder for surface modification becomes a predetermined amount. Is added, the fine powder for surface reforming becomes excessive, and the fluidity of the product also deteriorates in this case. In such a case, addition is performed to reduce the amount of the remaining fine powder so that the amount of the fine powder for surface modification becomes equal to or less than the predetermined amount ([9] B in FIG. 1). The decrement of the addition amount is determined using a value previously input to the memory of the control computer 8. For example, this reduction amount is determined based on data obtained by performing test production.
[0053]
When the mixing load is within the target range, the amount of the fine powder may be the predetermined amount ((9) C in FIG. 1).
[0054]
After adding the fine powder as described above, mixing is performed for a certain period of time, and the granulation of the detergent particles is completed.
[0055]
(Preferred physical properties / measurement method of detergent particles)
The detergent particles produced in the present invention are preferably mononuclear detergent particles in which the average particle size of the detergent particles is 1.5 times or less the average particle size of the base granules.
The mononuclear detergent particles are detergent particles manufactured with the base granules as nuclei, and are substantially detergent particles having one base granule as a nucleus in one detergent particle. The term “substantially one” refers to a case where two or more base granules are aggregated in advance.
[0056]
As an index indicating the mononuclear property of the detergent particle group, a particle growth degree defined by the following equation can be used. The mononuclear detergent particles as referred to herein have a particle growth of preferably 1.5 or less, more preferably 1.3 or less.
Particle growth degree = (average particle size of final detergent particle group) / (average particle size of base granule)
The final detergent particles are the detergent particles after the liquid surfactant is loaded, or the particles that have undergone the surface modification step if they have a surface modification step.
[0057]
The bulk density of the mononuclear detergent particles can be carried out without any particular limitation. For example, for compactness, it is preferably 500 g / L or more, more preferably 500 to 1000 g / L, further preferably 600 to 1000 g / L, and particularly preferably 650 to 850 g / L. The average particle size of the mononuclear detergent particles is preferably 150 to 500 μm, more preferably 180 to 380 μm. The methods for measuring the bulk density and the average particle size are the same as those for the base granules.
[0058]
The flow time of the detergent particles is preferably 7 seconds or less, more preferably 6.5 seconds or less. The flow time is the time required for 100 ml of the powder to flow out of the hopper for bulk density measurement specified by JIS K 3362.
[0059]
As for the caking resistance of the detergent particles, the sieve passing rate is preferably 90% or more, more preferably 95% or more. The test method of the caking property is as follows.
A topless box of 10.2 cm in length, 6.2 cm in width and 4 cm in height was made from a filter paper (No. 2 manufactured by ADVANTEC) and stapled at four corners. An acrylic resin plate (15 g) and a lead plate (250 g) are placed on the box containing 50 g of the sample. This is carried out by obtaining the following passage rate for the caked state after leaving it for two weeks in an atmosphere at a temperature of 35 ° C. and a humidity of 40%.
<Passage rate>
The sample after the test is gently opened on a sieve (mesh size 4760 μm specified in JIS Z 8801), the weight of the passed powder is weighed, and the pass ratio (%) to the sample after the test is determined.
[0060]
Detergency of detergent particles is evaluated by the following test method, preferably 2 ranks or more, more preferably 1 rank if the prevention of adhesion of nonionic surfactant-containing powder to equipment in the transport system, This is preferable because the container does not need to be devised to prevent stains.
Test method for stain removal property: The stain removal state at the bottom (non-contact surface with powder) of the filter paper container subjected to the caking resistance test is visually evaluated. The evaluation is made based on the wet area of the bottom, and the following 1 to 5 ranks are used.
Rank 1: Not wet. Rank 2: About 1/4 surface is wet. Rank 3: About 1/2 surface is wet. Rank 4: About 3/4 surface is wet. Rank 5: The entire surface is wet.
[0061]
The solubility of the detergent particles is preferably 90% or more, more preferably 95% or more. The method for measuring the dissolution rate is as follows.
[0062]
71.2 mg CaCO cooled to 5 ° C 3 1 liter of hard water (7/3 molar ratio of Ca / Mg) corresponding to 1 / liter is filled in a 1 liter beaker (a cylindrical type having an inner diameter of 105 mm and a height of 150 mm, for example, a 1 liter glass beaker manufactured by Iwaki Glass Co., Ltd.), While maintaining the water temperature at 5 ° C. constant with a water bath, the depth of the spiral with respect to the water depth is approximately 1 / a with a stirrer (length: 35 mm, diameter: 8 mm, for example, model: ADVANTEC, Teflon round thin type). Stir at a rotation speed of 3 (800 rpm). The mononuclear detergent particles, which have been reduced and weighed so as to be 1.0000 ± 0.0010 g, are charged and dispersed in water with stirring, and stirring is continued. After 60 seconds from the introduction, the mononuclear detergent particle group dispersion in the beaker is filtered through a standard sieve (diameter 100 mm) having a mesh size of 74 μm and having a mesh size of JIS Z 8801 (corresponding to ASTM No. 200) of known weight. The remaining hydrous mononuclear detergent particles are collected together with a sieve into an open container of known weight. The operation time from the start of filtration to the collection of the sieve is 10 ± 2 seconds. The collected residue of the mononuclear detergent particles is dried in an electric dryer heated to 105 ° C. for 1 hour, and then cooled in a desiccator (25 ° C.) containing silica gel for 30 minutes. After cooling, the total weight of the dried detergent residue, the sieve, and the collection container is measured, and the dissolution rate (%) of the mononuclear detergent particles is calculated by the following equation. The weight is measured using a precision balance.
Dissolution rate (%) = {1− (T / S)} × 100 (1)
S: Input weight of mononuclear detergent particles (g)
T: When the aqueous solution obtained under the above stirring conditions is supplied to the above sieve, the dry weight of the residue of the detergent particles remaining on the sieve (drying condition: after keeping at a temperature of 105 ° C. for 1 hour) , Held in a desiccator (25 ° C.) containing silica gel for 30 minutes) (g)
[0063]
【Example】
(Detection operation)
5393 kg of water was put into a jacketed mixing tank equipped with a stirrer, and the temperature was adjusted to 50 ° C. 1296 kg of sodium sulfate (anhydrous neutral sodium sulfate, manufactured by Shikoku Chemicals Co., Ltd.), 60 kg of sodium sulfite (sodium sulfite, manufactured by Mitsui Toatsu Co., Ltd.), and 24 kg of a fluorescent dye (Tinopearl CBS-X, manufactured by Ciba Geigy) are added. did. After stirring for 10 minutes, 1536 kg of sodium carbonate (dense ash (average particle size: 290 μm), manufactured by Central Glass Co., Ltd.) was added, and then a 40% by weight aqueous solution of sodium polyacrylate (see the example of Japanese Patent Publication No. 2-24283). 1950 kg of an average molecular weight of 10000, manufactured by Kao Corporation was added, and after stirring for 10 minutes, 480 kg of sodium chloride (yaki salt: manufactured by Nippon Seisho Co., Ltd.) was added, and zeolite (Toyo) was added. 1644 kg of a builder (4A type, average particle size: 3.5 μm) manufactured by Tosoh Corporation was added. The slurry was further stirred for 30 minutes to obtain a slurry. The final temperature of this slurry was adjusted to 50 ° C. In addition, this slurry existed in a state where a part of the water-soluble salts was not dissolved, and the water content of this slurry was 53% by weight.
[0064]
The slurry was supplied to the spray drying tower (countercurrent type) at 8000 kg / Hr by a pump, and spraying was performed at a spray pressure of 2.5 MPa from six pressure spray nozzles installed at the top and in the vicinity of the tower. The high-temperature gas supplied to the spray drying tower was supplied at a temperature of 280 ° C. from the lower part of the tower, and was discharged at a temperature of 105 ° C. from the top of the tower. The water content of the obtained base granules was 1% by weight, and the temperature was 120 ° C.
[0065]
The base granules were pneumatically transported to a base granule storage hopper using hot air at 70 ° C. The temperature of the base granules after transport was 80 ° C.
[0066]
500 kg of the above-mentioned base granules and 100 kg of sodium carbonate (dense ash (average particle size: 290 μm), manufactured by Central Glass Co., Ltd.) are put into a Loedige mixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 4200 L, with jacket), and the main shaft ( Stirring at 20 rpm) was started. In addition, hot water of 80 ° C. was flowed at 150 L / min through the jacket.
[0067]
After stirring for 1 minute (continuation of stirring), the surfactant composition (polyethylene glycol 1.2% by weight based on 10 parts by weight of polyoxyethylene alkyl ether mixed at 80 ° C., 0.7% by weight of sodium palmitate) Acid (Lunac P-95, manufactured by Kao Corporation) and dodecylbenzenesulfonic acid precursor (Neoperex GS, manufactured by Kao Corporation) equivalent to 12 parts by weight of sodium dodecylbenzenesulfonate and a neutralizing agent (Prepared by adding an aqueous solution of sodium hydroxide) was added in 250 kg over 3 minutes, followed by stirring for 6 minutes.
[0068]
Next, 50 kg of zeolite (specified amount 1) was charged, and the main shaft (60 rpm) and the chopper (3600 rpm) were stirred for 1 minute, and then the main shaft (60 rpm) was stirred for 0.5 minute. At this time, the load at the end of the mixing was 20.5 kw. This value was 1.5 kW higher than the target upper limit (19.0 kw) of the mixed load. Then, in order to maintain the physical properties of the product in a desired state, 70 kg of zeolite (a prescribed amount of 2 + 10 kg) is charged, the main shaft (60 rpm) and the chopper (3600 rpm) are stirred for 0.5 minute, and then the main shaft (60 rpm). Was stirred for 1 minute to complete the granulation. The fluidity of the obtained granules was as good as 5.8 seconds.
[0069]
Control Comparative Example 1
Until the specified amount of zeolite was charged and stirred, the formulation was performed in the same manner as in the detection operation. At this time, the load at the end of the mixing was 20.4 kw. This value was 1.4 kW higher than the target upper limit (19.0 kW) of the mixed load. Next, 60 kg of the specified amount of zeolite (specified amount 2) is introduced without adjusting the amount of fine powder for maintaining the physical properties of the product in a desired state, and the main shaft (60 rpm) and the chopper (3600 rpm) are stirred. After 0.5 minutes, the main shaft (60 rpm) was stirred for 1 minute to complete granulation. The fluidity of the obtained granulated product was 7.3 seconds, which was not a favorable fluidity. This is because the method of stabilizing physical properties was not performed.
[0070]
Control Example 1
The temperature of the hot air for pneumatically transporting the base granules to the base granule storage hopper was increased from 70 ° C to 80 ° C. As a result, the temperature of the base granules was changed from 80 ° C to 85 ° C. Using this base granule, the formulation was performed in the same manner as in the above-mentioned detection operation method until the introduction and stirring of the specified amount of zeolite 1, and as a result, the load was 18.7 kw. This value was within the range of the target mixed load (17.0 kw to 19.0 kw). Then, 60 kg of the specified amount of zeolite (the specified amount 2) is charged, and the main shaft (60 rpm) and the chopper (3600 rpm) are stirred for 0.5 minutes, and then the main shaft (60 rpm) is stirred for 1 minute to perform granulation. finished. The fluidity of the obtained granules was as good as 6.0 seconds.
[0071]
Control Example 2
As an operation of increasing the water content of the slurry by 0.5%, the slurry was prepared by changing the input amount of water from 5393 kg to 5526 kg to obtain base granules (drying conditions were not changed). Using this base granule, the formulation was carried out in the same manner as in the above-mentioned detection operation method until the introduction and stirring of the specified amount of zeolite 1, and as a result, the load became 18.0 kW. This value was within the range of the target mixed load (17.0 kw to 19.0 kw). Then, 60 kg of the specified amount of zeolite (the specified amount 2) is charged, and the main shaft (60 rpm) and the chopper (3600 rpm) are stirred for 0.5 minutes, and then the main shaft (60 rpm) is stirred for 1 minute to perform granulation. finished. The fluidity of the obtained granules was as good as 5.7 seconds.
[0072]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that a detergent particle group with stable quality and physical properties can be manufactured with high productivity.
[Brief description of the drawings]
FIG. 1 is a flowchart summarizing the flow of each step of a method for producing a detergent particle group according to the present invention.
FIG. 2 is a control block diagram of the method for producing detergent particles according to the present invention.
[Explanation of symbols]
1 stirring type mixer
2 pump
3 Liquid surfactant storage tank
4 Powder feeder
5 Hopper for fine powder storage tank
6 motor
7 Load detector
8 Control computer
9 Base granule temperature controller
10 Flow control integrator
11 Base granule moisture controller
12 Flow control valve
13 slurry tank
14 Inverter for adjusting spray pressure
15 Spray dryer
16 Combustion furnace
17 Blower
18 Inverter for blower
19 Weight adjustment integrator
20 Base Granule Storage Tank Hopper
21 Exhaust air blower
22 Temperature indicating controller
23 Flow indication controller
24 Pressure indicating controller

Claims (6)

噴霧乾燥によって得られるベース顆粒に液状界面活性剤を担持してなる洗剤粒子群の製法において、該ベース顆粒の吸油能を制御する工程を有する洗剤粒子群の製造方法。A method for producing detergent particles comprising a base granule obtained by spray drying and carrying a liquid surfactant, the method comprising the step of controlling the oil absorption capacity of the base granules. ベース顆粒の温度を調整してベース顆粒の吸油能を制御する請求項1記載の製造方法。The production method according to claim 1, wherein the oil absorption capacity of the base granules is controlled by adjusting the temperature of the base granules. 噴霧乾燥するスラリーの水分を調整してベース顆粒の吸油能を制御する請求項1又は2記載の製造方法。3. The production method according to claim 1, wherein the oil absorption of the base granules is controlled by adjusting the water content of the slurry to be spray-dried. 攪拌型混合機を用いてベース顆粒と液状界面活性剤を混合する工程を有し、該攪拌型混合機の負荷を検出し、該負荷を所定内にするようにベース顆粒の吸油能を制御する請求項1〜3いずれか記載の製造方法。A step of mixing the base granules and the liquid surfactant using a stirrer-type mixer, detecting the load of the stirrer-type mixer, and controlling the oil absorption capacity of the base granules so that the load is within a predetermined range. The method according to claim 1. 微粉体を添加して、粒子表面を該微粉体で被覆する工程を有し、液状界面活性剤担持後の洗剤粒子表面のシミ出し状態に応じて該微粉体の添加量を制御する請求項1〜4いずれか記載の製造方法。2. The method according to claim 1, further comprising the step of adding a fine powder to coat the surface of the particle with the fine powder, and controlling an amount of the fine powder to be added according to a stained state of the surface of the detergent particle after the liquid surfactant is carried. 5. The production method according to any one of claims 1 to 4. 5℃の水に洗剤粒子を投入し以下に示す攪拌条件にて60秒間攪拌してJIS Z 8801規定の標準篩(目開き74μm )に供した場合、式(1)で算出される洗剤粒子群の溶解率が90%以上である請求項1〜5いずれか記載の製造方法。
溶解率(%)={1−(T/S)}×100 (1)
S : 洗剤粒子群の投入重量(g)
T : 上記攪拌条件にて得られた水溶液を上記篩に供したときに、篩上の残存する洗剤粒子群の溶残物の乾燥重量(乾燥条件:105℃の温度下に1時間保持した後、シリカゲルを入れたデシケーター(25℃)内で30分間保持する)(g)
When detergent particles are put into 5 ° C. water and stirred for 60 seconds under the following stirring conditions and supplied to a standard sieve specified by JIS Z 8801 (opening: 74 μm), the detergent particle group calculated by the formula (1) The production method according to any one of claims 1 to 5, wherein a dissolution rate of the compound is 90% or more.
Dissolution rate (%) = {1− (T / S)} × 100 (1)
S: Input weight of detergent particles (g)
T: When the aqueous solution obtained under the above stirring conditions is supplied to the above sieve, the dry weight of the residue of the detergent particles remaining on the sieve (drying condition: after keeping at a temperature of 105 ° C. for 1 hour) , Held in a desiccator (25 ° C.) containing silica gel for 30 minutes) (g)
JP2003015152A 2003-01-23 2003-01-23 Method for producing detergent particles Expired - Fee Related JP4145154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015152A JP4145154B2 (en) 2003-01-23 2003-01-23 Method for producing detergent particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015152A JP4145154B2 (en) 2003-01-23 2003-01-23 Method for producing detergent particles

Publications (2)

Publication Number Publication Date
JP2004224927A true JP2004224927A (en) 2004-08-12
JP4145154B2 JP4145154B2 (en) 2008-09-03

Family

ID=32902983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015152A Expired - Fee Related JP4145154B2 (en) 2003-01-23 2003-01-23 Method for producing detergent particles

Country Status (1)

Country Link
JP (1) JP4145154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160914A (en) * 2004-12-08 2006-06-22 Kao Corp Detergent for hand washing laundry
JP2007063382A (en) * 2005-08-30 2007-03-15 Kao Corp Softening detergent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160914A (en) * 2004-12-08 2006-06-22 Kao Corp Detergent for hand washing laundry
JP4515239B2 (en) * 2004-12-08 2010-07-28 花王株式会社 Hand washing laundry detergent
JP2007063382A (en) * 2005-08-30 2007-03-15 Kao Corp Softening detergent composition

Also Published As

Publication number Publication date
JP4145154B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
KR100653152B1 (en) Detergent particles
JP5465872B2 (en) Anionic surfactant composition
CZ284883B6 (en) Process for continuous preparation of granulated detergent and the granulated detergent obtained in such a manner
JP5709302B2 (en) Method for producing detergent particles
WO2000023560A1 (en) Process for producing detergent particles
JP4083988B2 (en) Surfactant-supporting granules and production method thereof
JP4145154B2 (en) Method for producing detergent particles
JP3444817B2 (en) Manufacturing method of detergent particles
WO2012067227A1 (en) Method for producing detergent particle group
JP5192156B2 (en) Method for producing detergent composition
JP3269616B2 (en) Manufacturing method of mononuclear detergent particles
JP3359591B2 (en) Manufacturing method of granules for supporting surfactant
JP4384906B2 (en) Cleaning composition
JP2004099699A (en) Detergent particle aggregate
WO2000077149A1 (en) Method for producing single nucleus detergent particles
JP2001003082A (en) Surface modifier and group of detergent particle
WO2000039265A1 (en) Process for producing granules for supporting surfactant
JP4870339B2 (en) Surfactant-supporting granules
JP5004315B2 (en) Detergent particle group
JP2005239865A (en) Particle group for adding into detergent, and detergent composition
JP3412811B2 (en) Preparation of detergent particles
JP2011127104A (en) Method for producing detergent granules
JP5971753B2 (en) Method for producing detergent particles
JP3666867B2 (en) Detergent particle group
JP2006070267A (en) Production process of mononuclear detergent particle group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees