JP2004224654A - CrB2 SINGLE CRYSTAL AND ITS MANUFACTURING METHOD AS WELL AS SUBSTRATE FOR SEMICONDUCTOR MEMBRANE - Google Patents

CrB2 SINGLE CRYSTAL AND ITS MANUFACTURING METHOD AS WELL AS SUBSTRATE FOR SEMICONDUCTOR MEMBRANE Download PDF

Info

Publication number
JP2004224654A
JP2004224654A JP2003015988A JP2003015988A JP2004224654A JP 2004224654 A JP2004224654 A JP 2004224654A JP 2003015988 A JP2003015988 A JP 2003015988A JP 2003015988 A JP2003015988 A JP 2003015988A JP 2004224654 A JP2004224654 A JP 2004224654A
Authority
JP
Japan
Prior art keywords
single crystal
crb
crystal
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015988A
Other languages
Japanese (ja)
Other versions
JP4360598B2 (en
Inventor
Usou Ou
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003015988A priority Critical patent/JP4360598B2/en
Publication of JP2004224654A publication Critical patent/JP2004224654A/en
Application granted granted Critical
Publication of JP4360598B2 publication Critical patent/JP4360598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CrB<SB>2</SB>single crystal of a large diameter and its manufacturing method as well as a substrate for a semiconductor membrane. <P>SOLUTION: The single crystal is characterized by comprising CrB<SB>2</SB>of 95-99.9 mass%, and at least one sort of groups 4a, 5a and 6a elements of the periodic table (however, excluding Cr) of 0.1-5 mass% in terms of boride as stabilization elements which exist in a solid solution state in the CrB<SB>2</SB>crystal. The maximum diameter of the single crystal is preferably 20 mm or larger. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に発光ダイオート等に利用されるGaN半導体膜の成長用基板として好適に使用されるCrB単結晶およびその製造方法並びに半導体膜用基板に関する。
【0002】
【従来技術】
GaN半導体は、近年、青色あるいは紫色の光を発する発光ダイオード、半導体レーザー装置などの半導体発光素子の材料として、また、従来の半導体に比べて優れた性能を具備する電子制御素子として注目されている。
【0003】
GaN半導体の薄膜は、GaN単結晶を基板として形成することが最も望ましいが、欠陥が少ない良好なGaN単結晶を作製することが困難であるため、基板としてサファイアが広く用いられていた。
【0004】
しかし、サファイアは、GaN半導体との格子不整合が大きいため、サファイア基板上に直接GaN膜を形成することができず、非晶質バッファ層を形成し、このバッファ層上にGaN膜を形成していた。そのため、GaN層には多くの転位等の格子欠陥が発生し、半導体装置の寿命や諸特性を低下させるという問題があった。
【0005】
そこで、格子欠陥量を低減するため、結晶格子定数が、GaN単結晶の格子定数に近いTiB又はZrB又はそれらの固溶体からなる単結晶を基板として用いることが提案されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2002−43223号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の半導体薄膜用基板は、TiBおよびZrBがともに高融点であり、通常のフラックス法あるいは集光灯加熱のFZ法での作製は困難であった。材料の導電性を利用して高周波誘導帯溶融法を用いることによって単結晶の作製に成功したが、作製する単結晶の断面積が大きくになるにつれて温度分布の不均一性が大きくなるため、直径15mm以上の単結晶の育成は難しいという問題があった。
【0008】
従って、本発明は、大口径のCrB単結晶及びその製造方法並びに半導体薄膜用基板を提供することを目的とした。
【0009】
【課題を解決するための手段】
本発明は、CrBがGaNと同じ六方結晶構造を有し、a軸の格子定数差が7%以下と小さいことから、GaN半導体薄膜の基板として適するため、イオン半径の異なる周期律表第4a、5a、6a族元素を結晶中に固溶させることによって亜粒界の形成を抑制し、大型のCrB単結晶を実現できるとの知見に基づくものであり、また、組成及び原料粉末の粒径を制御した多結晶体に種結晶を接触させて熱処理をすることによって、種結晶の表面に結晶を成長させ、大口径の単結晶を育成できるとの知見に基づくものである。
【0010】
即ち、本発明のCrB単結晶は、CrBを95〜99.9質量%、周期律表第4a、5a及び6a族元素の少なくとも1種(但し、Crを除く)を安定化元素として硼化物換算で0.1〜5質量%含み、前記安定化元素がCrB結晶中に固溶して存在することを特徴とするものである。
【0011】
特に、最大径が20mm以上であることが好ましい。これにより、種々の半導体薄膜の形成及びその加工装置にて高効率にデバイスを製造することができる。
【0012】
また、本発明のCrB単結晶の製造方法は、平均粒径が10μm以下のCrB粉末を95〜99.9質量%、XB(Xは周期律表第4a、5a、6a族元素の少なくとも1種、但しCrを除く)粉末を0.1〜5質量%の割合で含む多結晶体に、種結晶を密着させ、しかる後に熱処理を行って、前記種結晶の表面にCrB単結晶を成長させることを特徴とするものである。これにより、上記のCrB単結晶を作製することが可能となる。
【0013】
特に、前記多結晶体が、平均粒径が5μm以下の粉末成形体であることが好ましい。これにより、結晶成長とともに成形体が緻密化により収縮し、単結晶成長表面と多結晶の間に容易に接触を保つことができる。
【0014】
また、前記多結晶体が、相対密度が90%以上の焼結体であることが好ましい。これにより、種結晶と多結晶体との接触面積を高め、成長速度が高くなるとともに、結晶成長時に気孔や欠陥を結晶内部に取り込むことをより効果的に抑制することができる。
【0015】
さらに、前記種結晶が、前記多結晶体の内部に配置されたことが好ましい。これにより、単結晶部に熱勾配の形成が無く、単結晶の均一成長ができる。
【0016】
さらにまた、前記熱処理の温度が、1800℃〜2150℃であることが好ましい。これにより、十分な単結晶の成長速度を有するとともに、分解や蒸発を抑制することができる
また、前記熱処理の雰囲気が真空又は不活性雰囲気であることが好ましい。これにより、酸化を防止するとともに、真空雰囲気では微量の低融点成分を除去する効果をより高めることができ、また、不活性ガス雰囲気では蒸発や分解をより効果的に抑制することができる。
【0017】
さらに、前記熱処理の少なくとも一部が加圧を伴うことが好ましい。これにより、種結晶と多結晶体との接触性をさらに高めることができ、成長速度と欠陥混入を改善することが容易となる。
【0018】
さらにまた、本発明の半導体薄膜用基板は、上記のCrB単結晶からなり、薄膜を形成するための主面を備えてなることを特徴とするものである。これにより、高品質の半導体薄膜が形成可能な大型単結晶基板を提供することができる。
【0019】
【発明の実施の形態】
本発明のCrB単結晶は、CrBを主体とし、安定化元素として周期律表第4a、5a及び6a族元素の少なくとも1種(但し、Crを除く)を含有し、この安定化元素を結晶中に固溶させたものである。
【0020】
安定化元素を含まない単結晶では、亜粒界を形成しやすいため、大きな単結晶の形成は困難であったが、安定化元素を加えることによって、大きな単結晶を実現することができる。
【0021】
これは、安定化元素のイオン半径がCrB結晶におけるCrのイオン半径と異なっているため、安定化元素がCrB結晶中に固溶すると、結晶成長において形成された不規則性を補正し、結晶性が高く、良質の単結晶を実現することができると考えられる。
【0022】
また、半導体薄膜の成膜基板として利用される場合、安定化元素の存在により、膜との結合性が改善される効果も認められた。その理由は、表面部に存在する微小の不均一構造が、薄膜の核生成に必要とする活性化エネルギーを低減し、核形成を容易にするためであると考えられる。
【0023】
本発明によれば、安定化元素をXとした時、硼化物(XB)換算で0.1〜5質量%の安定化元素が含まれることが重要である。XBの含有量が0.1質量%未満では、安定化元素の上記効果を十分に発現することができず、また、5質量%を越えると、偏析などにより不均質部が生成し、多結晶化するという問題が生じる。
【0024】
特に、良質の単結晶を得るため、安定化元素の含有量はXB換算で含有量が0.1〜3.5質量%、更には0.1〜2質量%であることが好ましい。
【0025】
安定化元素としては、Crを除く周期律表第4a、5a、6a族元素、即ち、Ti、Zr、Hf、V、Nb、Ta、Mo及びWであることが重要である。これらの元素が選ばれたのは、硼化物がCrBと近似した結晶構造を有し、単結晶の成長を阻害しないためである。
【0026】
上記安定化元素のうち、特にZr、Hf及びWが好ましい。これらの3元素は、
GaN半導体の成膜を促進するという利点があり、半導体薄膜用基板として好適に使用することができる。
【0027】
さらに、様々な欠陥を補正するために、イオン半径の異なる上記の安定化元素を複数組合せて用いるのが良い場合がある。これにより、さらに高品質のCrB単結晶を得ることが可能となる。
【0028】
本発明のCrB単結晶は、最大径が20mm以上、特に30mm以上、更には50mm以上の大型結晶であることが好ましい。これは、結晶が安定化元素を含むため、大型の結晶を容易に実現することが可能であり、この大型単結晶を用いることによって、デバイスを効率的に加工することができる。なお、この最大径は、結晶が内接する円の直径を示すものである。
【0029】
なお、周期律表第4a、5a及び6a族元素以外の元素が残留不純物として含まれるが、その量は、半導体薄膜用基板として良質の単結晶膜を形成するためには、最も含まれる元素が最大でも0.1質量%以下であることが望ましい。
【0030】
次に、本発明のCrB単結晶の製造方法について詳細に説明する。
【0031】
本発明のCrB単結晶は、公知のフラックス法、FZ法、昇華法等によっても作製することが可能であるものの、低コストで大口径化しやすいという利点を有するため、固相法を取り上げて説明する。なお、固相法として、多結晶体が粉末成形体で、粉末成形体中に種結晶を埋め込む第一の例と、多結晶体が焼結体で、焼結体に種結晶を接触する第二の例とを、例として取り上げて説明する。
【0032】
まず、第一の例では、原料粉末として、平均粒径が5μm以下のCrB粉末及び平均粒径が5μm以下のXB(Xは安定化元素)粉末を準備する。或いは又、あらかじめ安定化元素を固溶した平均粒径が5μm以下のCrB粉末を用いることも可能である。
【0033】
このように、多結晶体を構成する粉末の平均粒径は10μm以下であることが重要であり、特に5μm以下、更には3μm以下、より好適には1μm以下であることが好ましい。これは、種結晶を結晶成長させるための駆動力を十分に確保するとともに、原料粉末に含まれる大きな粒子を核として粒成長を起こすのを防止して単結晶を得るためである。なお、XB粉末は、均一に分散するようにCrB粉末より平均粒径が小さい方が良い
次いで、粉末成形体からなる多結晶体を作製する。成形には、金型プレス法、鋳込成形法、冷間静水圧成形法等の周知の成形法を用いることができるが、高い成形密度を得るためには、冷間静水圧成形法、鋳込み成形法又は金型プレス成形後の冷間静水圧処理が好ましい。
【0034】
粉末成形体の密度は、成長速度を高め、結晶中に取り込まれる欠陥を低減するため、55%以上、特に60%以上、更には62%以上であるのが良い。
【0035】
得られた粉末成形体に種結晶を密着させる。密着する方法としては、粉末成形体に圧着させても良いが、原料粉末と種結晶との接触量を増やし、成長速度を高めるために、種結晶の少なくとも一部を粉末成形体中に埋設することが好ましい。即ち、原料粉末を成形する際に、種結晶の少なくとも一部が粉末成形体中に埋設するように配置した後、原料粉末に圧力を加えて粉末成形体を作製すれば良い。
【0036】
このように、粉体成形体に種結晶を接触させて結晶成長をさせることは、結晶成長とともに成形体が緻密化により収縮し、単結晶成長表面と多結晶の間に容易に接触を保つことができるという利点がある。特に、種結晶を粉末成形体の内部に包含する、つまり、多結晶体の内部に種結晶を配置させることは、上記効果がさらに大きくなるので好ましい。
【0037】
なお、20mm以上のCrB単結晶を容易に成長させるため、上記粉末成形体の最大径は、20mm以上、特に30mm以上、更には50mm以上が良い。例えば、直径80mm、厚さ5mmの粉末成形体を用いるのが良い。
【0038】
次に、熱処理を行って単結晶を成長させる。ここで、粉末成形体からなる多結晶体を種結晶に接触させた状態で、特に粉末成形体中に種結晶を埋設した状態で、熱処理を行って種結晶の表面に単結晶を成長させることが重要である。
【0039】
熱処理は、CrB単結晶が十分に成長するのと、分解や蒸発を抑制するとともに原料粉末の粒成長が抑制される条件であることが好ましい。例えば、大口径の単結晶を作製するため、熱処理の温度は、用いる原料粉末の平均粒径や成形体密度にも依存するが、1800℃〜2150℃、特に1900℃〜2100℃であることが好ましい。
【0040】
また、所望により、化学的処理を用いて原料粉末表面の清浄化や活性化を行うこともできる。例えば、アルカリによる洗浄、水素プラズマを用いて原料粉末を清浄化するとともに表面の活性化を高めることができる。また、原料粉末に電流を流し、粒子間で発生するスパークによって不純物を除去するとともに、単結晶の成長を助長することもできる。
【0041】
熱処理を行うための雰囲気を真空又は不活性雰囲気にすることで、酸化を抑制することができ、さらに、真空処理する場合は、微量の低融点成分を蒸発させ、粒子表面を浄化し、結晶成長を促進する効果もある。また、2000℃以上の温度ではCrBは微量でありながら蒸発、分解することがあるため、不活性ガス、例えばArガスを導入することにより上述蒸発、分解を抑制することができる。
【0042】
特に、1500〜2000℃までのいずれかの温度まで真空下で処理し、可能であれば上記の温度範囲で温度を一定時間保持し、微量の低融点成分を除去した後、不活性雰囲気を導入するのが良い。
【0043】
次に、第二の例について詳細に説明する。
【0044】
まず、多結晶体として、平均粒径が10μm以下のCrB焼結体を準備する。この焼結体は、公知のセラミック焼結体の作製方法に基づいて、例えば、真空焼結、不活性雰囲気での常圧焼結、ホットプレス、熱間静水圧処理により作製することができる。
【0045】
CrB焼結体の平均粒径は、緻密な焼結体の中での均一な粒成長はある程度抑制されるものの、平均粒径が10μmを超えると、種結晶以外の部分で結晶成長が発生し、多結晶の形成が予想され、20mm以上の大型の単結晶を得るためには、焼結体の平均粒径を小さくしておくことが重要である。
【0046】
単結晶成長をより促進するため、特に、焼結体の平均粒径を5μm以下、更には3μm以下、より好適には1μm以下にすることが望ましい。
【0047】
また、焼結体の最大粒径は、20μm以下、特に15μm以下であるのが望ましい。このように巨大結晶粒子を除去した焼結体を用いると、粒成長を防止し、多結晶形成を抑制することが容易となるためである。
【0048】
本発明によれば、CrB焼結体は、Crを除く周期律表第4a、5a、6a族元素を安定化元素として0.1〜5質量%の割合で含むことが重要である。このように安定化元素の含有量を設定することにより、安定化元素の上記効果を十分に発現するとともに、第二相の形成により単結晶の成長を妨げることを防止することができる。特に0.1〜3.5質量%、更には0.1〜2質量%であることが好ましい。
【0049】
焼結体の相対密度は、90%以上、特に95%以上、更には97%以上、より好適には99%以上であることが望ましい。相対密度が高いと種結晶との接触面積が高くなり、成長速度が高くなると共に、種結晶が結晶成長をする際に気孔や欠陥を結晶内部に取り込むことを防止しやすくなる。
【0050】
また、上記焼結体の最大径は、20mm以上、特に30mm以上、更には50mm以上が良い。例えば、直径80mm、厚さ5mmの焼結体を用いることができる。このように最大径が20mm以上の焼結体を用いることにより、最大径が20mm以上の単結晶を成長することが容易となる。
【0051】
次に、CrB単結晶からなる種結晶を上記焼結体に密着させ、その状態を保ったまま熱処理を行うことが重要である。例えば、焼結体表面を表面粗さRa<100nm、特にRa<10nmに加工し、種結晶の特定の結晶面に密接させ、これを熱処理し、CrB単結晶を成長させることができる。このように密着する面を平滑に加工することによって、密着状態を改善することができる。
【0052】
さらに、焼結体中に種結晶を埋設することもできる。即ち、原料粉末からなる粉末成形体の中に種結晶を埋設するように成形体を作製した後、この成形体を焼成して、内部に種結晶を埋設した焼結体を得ることができる。このように、種結晶を焼結体中に埋設すると、多結晶と種結晶との接触する量を増やすことができ、その結果、単結晶形成速度を高めることが可能になり、望ましい接触方法である。
【0053】
熱処理温度は、物質移動を促進するとともに、拡散した原子の移動度を高めて欠陥の導入を防ぐとともに、結晶粒子の平均的粒成長が顕著に発生しない条件であることが好ましい。例えば、熱処理の温度を1800℃〜2150℃、特に1900〜2100℃であることが好ましい。
【0054】
さらに、熱処理において、少なくとも上記焼結体の一部が加圧を伴うことが好ましい。1MPa以上の圧力を機械的に加えることにより、種結晶と多結晶体との接触性を高められ、また、単結晶の成長に伴う密度の変化により接触性の低下を防ぐことが容易となり、その結果成長速度をさらに高めることが容易となる。また、界面の空隙が結晶内部に取り込まれ、気孔や欠陥を形成するのを効果的に抑制するという効果も期待できる。なお、密着させるための圧力は10MPa以上であることが好ましい。
【0055】
また、所望により、直接加熱によって効果的な結晶成長を行うこともできる。例えば、焼結体に電流を流しながら、効果的な加熱を行うとともに、加圧をすることで、単結晶の成長を助長することもできる。あるいは、マイクロ波を吸収することによる加熱では、拡散が促進され、単結晶の成長を助長することができる。
【0056】
熱処理を行うための雰囲気を真空又は不活性雰囲気にすることで、酸化を抑制することができ、さらに、真空処理する場合は、微量の低融点成分を蒸発させ、粒子表面を浄化し、結晶成長を促進する効果もある。また、2000℃以上の温度ではCrBは微量でありながら蒸発することがあるため、不活性ガス、例えばArガスを導入することにより上述蒸発、分解を抑制することができる。
【0057】
以上のように、種結晶に、微細な粉末からなる粉末成形体又は微細な結晶粒径の焼結体を接触させて、熱処理をすることにより、種結晶の表面に単結晶を形成し、大型の単結晶を成長させることができる。また、この方法を採用することにより、安価にCrB単結晶を得ることができる。
【0058】
本発明の半導体薄膜用基板は、上記CrB単結晶の特定の結晶面を薄膜成長面とするものであり、欠陥や不純物の少ない大型単結晶からなるため、本発明の半導体薄膜用基板の上に、高品質の半導体薄膜を形成でき、しかも大型基板であるため、半導体作製のコスト低減に寄与できる。
【0059】
特に、本発明で得られた単結晶から、(001)面を切り出し鏡面研磨後、GaN系半導体の成膜用基板として好適に使用される。例えば上記単結晶を所望の形状に切断、加工、研磨を施して、所望の結晶面を主面とする半導体薄膜形成用基板を作製することができる。
【0060】
【実施例】
実施例1
粒径が表1で示されるCrB粉末と安定化元素の硼化物粉末とを準備し、これらを混合して混合粉末を得た。また、帯溶融法により得られた直径10mm、厚み0.4mmのCrB単結晶を、主面が(001)面に平行になるように加工したものを準備した。
【0061】
上記の混合粉末中に、上記CrB単結晶を埋設するように、金型プレスによって成形後に300MPaの圧力で冷間静水圧処理し、表1に示す相対密度の粉末成形体を得た。なお、粉末成形体の直径は50mm、厚みは10mmであった。
【0062】
次いで、粉末成形体を表1に示す条件で熱処理を施した。
【0063】
本発明の試料No.1〜17は、粉末成形体を雰囲気焼成炉の内部に設置し、常圧(Ar)又は真空中で特別の加圧を行わずに熱処理を行った。また、本発明の試料No.18は、粉末と種結晶を直接BN塗布した黒鉛型に充填し、表1に示す圧力でホットプレスにより熱処理を行った。
【0064】
得られた試料を鏡面に研磨した。フッ酸、硝酸及び水を1:1:2の割合で混合した液を用いたエッチング処理により亜粒界がない単結晶領域の最大径を、顕微鏡写真観察によって測定した。さらに、単結晶中のCr以外の元素量をICP分析によって測定し、XBに換算した結果をXB量として表1に示した。
【0065】
【表1】

Figure 2004224654
【0066】
本発明の試料No.1〜18は、最大径が20mm以上のCrB質単結晶を作製できた。
【0067】
一方、本発明の範囲外の試料No.19は、安定化元素を実質的に含まないため、種結晶以外の部分では亜粒界が存在し、単結晶成長はほとんど認められなかった。
【0068】
実施例2
粒径が表2で示されるCrBと安定化元素の硼化物粉末とを準備し、これらを混合して混合粉末を得た。この混合粉末を金型プレスで成形後、冷間静水圧プレスで加圧処理した。得られた成形体を1900℃、300MPaの圧力でホットプレスし、相対密度90%以上の焼結体を得た。
【0069】
焼結体の主面の表面粗さRaが10nm以下になるように加工し、同じように表面を加工したCrB単結晶(φ10×0.4t、平面部は(001)面に平行)の表面と接触させ、表2に示す条件で熱処理した。
【0070】
熱処理後試料を、実施例1と同じ方法で単結晶の最大径、XB量を算出した。結果を表2に示した。
【0071】
【表2】
Figure 2004224654
【0072】
本発明の試料No.20〜40は、最大径が20mm以上のCrB質単結晶を作製できた。
【0073】
一方、本発明の範囲外の試料No.41は、安定化元素を実質的に含まないため、種結晶以外の部分では亜粒界が存在し、単結晶成長はほとんど認められなかった。
【0074】
実施例3
実施例1の試料No.6の単結晶を切断して直径25mmのウエハを作製し、表面研磨後、MOCVD法によりGaN半導体の薄膜形成実験を行った。
【0075】
基板温度は1000℃で、原料にトリメチルガリウムとアンモニアを用いた。このように得られた厚さ2μmの半導体膜は、XRDにより測定した転位密度が1×10/cm以下であり、同じ条件でサファイア基板に成膜したものは1×10/cmであるため、本発明のCrB単結晶は半導体薄膜用基板に適することが分かった。
【0076】
【発明の効果】
本発明は、CrB種結晶を微細なCrB多結晶体に接触させて、多結晶体の微細粒子の粒成長を阻害しつつ、種結晶を成長させて20mm以上の大型かつ高品質の単結晶を簡便に作製することができる。これは、周期律表第4a、5a、6a族元素をCrB結晶中に溶解させることによって、亜粒界の形成を防止して大型の単結晶形成を可能とするものであり、半導体薄膜成膜用基板に適する単結晶を提供するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a CrB 2 single crystal suitably used as a substrate for growing a GaN semiconductor film used for a light emitting diode or the like, a method for producing the same, and a substrate for a semiconductor film.
[0002]
[Prior art]
In recent years, GaN semiconductors have been attracting attention as materials for semiconductor light-emitting elements such as light-emitting diodes and semiconductor laser devices that emit blue or violet light, and as electronic control elements having better performance than conventional semiconductors. .
[0003]
The GaN semiconductor thin film is most preferably formed using a GaN single crystal as a substrate. However, since it is difficult to produce a good GaN single crystal with few defects, sapphire has been widely used as a substrate.
[0004]
However, since sapphire has a large lattice mismatch with the GaN semiconductor, a GaN film cannot be formed directly on the sapphire substrate, and an amorphous buffer layer is formed, and a GaN film is formed on this buffer layer. I was Therefore, many lattice defects such as dislocations are generated in the GaN layer, and there is a problem that the life and various characteristics of the semiconductor device are reduced.
[0005]
In order to reduce the amount of lattice defects, it has been proposed to use a single crystal made of TiB 2 or ZrB 2 having a crystal lattice constant close to that of a GaN single crystal or a solid solution thereof as a substrate (for example, see Patent Reference 1).
[0006]
[Patent Document 1]
JP-A-2002-43223
[Problems to be solved by the invention]
However, the substrate for a semiconductor thin film described in Patent Literature 1 has a high melting point for both TiB 2 and ZrB 2 , and it has been difficult to produce the substrate by a normal flux method or an FZ method of heating a condenser lamp. A single crystal was successfully produced by using the high-frequency induction band melting method utilizing the conductivity of the material, but the non-uniformity of the temperature distribution increased as the cross-sectional area of the single crystal to be produced increased, so the diameter of the single crystal increased. There is a problem that it is difficult to grow a single crystal of 15 mm or more.
[0008]
Accordingly, an object of the present invention is to provide a large-diameter CrB 2 single crystal, a method for producing the same, and a substrate for a semiconductor thin film.
[0009]
[Means for Solving the Problems]
The present invention is suitable for a substrate of a GaN semiconductor thin film because CrB 2 has the same hexagonal crystal structure as GaN and a lattice constant difference in the a-axis is as small as 7% or less. , 5a, and 6a are dissolved in the crystal to suppress the formation of sub-grain boundaries and to realize a large CrB 2 single crystal. This is based on the finding that a seed crystal is brought into contact with a polycrystal having a controlled diameter to perform a heat treatment, thereby growing a crystal on the surface of the seed crystal and growing a large-diameter single crystal.
[0010]
That is, the CrB 2 single crystal of the present invention contains 95 to 99.9% by mass of CrB 2 and boron as a stabilizing element using at least one of Group 4a, 5a and 6a elements of the periodic table (excluding Cr). It comprises 0.1 to 5 wt% in product terms, wherein the stabilizing element is characterized in that there are a solid solution in CrB 2 crystal.
[0011]
In particular, the maximum diameter is preferably 20 mm or more. Thus, devices can be manufactured with high efficiency using various semiconductor thin film forming and processing apparatuses.
[0012]
In addition, the method for producing a CrB 2 single crystal of the present invention comprises: 95 to 99.9% by mass of a CrB 2 powder having an average particle size of 10 μm or less, and XB 2 (X is a group 4a, 5a, or 6a A seed crystal is brought into close contact with a polycrystal containing at least one kind of powder (excluding Cr) in a ratio of 0.1 to 5% by mass, and then heat-treated to form a single crystal of CrB 2 on the surface of the seed crystal. Is grown. This makes it possible to produce the CrB 2 single crystal described above.
[0013]
In particular, it is preferable that the polycrystal is a powder compact having an average particle size of 5 μm or less. As a result, the compact shrinks due to the densification as the crystal grows, and the contact between the single crystal growth surface and the polycrystal can be easily maintained.
[0014]
Further, it is preferable that the polycrystalline body is a sintered body having a relative density of 90% or more. As a result, the contact area between the seed crystal and the polycrystal can be increased, the growth rate can be increased, and the incorporation of pores and defects into the crystal during crystal growth can be more effectively suppressed.
[0015]
Further, it is preferable that the seed crystal is arranged inside the polycrystal. Thereby, a single crystal can be uniformly grown without forming a thermal gradient in the single crystal portion.
[0016]
Furthermore, it is preferable that the temperature of the heat treatment is 1800 ° C. to 2150 ° C. Thereby, while having a sufficient single crystal growth rate, decomposition and evaporation can be suppressed, and the atmosphere for the heat treatment is preferably a vacuum or an inert atmosphere. Thereby, oxidation can be prevented, the effect of removing a trace amount of low melting point component can be further enhanced in a vacuum atmosphere, and evaporation and decomposition can be more effectively suppressed in an inert gas atmosphere.
[0017]
Further, it is preferable that at least a part of the heat treatment involves pressurization. Thereby, the contact property between the seed crystal and the polycrystal can be further increased, and it becomes easy to improve the growth rate and the defect mixing.
[0018]
Furthermore, the semiconductor thin film substrate of the present invention are those characterized by including a main surface for consists above CrB 2 single crystal, to form a thin film. Thus, a large-sized single crystal substrate on which a high-quality semiconductor thin film can be formed can be provided.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The CrB 2 single crystal of the present invention is mainly composed of CrB 2 and contains at least one element (except for Cr) of elements of Groups 4a, 5a and 6a of the periodic table as a stabilizing element. It is a solid solution in the crystal.
[0020]
In the case of a single crystal containing no stabilizing element, it is difficult to form a large single crystal because a sub-grain boundary is easily formed. However, a large single crystal can be realized by adding a stabilizing element.
[0021]
This is because, since the ionic radius of the stabilizing element is different from the ionic radius of Cr in the CrB 2 crystal, when the stabilizing element forms a solid solution in the CrB 2 crystal, the irregularity formed in the crystal growth is corrected, It is considered that a high-quality single crystal having high crystallinity can be realized.
[0022]
Further, when used as a substrate for forming a semiconductor thin film, the effect of improving the bonding property with the film was also recognized due to the presence of the stabilizing element. It is considered that the reason is that the minute non-uniform structure existing on the surface reduces the activation energy required for nucleation of the thin film and facilitates nucleation.
[0023]
According to the present invention, when the stabilizing element is X, it is important that 0.1 to 5% by mass of the stabilizing element is contained in terms of boride (XB 2 ). If the content of XB 2 is less than 0.1% by mass, the above-mentioned effect of the stabilizing element cannot be sufficiently exhibited. If the content exceeds 5% by mass, an inhomogeneous portion is generated due to segregation and the like, The problem of crystallization arises.
[0024]
In particular, in order to obtain a high-quality single crystal, the content of the stabilizing element is preferably 0.1 to 3.5% by mass, more preferably 0.1 to 2 % by mass in terms of XB2.
[0025]
It is important that the stabilizing element is a group 4a, 5a, or 6a element of the periodic table excluding Cr, that is, Ti, Zr, Hf, V, Nb, Ta, Mo, and W. These elements were selected because the boride has a crystal structure similar to CrB 2 and does not hinder the growth of single crystals.
[0026]
Among the above stabilizing elements, Zr, Hf and W are particularly preferred. These three elements are
It has the advantage of accelerating the formation of a GaN semiconductor, and can be suitably used as a substrate for a semiconductor thin film.
[0027]
Further, in order to correct various defects, it may be preferable to use a plurality of the above stabilizing elements having different ionic radii in combination. This makes it possible to obtain a higher quality CrB 2 single crystal.
[0028]
The CrB 2 single crystal of the present invention is preferably a large crystal having a maximum diameter of 20 mm or more, particularly 30 mm or more, and more preferably 50 mm or more. This is because the crystal contains a stabilizing element, so that a large crystal can be easily realized. By using this large single crystal, a device can be efficiently processed. The maximum diameter indicates the diameter of a circle inscribed by the crystal.
[0029]
Note that elements other than the elements in Groups 4a, 5a and 6a of the periodic table are included as residual impurities, but the amount of the elements is most important in order to form a high-quality single crystal film as a semiconductor thin film substrate. It is desirable that the content be at most 0.1% by mass.
[0030]
It will be described in detail a method for manufacturing the CrB 2 single crystal of the present invention.
[0031]
Although the CrB 2 single crystal of the present invention can be produced by a known flux method, FZ method, sublimation method, etc., it has an advantage that it is easy to increase the diameter at a low cost. explain. As the solid phase method, the first example in which the polycrystal is a powder compact and the seed crystal is embedded in the powder compact, and the first example in which the polycrystal is a sintered compact and the seed crystal contacts the sintered compact. The second example will be described as an example.
[0032]
First, in the first example, CrB 2 powder having an average particle diameter of 5 μm or less and XB 2 (X is a stabilizing element) powder having an average particle diameter of 5 μm or less are prepared as raw material powders. Alternatively, it is also possible to use a CrB 2 powder having an average particle diameter of 5 μm or less in which a stabilizing element is dissolved in advance.
[0033]
As described above, it is important that the average particle diameter of the powder constituting the polycrystal is 10 μm or less, particularly 5 μm or less, further preferably 3 μm or less, and more preferably 1 μm or less. This is to ensure a sufficient driving force for crystal growth of the seed crystal, and to prevent single crystal from growing by using large particles contained in the raw material powder as nuclei. The XB 2 powder preferably has a smaller average particle size than the CrB 2 powder so as to be uniformly dispersed. Then, a polycrystalline body made of a powder compact is produced. Known molding methods such as a mold pressing method, a casting method, and a cold isostatic pressing method can be used for molding, but in order to obtain a high molding density, a cold isostatic pressing method, a casting method, or the like is used. A cold isostatic pressure treatment after the molding method or the die press molding is preferable.
[0034]
The density of the powder compact is preferably 55% or more, particularly 60% or more, and more preferably 62% or more, in order to increase the growth rate and reduce defects introduced into the crystal.
[0035]
A seed crystal is adhered to the obtained powder compact. As a method of intimate contact, a pressure may be applied to the powder compact, but at least a part of the seed crystal is embedded in the powder compact in order to increase the contact amount between the raw material powder and the seed crystal and increase the growth rate. Is preferred. That is, when forming the raw material powder, after arranging at least a part of the seed crystal so as to be embedded in the powder molded body, a pressure may be applied to the raw material powder to produce the powder molded body.
[0036]
As described above, by bringing a seed crystal into contact with a powder compact to grow a crystal, the compact compacts as the crystal grows due to densification, and easily maintains contact between the single crystal growth surface and the polycrystal. There is an advantage that can be. In particular, it is preferable to include the seed crystal inside the powder compact, that is, to dispose the seed crystal inside the polycrystal, because the above-mentioned effect is further increased.
[0037]
In order to easily grow a CrB 2 single crystal of 20 mm or more, the maximum diameter of the powder compact is preferably 20 mm or more, particularly 30 mm or more, and more preferably 50 mm or more. For example, a powder compact having a diameter of 80 mm and a thickness of 5 mm is preferably used.
[0038]
Next, heat treatment is performed to grow a single crystal. Here, in a state where the polycrystalline body composed of the powder compact is in contact with the seed crystal, particularly in a state where the seed crystal is buried in the powder compact, heat treatment is performed to grow a single crystal on the surface of the seed crystal. is important.
[0039]
The heat treatment is preferably performed under such conditions that the CrB 2 single crystal grows sufficiently, that decomposition and evaporation are suppressed, and that grain growth of the raw material powder is suppressed. For example, in order to produce a large-diameter single crystal, the temperature of the heat treatment depends on the average particle size of the raw material powder used and the density of the compact, but may be 1800 ° C to 2150 ° C, particularly 1900 ° C to 2100 ° C. preferable.
[0040]
If desired, the surface of the raw material powder can be cleaned or activated using a chemical treatment. For example, the raw material powder can be cleaned using alkali cleaning and hydrogen plasma, and the surface activation can be enhanced. In addition, an electric current can be applied to the raw material powder to remove impurities by sparks generated between the particles and promote the growth of a single crystal.
[0041]
Oxidation can be suppressed by setting the atmosphere for performing the heat treatment to a vacuum or an inert atmosphere. Further, in the case of performing the vacuum treatment, a small amount of a low melting point component is evaporated, the particle surface is purified, and crystal growth is performed. Also has the effect of promoting. At a temperature of 2000 ° C. or higher, CrB 2 may be evaporated and decomposed even though it is in a very small amount. Therefore, the above-mentioned evaporation and decomposition can be suppressed by introducing an inert gas such as Ar gas.
[0042]
In particular, the treatment is performed under vacuum to any temperature from 1500 to 2000 ° C., and if possible, the temperature is held for a certain period of time in the above temperature range to remove a trace of low melting point components, and then an inert atmosphere is introduced. Good to do.
[0043]
Next, the second example will be described in detail.
[0044]
First, a CrB 2 sintered body having an average particle diameter of 10 μm or less is prepared as a polycrystalline body. This sintered body can be manufactured by, for example, vacuum sintering, normal-pressure sintering in an inert atmosphere, hot pressing, or hot isostatic processing based on a known method for manufacturing a ceramic sintered body.
[0045]
Regarding the average grain size of the CrB 2 sintered body, although uniform grain growth in a dense sintered body is suppressed to some extent, when the average grain size exceeds 10 μm, crystal growth occurs in portions other than the seed crystal. However, formation of polycrystals is expected, and in order to obtain a large single crystal of 20 mm or more, it is important to reduce the average grain size of the sintered body.
[0046]
In order to further promote single crystal growth, it is particularly desirable that the average particle size of the sintered body is 5 μm or less, more preferably 3 μm or less, and more preferably 1 μm or less.
[0047]
Further, the maximum particle size of the sintered body is preferably 20 μm or less, particularly preferably 15 μm or less. This is because the use of the sintered body from which the giant crystal particles have been removed as described above makes it easy to prevent grain growth and suppress polycrystal formation.
[0048]
According to the present invention, CrB 2 sintered body, the Periodic Table 4a except Cr, 5a, be included in an amount of 0.1 to 5% by weight 6a group element as a stabilizing element is important. By setting the content of the stabilizing element in this way, the above-described effect of the stabilizing element can be sufficiently exhibited, and the formation of the second phase can be prevented from hindering the growth of the single crystal. In particular, it is preferably 0.1 to 3.5% by mass, more preferably 0.1 to 2% by mass.
[0049]
The relative density of the sintered body is preferably 90% or more, particularly 95% or more, more preferably 97% or more, and more preferably 99% or more. When the relative density is high, the contact area with the seed crystal is increased, the growth rate is increased, and it is easy to prevent pores and defects from being taken into the crystal when the seed crystal grows.
[0050]
The maximum diameter of the sintered body is preferably at least 20 mm, particularly at least 30 mm, and more preferably at least 50 mm. For example, a sintered body having a diameter of 80 mm and a thickness of 5 mm can be used. By using a sintered body having a maximum diameter of 20 mm or more, it becomes easy to grow a single crystal having a maximum diameter of 20 mm or more.
[0051]
Then, a seed crystal composed of CrB 2 single crystal is brought into close contact with the sintered body, it is important to perform heat treatment while maintaining its state. For example, surface roughness Ra <100 nm the surface of the sintered body was processed to especially Ra <10 nm, in close contact to a particular crystal plane of the seed crystal, and heat-treating it, can be grown CrB 2 single crystal. By processing the surface to be in close contact smoothly in this way, the intimate contact state can be improved.
[0052]
Further, a seed crystal can be embedded in the sintered body. That is, after a compact is produced such that the seed crystal is embedded in the powder compact made of the raw material powder, the compact is fired to obtain a sintered body in which the seed crystal is embedded. When the seed crystal is buried in the sintered body in this manner, the amount of contact between the polycrystal and the seed crystal can be increased, and as a result, the single crystal formation rate can be increased, and the desired contact method can be used. is there.
[0053]
The heat treatment temperature is preferably a condition that promotes mass transfer, increases the mobility of diffused atoms to prevent the introduction of defects, and does not significantly cause average grain growth of crystal grains. For example, it is preferable that the temperature of the heat treatment be 1800 ° C. to 2150 ° C., particularly 1900 to 2100 ° C.
[0054]
Further, in the heat treatment, it is preferable that at least a part of the sintered body is accompanied by pressurization. By mechanically applying a pressure of 1 MPa or more, the contact between the seed crystal and the polycrystal can be increased, and it is easy to prevent a decrease in the contact due to a change in density accompanying the growth of the single crystal. As a result, it becomes easier to further increase the growth rate. Further, the effect of effectively suppressing the formation of pores and defects due to interfacial voids being taken into the inside of the crystal can also be expected. In addition, it is preferable that the pressure for bringing into contact is 10 MPa or more.
[0055]
Also, if desired, effective crystal growth can be performed by direct heating. For example, effective heating and pressurization while applying current to the sintered body can promote the growth of a single crystal. Alternatively, heating by absorbing microwaves can promote diffusion and promote single crystal growth.
[0056]
Oxidation can be suppressed by setting the atmosphere for performing the heat treatment to a vacuum or an inert atmosphere. Further, in the case of performing the vacuum treatment, a small amount of a low melting point component is evaporated, the particle surface is purified, and crystal growth is performed. Also has the effect of promoting. At a temperature of 2000 ° C. or higher, CrB 2 may evaporate in a very small amount, and thus the above-described evaporation and decomposition can be suppressed by introducing an inert gas, for example, an Ar gas.
[0057]
As described above, a single crystal is formed on the surface of the seed crystal by contacting the powder compact formed of fine powder or a sintered body having a fine crystal grain size with the seed crystal and performing a heat treatment to form a single crystal. Can be grown. Further, by employing this method, a CrB 2 single crystal can be obtained at low cost.
[0058]
The substrate for a semiconductor thin film of the present invention uses a specific crystal plane of the CrB 2 single crystal as a thin film growth surface and is made of a large single crystal with few defects and impurities. In addition, since a high-quality semiconductor thin film can be formed and the substrate is large, it can contribute to cost reduction of semiconductor manufacturing.
[0059]
In particular, the (001) plane is cut out from the single crystal obtained by the present invention, and after mirror polishing, it is suitably used as a substrate for forming a GaN-based semiconductor. For example, the single crystal can be cut, processed, and polished into a desired shape to produce a semiconductor thin film formation substrate having a desired crystal plane as a main surface.
[0060]
【Example】
Example 1
CrB 2 powder having a particle size shown in Table 1 and a boride powder of a stabilizing element were prepared, and these were mixed to obtain a mixed powder. In addition, a CrB 2 single crystal having a diameter of 10 mm and a thickness of 0.4 mm obtained by a band melting method was prepared by processing such that the main surface was parallel to the (001) plane.
[0061]
In order to embed the CrB 2 single crystal in the mixed powder, the powder was compacted by a mold press and then subjected to cold isostatic pressure treatment at a pressure of 300 MPa to obtain a powder compact having a relative density shown in Table 1. The powder compact had a diameter of 50 mm and a thickness of 10 mm.
[0062]
Next, the powder compact was heat-treated under the conditions shown in Table 1.
[0063]
Sample No. of the present invention In Nos. 1 to 17, the powder compact was placed in an atmosphere firing furnace, and heat treatment was performed at normal pressure (Ar) or in vacuum without performing any special pressurization. In addition, the sample No. of the present invention. In No. 18, a powder and a seed crystal were filled in a graphite mold directly coated with BN, and heat-treated by hot pressing under the pressures shown in Table 1.
[0064]
The obtained sample was polished to a mirror surface. The maximum diameter of a single crystal region having no subgrain boundaries was determined by microscopic observation by etching using a liquid in which hydrofluoric acid, nitric acid, and water were mixed at a ratio of 1: 1: 2. Further, the element content other than Cr in the single crystal was measured by ICP analysis showed the results in terms of XB 2 in Table 1 as XB 2 amount.
[0065]
[Table 1]
Figure 2004224654
[0066]
Sample No. of the present invention 1-18, the maximum diameter could be manufactured CrB 2 quality single crystals of more than 20 mm.
[0067]
On the other hand, the sample Nos. In No. 19, since substantially no stabilizing element was contained, subgrain boundaries were present in portions other than the seed crystal, and almost no single crystal growth was observed.
[0068]
Example 2
CrB 2 having a particle size shown in Table 2 and a boride powder of a stabilizing element were prepared, and these were mixed to obtain a mixed powder. This mixed powder was formed by a mold press and then subjected to a pressure treatment by a cold isostatic press. The obtained molded body was hot-pressed at 1900 ° C. and a pressure of 300 MPa to obtain a sintered body having a relative density of 90% or more.
[0069]
A CrB 2 single crystal (φ10 × 0.4t, plane part parallel to the (001) plane) processed so that the surface roughness Ra of the main surface of the sintered body is 10 nm or less and processed similarly. It was brought into contact with the surface and heat-treated under the conditions shown in Table 2.
[0070]
For the sample after the heat treatment, the maximum diameter of the single crystal and the amount of XB 2 were calculated in the same manner as in Example 1. The results are shown in Table 2.
[0071]
[Table 2]
Figure 2004224654
[0072]
Sample No. of the present invention 20 through 40, the maximum diameter could be manufactured CrB 2 quality single crystals of more than 20 mm.
[0073]
On the other hand, the sample Nos. Since No. 41 does not substantially contain a stabilizing element, subgrain boundaries exist in portions other than the seed crystal, and almost no single crystal growth was observed.
[0074]
Example 3
Sample No. of Example 1 The single crystal of No. 6 was cut to prepare a wafer having a diameter of 25 mm. After polishing the surface, an experiment for forming a thin film of a GaN semiconductor was performed by MOCVD.
[0075]
The substrate temperature was 1000 ° C., and trimethyl gallium and ammonia were used as raw materials. The thus obtained semiconductor film having a thickness of 2 μm has a dislocation density of 1 × 10 7 / cm 2 or less as measured by XRD, and 1 × 10 8 / cm 2 of a film formed on a sapphire substrate under the same conditions. Therefore, it was found that the CrB 2 single crystal of the present invention was suitable for a substrate for a semiconductor thin film.
[0076]
【The invention's effect】
The present invention provides a large and high-quality single crystal having a size of 20 mm or more by contacting a CrB 2 seed crystal with a fine CrB 2 polycrystal and growing a seed crystal while inhibiting grain growth of fine particles of the polycrystal. Crystals can be easily prepared. This periodic table 4a, 5a, by dissolving 6a group element CrB 2 crystal, which enables the single crystal formation of large to prevent the formation of sub-grain boundaries, the semiconductor thin film formed It is intended to provide a single crystal suitable for a film substrate.

Claims (10)

CrBを95〜99.9質量%、周期律表第4a、5a及び6a族元素の少なくとも1種(Crを除く)を安定化元素として硼化物換算で0.1〜5質量%含み、前記安定化元素がCrB結晶中に固溶して存在することを特徴とするCrB単結晶。CrB 2 and 95-99.9% by weight, including 0.1 to 5 mass% periodic table 4a, at least one 5a and 6a group element (excluding Cr) in boride calculated as stabilizing element, wherein CrB 2 single crystal, characterized in that stabilizing elements are present in solid solution in the CrB 2 crystal. 最大径が20mm以上であることを特徴とする請求項1記載のCrB単結晶。 2. The single crystal of CrB2 according to claim 1, wherein the maximum diameter is 20 mm or more. 平均粒径が10μm以下のCrB粉末を95〜99.9質量%、XB(Xは周期律表第4a、5a、6a族元素の少なくとも1種、但しCrを除く)粉末を0.1〜5質量%の割合で含む多結晶体に、種結晶を密着させ、しかる後に熱処理を行って、前記種結晶の表面にCrB単結晶を成長させることを特徴とするCrB単結晶の製造方法。95-99.9% by mass of CrB 2 powder having an average particle size of 10 μm or less, and 0.1% of XB 2 (X is at least one element of Group 4a, 5a or 6a of the periodic table, excluding Cr) powder. Producing a single crystal of CrB 2 , wherein a single crystal is brought into close contact with a polycrystal containing 〜5% by mass and then heat-treated to grow a single crystal of CrB 2 on the surface of the seed crystal. Method. 前記多結晶体が、平均粒径が5μm以下の粉末成形体であることを特徴とする請求項3記載のCrB単結晶の製造方法。The polycrystalline material, manufacturing method of CrB 2 single crystal according to claim 3, wherein the average particle size of less powder compact 5 [mu] m. 前記多結晶体が、相対密度が90%以上の焼結体であることを特徴とする請求項3記載のCrB単結晶の製造方法。The polycrystalline material, manufacturing method of CrB 2 single crystal according to claim 3, wherein the relative density of sintered body of 90% or more. 前記種結晶が、前記多結晶体の内部に配置されたことを特徴とする請求項3乃至5のいずれかに記載のCrB単結晶の製造方法。The seed crystal, a manufacturing method of CrB 2 single crystal according to any one of claims 3 to 5, characterized in that the disposed inside the polycrystalline body. 前記熱処理の温度が、1800℃〜2150℃であることを特徴とする請求項3乃至6のうちいずれかに記載のCrB単結晶の製造方法。Method for producing a CrB 2 single crystal according to any one of claims 3 to 6 temperature of the heat treatment, characterized in that it is a 1800 ℃ ~2150 ℃. 前記熱処理の雰囲気が真空又は不活性雰囲気であることを特徴とする請求項3乃至7のうちいずれかに記載のCrB単結晶の製造方法。Method for producing a CrB 2 single crystal according to any one of claims 3 to 7, characterized in that the atmosphere of the heat treatment is a vacuum or inert atmosphere. 前記熱処理の少なくとも一部が加圧を伴うことを特徴とする請求項3乃至8のうちいずれかに記載のCrB単結晶の製造方法。Method for producing a CrB 2 single crystal according to any one of claims 3 to 8, at least a portion of said heat treatment, characterized in that with the pressure. 請求項1又は2記載のCrB単結晶からなり、薄膜を形成するための主面を備えてなることを特徴とする半導体薄膜用基板。Claim 1 or 2 consists of CrB 2 single crystal according, substrate for a semiconductor thin film characterized in that it comprises a major surface for forming a thin film.
JP2003015988A 2003-01-24 2003-01-24 Method for producing CrB2 single crystal and substrate for semiconductor film Expired - Fee Related JP4360598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015988A JP4360598B2 (en) 2003-01-24 2003-01-24 Method for producing CrB2 single crystal and substrate for semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015988A JP4360598B2 (en) 2003-01-24 2003-01-24 Method for producing CrB2 single crystal and substrate for semiconductor film

Publications (2)

Publication Number Publication Date
JP2004224654A true JP2004224654A (en) 2004-08-12
JP4360598B2 JP4360598B2 (en) 2009-11-11

Family

ID=32903585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015988A Expired - Fee Related JP4360598B2 (en) 2003-01-24 2003-01-24 Method for producing CrB2 single crystal and substrate for semiconductor film

Country Status (1)

Country Link
JP (1) JP4360598B2 (en)

Also Published As

Publication number Publication date
JP4360598B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4647525B2 (en) Method for producing group III nitride crystal
JP5374381B2 (en) Aluminum nitride single crystal polygonal column and method for producing plate-like aluminum nitride single crystal using the same
US20070256630A1 (en) Method and apparatus for aluminum nitride monocrystal boule growth
TW200933705A (en) Group III nitride semiconductor and a manufacturing method thereof
JPH1179846A (en) Silicon carbide formed product
CN105529248B (en) The manufacture of III nitride semiconductor element is with the manufacture method of substrate, the manufacture method of III nitride semiconductor self-supporting substrate or III nitride semiconductor element and group III-nitride growth substrate
JP3003027B2 (en) Single crystal SiC and method for producing the same
CN113122918B (en) TaC coating crucible for third-generation semiconductor crystal growth and preparation method
US8506707B1 (en) Substrate surface modifications for compositional gradation of crystalline materials and associated products
WO2009119896A1 (en) Aln bulk single crystal, semiconductor device, and process for producing aln single crystal bulk
WO2018232080A1 (en) Two-stage seeded growth of large aluminum nitride single crystals
US20210301422A1 (en) SiC COMPOSITE SUBSTRATE AND SEMICONDUCTOR DEVICE
JP7176099B2 (en) semiconductor film
Gu et al. Sublimation growth of aluminum nitride crystals
EP0964084A1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
JP2009221041A (en) Crystal growth method, crystal growth apparatus, and semiconductor device having crystal thin film produced by the same
JP4360598B2 (en) Method for producing CrB2 single crystal and substrate for semiconductor film
JP2009256159A (en) Manufacturing method of crystalline silicon carbide substrate
JP7177248B2 (en) SiC composite substrate and composite substrate for semiconductor devices
JP2004203666A (en) ZrB2 SINGLE CRYSTAL, ITS MANUFACTURING METHOD AND SUBSTRATE FOR SEMICONDUCTOR THIN FILM
JP2010280546A (en) Method for producing silicon carbide single crystal
JP2009274945A (en) METHOD OF GROWING AlN CRYSTAL, AND AlN LAMINATE
JP2007284306A (en) Silicon carbide single crystal and method for manufacturing the same
JP4518782B2 (en) Method for producing diboride single crystal
WO2023068309A1 (en) Sic substrate sic composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090807

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees