JP2004224621A - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP2004224621A
JP2004224621A JP2003013025A JP2003013025A JP2004224621A JP 2004224621 A JP2004224621 A JP 2004224621A JP 2003013025 A JP2003013025 A JP 2003013025A JP 2003013025 A JP2003013025 A JP 2003013025A JP 2004224621 A JP2004224621 A JP 2004224621A
Authority
JP
Japan
Prior art keywords
fluid
combustion gas
section
evaporator
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003013025A
Other languages
Japanese (ja)
Inventor
Katsunori Uchimura
克則 内村
Kokichi Doi
孝吉 土井
Naoto Kagami
直人 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003013025A priority Critical patent/JP2004224621A/en
Publication of JP2004224621A publication Critical patent/JP2004224621A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer having an evaporator made compact in the combustion gas flow direction and to provide the reformer in which the liquid jump from an evaporation part to a super heat part is prevented. <P>SOLUTION: (1) The reformer 1 has the evaporator structured by connecting a 1st heat exchanger part 14 to a 2nd heat exchanger part 15 through a U-turn part 12. (2) The 1st heat exchange part 14 is composed of the evaporation part and the 2nd heat exchange part 15 is composed of the super heat part. (3) The reformer has a guide part 17 provided in a communication passage 16. (4) The reformer has the communication passage 16 composed of a bellows pipe 18. (5) The reformer has heat transfer fins 20 made noncontinuous. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用改質原料ガスを生成する蒸発器を備えた改質器に関する。
【0002】
【従来の技術】
天然ガス用蒸発器は改質用水、エアー、天然ガスを、蒸発器における高温の燃焼ガスとの熱交換により、高温の改質用原料ガスを発生させる構造となっている。
特開2002−39023号公報は、蒸発器を開示しており、そこではストレート状の燃焼ガス流路に、原料ガス流路を蛇行させて配置し、連続状のフィンをもつ積層型熱交換器における熱交換により改質用原料ガスを発生させる構造となっている。
【0003】
【特許文献1】
特開2002−39023号公報
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術にはつぎの問題がある。
燃焼ガス流路がストレート状のため、蒸発器が燃焼ガス流路方向に長くなり、蒸発器のコンパクト化が困難であり、車両搭載を困難にする。
フィンが連続状に形成されているため、フィンを伝って蒸発部からスーパーヒート部に改質水の液飛びが生じ(蒸発しきっていない液状の改質水がスーパーヒート部ぶ飛び)、スーパーヒート部のフィンで液滴と燃焼ガスとの温度差による熱応力が生じ、スーパーヒート部の耐久性を低減する。
本発明の目的は、燃焼ガス流れ方向に蒸発器をコンパクト化できる、改質器を提供することにある。
本発明のもう一つの目的は、フィンを伝って蒸発部からスーパーヒート部に改質水の液飛びが生じることを防止できる、改質器を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 途中にUターン部を有し内部を燃焼ガスが流れる燃焼ガス流路と、
前記燃焼ガスとの熱交換により蒸気化される改質原料用流体が内部を流れる流体流路と、
燃焼ガスの流れ方向に見て前記Uターン部の下流側の燃焼ガス流路に設けられ前記流体流路の一部を構成し燃焼ガスと熱交換を行う第1熱交換部と、
燃焼ガスの流れ方向に見て前記Uターン部の上流側の燃焼ガス流路に設けられ前記流体流路の一部を構成し燃焼ガスと熱交換を行う第2熱交換部と、
前記第1熱交換部と前記第2熱交換部とを前記Uターン部とは別に連通し前記流体流路の一部を構成し内部に前記流体蒸気を流す連通路と、
を有する蒸発器を備えた改質器。
(2) 前記第1熱交換部は蒸発部、前記第2熱交換部はスーパヒート部からなる(1)記載の改質器。
(3) 前記連通路内に、蒸発流体の液滴状態での移動を抑制するガイドを設けた(1)または(2)記載の改質器。
(4) 前記連通路をジャバラパイプから構成した(1)または(2)または(3)記載の改質器。
(5) 前記第1熱交換部の前記流体に接する部分の伝熱フィンを前記流体の流れ方向に見て非連続とした(1)記載の改質器。
【0006】
上記(1)の改質器では、燃焼ガス流れ方向に見て、第1熱交換部と第2熱交換部とをUターン部を介して接続したため、燃焼ガス流れ方向に蒸発器をコンパクト化できる。
上記(2)の改質器では、燃焼ガス流れ方向に見て、蒸発部とスーパーヒート部とをUターン部を介して接続したため、燃焼ガス流れ方向に蒸発器をコンパクト化できる。
上記(3)の改質器では、流体流路の一部を構成し蒸発部とスーパーヒート部とを連通する連通路内にガイドを設けたので、連通路内の、流体に含まれているかもしれない液滴の移動が抑制され、その結果、蒸発部からスーパーヒート部への液飛びを防止できる。
上記(4)の改質器では、流体流路の一部を構成し蒸発部とスーパーヒート部とを連通する連通路をジャバラパイプから構成したので、連通路内の、流体に含まれているかもしれない液滴の移動が抑制され、その結果、蒸発部からスーパーヒート部への液飛びを防止できる。しかも、ジャバラパイプの熱応力を緩和できる。
上記(5)の改質器では、蒸発部の流体に接する方の伝熱フィンを流体流れ方向に非連続としたので、伝熱フィンを伝っての、流体に含まれているかもしれない液滴の移動を抑制でき、蒸発部からスーパーヒート部への液飛びを防止できる。
【0007】
【発明の実施の形態】
以下に、本発明の改質器を、図1〜図5を参照して説明する。ただし、図3は比較例(本発明に含まず)である。
図1に示すように、本発明の改質器1は、蒸発器10を備えた改質器である。改質器1は蒸発器10の、流体3流れ方向に見て下流側に、改質部、シフト反応部、CO低減部を備えている。
【0008】
蒸発器10は、
途中にUターン部12を有し内部を燃焼ガス2が流れる燃焼ガス流路11と、
燃焼ガス2との熱交換により蒸気化されさらに過熱蒸気とされる改質原料用流体3が内部を流れる流体流路13と、
燃焼ガス2の流れ方向に見てUターン部12の下流側の燃焼ガス流路11に設けられ流体流路13の一部を構成し燃焼ガス2と熱交換を行う第1熱交換部14と、
燃焼ガス2の流れ方向に見てUターン部12の上流側の燃焼ガス流路11に設けられ流体流路13の一部を構成し燃焼ガス2と熱交換を行う第2熱交換部15と、
蒸発部14とスーパーヒート部15とをUターン部12とは別流路にて連通し流体流路13の一部を構成し内部に流体蒸気3を流す連通路16と、
を有する。
第1熱交換部14は燃焼ガス2との熱交換により流体3を蒸発させる蒸発部14(第1熱交換部14と同じ符合を付す)からなる。
第2熱交換部15は、燃焼ガス2との熱交換により流体蒸気(流体3と同じ符合3を付す)を過熱蒸気(流体3と同じ符合3を付す)に過熱するスーパーヒート部15(第2熱交換部15と同じ符合を付す)からなる。
連通路16の流路壁とその外のケーシングとの間には、燃焼ガス2は流れない。燃焼ガス2はUターン部12を通ってスーパーヒート部15から蒸発部14に流れる。
流体流路13は、流体3の流れ方向に見て、蒸発部14の出入り口にマニホールド13A、13Bを有し、スーパーヒート部15の出入り口にマニホールド13C、13Dを有する。
【0009】
蒸発部14とスーパーヒート部15とは互いに平行であり、連通路16は蒸発部14、スーパーヒート部15と直交している。高温ガス2の蒸発部14における流れ方向と高温ガス2のスーパーヒート部15における流れ方向とは互いに逆である。流体3の蒸発部14における流れ方向と流体3のスーパーヒート部15における流れ方向とは互いに逆である。
【0010】
蒸発部14の、流体3流れ方向に見て上流側で、常温の改質水4が蒸発部14に導入され、蒸発部14で改質水4の少なくとも一部が蒸発される。蒸発部14の、流体3流れ方向に見て下流側で、改質エアとメタンなどの天然ガスを混合した常温の改質用原料ガス5が導入される。改質水4またはその蒸気、または改質水4またはその蒸気と改質用原料ガス5との混合ガスは、液体、または液体と気体からなる流体3を構成する。
改質水4またはその蒸気と改質用原料ガス5との混合ガスからなる流体3は、連通路16を通ってスーパーヒート部15に流れ、そこで過熱蒸気(スーパーヒートされた蒸気)とされて改質ガス(改質原料ガス)となって次工程の改質部(図示せず)へと流れる。
【0011】
燃焼ガス2の温度は、燃焼ガス2のスーパーヒート部15への入口(流体3から見ればスーパーヒート部15からの出口)で約650℃であり、燃焼ガス2のスーパーヒート部15からの出口(流体3から見ればスーパーヒート部15への入口)で約500℃である。約500℃の燃焼ガスは、ほぼその温度を維持して、Uターン部12を通って、燃焼ガス2の蒸発部14への入口(流体3から見れば蒸発部14からの出口)に至る。燃焼ガス2の温度は、燃焼ガス2の蒸発部14への入口(流体3から見れば蒸発部14からの出口)で約500℃であり、燃焼ガス2の蒸発部14からの出口(流体3から見れば蒸発部14への入口)で約100℃である。
【0012】
改質水4の温度は、流体3の流体流路13への入口で常温であり、蒸発部14からの出口で約200℃である。天然ガスと改質エアとの混合気の温度は、流体流路13への入口で常温であり、蒸発部14からの出口で改質水4の蒸気と合流した後約200℃である。(液滴が含まれているかもしれない)流体3蒸気は、連通路16を約200℃を維持して流れ、流体3蒸気のスーパーヒート部15への入口で約200℃である。流体3蒸気はスーパーヒート部15で過熱され、流体3過熱蒸気の温度はスーパーヒート部15からの出口で約500℃である。
【0013】
蒸発部14もスーパーヒート部15も、積層型熱交換器から構成される。積層型熱交換器は、たとえば、図6に示すように、波板(フィン)20と平板21とを重ねたものを複数層に積層したものからなり、流体3が流れる層と燃焼ガス2が流れる層とが積層方向に交互にあらわれるようにしてある。
【0014】
流体3は、とくに高負荷運転時(多量の改質水が導入される時)、蒸発部14で完全には蒸発されないかもしれず、その場合は、流体3の一部は蒸発部14出口で液滴であるかもしれない。また、常温の天然ガスとエアーとの混合気が導入されて蒸発部13を通ってきた流体3と混じりあった時に、蒸発改質ガスの一部は蒸発部14出口で液滴となるかもしれず、その場合も、流体3の一部は蒸発部14出口で液滴であるかもしれない。
この液滴が蒸発部14からスーパーヒート部15に流入(液飛び)すると、スーパーヒート部15を構成する熱交換器の平板の一面は高温の燃焼ガス2に接し、その平板の他面に液滴が付着して、両面間に大きな温度差を生じ、大きな熱応力が生じて、熱交換器の耐久性を低下させる。これを防止するために、本発明では、以下のように、2つの対策(蒸発部でのフィンを伝う液滴の抑制、および連通路内での液状態での移動の抑制)の少なくとも一つがとられる。
【0015】
図2は、蒸発部14を構成する熱交換器の、流体3が流れる方の層における、波板からなるフィン21を示している。図2に示すように、フィン21は、高温改質水からなる流体3の流れ方向に、非連続(間欠的)フィンとしてある。すなわち、流体3の流れ方向(フィンの山条が延びる方向と同じ)に、フィン21とフィン21との間にスペース(隙間)22が設けてある。スペース22を設けることにより、フィン21を伝う液滴3Aが1山で切れる。1山端で切れた水滴は、その山を離れてスペース22中を飛んでいる間に効果的に蒸発するか、あるいは液滴が小さくなりそれを繰り返す間に効果的に蒸発する。
図3は従来の連続フィン20’を示す。液滴3Aが連続フィンを伝って流れる場合は、液滴の蒸発が阻害される場合があり、スーパーヒート部への液飛びが生じることがある。液飛びが生じるとスーパーヒート部の熱交換器の耐久性を低下させる。
【0016】
一つのフィン21の山の条に設けられたスペース22と、隣のフィン21の山の条に設けられたスペース22とは、流体3の流れ方向(フィンの山条が延びる方向)と直交する方向に、位置を一致させないようにする、すなわち互いにオフセットさせる、ことが望ましい。こうすることによって、1つのフィン山から斜め前方にあるフィン山に至る距離が大きくなり、その分フィン山間での液の蒸発が促進される。
【0017】
図4は、連通路16における、蒸発部14からスーパーヒート部15への液飛び対策を示している。
図4に示すように、連通路16内には、蒸発流体の液滴状態での移動を抑制するガイド17が設けられている。液滴は蒸気に比べて比重が大のため、液滴は連通路16の断面内の低い部分を通るが、ガイド17は連通路16の断面内の低い部分に設置されている。ガイド17は流体3の流れ方向に下流にいく程連通路16内の位置が低くなるており、傾斜面となっている。ガイド17は、連通路16が延びる方向と直交する方向には、弧状をなしており、連通路16の壁内面との間に一定の間隔をもって延びている。連通路16内を液滴が流れると、液滴はガイド17にあたって連通路16の下壁面に落下する。
【0018】
図4に示すように、連通路16の壁はジャバラパイプ18から構成されている。ジャバラパイプ18は複数の蛇腹の凹み19を有し、凹み19の上方にガイド17が位置している。ガイド17に当たって自重で落下する液滴は凹み19に出入りしながら下流へと流れ、流路長が長くなり、高温ガスと触れる時間、距離が長くなって、効果的に蒸発され、完全蒸気となってスーパーヒート部15へと流れる。
【0019】
つぎに、作用を説明する。
蒸発器10では、燃焼ガス2流れ方向に見て、蒸発部14とスーパーヒート部15とをUターン12部を介して接続したため、燃焼ガス2流れ方向に蒸発器10の熱交換部の長さが約1/2になり、蒸発器10がコンパクト化される。それによって、車両等への搭載が容易になる。
【0020】
また、連通路16内にガイド17を設けたので、連通路16内の、流体に含まれているかもしれない液滴のスーパーヒート部15への流入が抑制される。その結果、蒸発部14からスーパーヒート部15への液飛びが防止される。
さらに、連通路16の壁をジャバラパイプ18から構成したので、連通路16内の、流体に含まれているかもしれない液滴の移動が抑制される。その結果、蒸発部14からスーパーヒート部15への液飛びを防止できる。しかも、ジャバラパイプ18のため、ジャバラパイプ18と、ジャバラパイプ18との両端部の間に、熱膨張差があっても、ジャバラパイプ18の伸縮によりジャバラパイプ18の熱応力を緩和できる。
【0021】
また、蒸発部14の、流体3に接する方の熱交換器層の伝熱フィン21(燃焼ガス2に接する方の熱交換器層の伝熱フィンではない)を流体3流れ方向に非連続としたので、伝熱フィン21を伝っての、流体3に含まれているかもしれない液滴の移動を抑制でき、蒸発部14からスーパーヒート部15への液飛びを防止できる。
【0022】
【発明の効果】
請求項1の改質器によれば、燃焼ガス2流れ方向に見て、第1熱交換部14と第2熱交換部15とをUターン部12を介して接続したため、燃焼ガス2流れ方向に蒸発器10をコンパクト化できる。車両への搭載上、有利である。
請求項2の改質器によれば、燃焼ガス2流れ方向に見て、蒸発部14とスーパーヒート部15とをUターン部12を介して接続したため、燃焼ガス2流れ方向に蒸発器10をコンパクト化できる。車両への搭載上、有利である。
請求項3の改質器によれば、連通路16内にガイド17を設けたので、蒸発部14からスーパーヒート部15への液飛びを防止できる。
請求項4の改質器によれば、連通路16をジャバラパイプ18から構成したので、蒸発部14からスーパーヒート部15への液飛びを防止できる。しかも、ジャバラパイプ18の熱応力を緩和できる。
請求項5の改質器によれば、蒸発部14の流体3に接する方の伝熱フィン21を流体3流れ方向に非連続としたので、伝熱フィン21を伝っての、流体に含まれているかもしれない液滴の移動を抑制でき、蒸発部14からスーパーヒート部15への液飛びを防止できる。
【図面の簡単な説明】
【図1】本発明の改質器の蒸発器部分の断面図である。
【図2】図1の改質器の蒸発器部分の伝熱フィンの斜視図である。
【図3】比較例の蒸発器部分の伝熱フィンの斜視図である。
【図4】図1の改質器の連通路部分の断面図である。
【図5】図1の改質器の蒸発部を構成する熱交換器の断面図である。
【符号の説明】
1 改質器
2 燃焼ガス
3 流体
3A 液滴
10 蒸発器
11 燃焼ガス流路
12 Uターン部
13 流体流路
13A、13B、13C、13D マニホールド
14 第1熱交換部(蒸発部)
15 第2熱交換部(スーパーヒート部)
16 連通路
17 ガイド
18 ジャバラパイプ
19 凹み
20 波板(フィン)
21 平板
22 スペース
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reformer provided with an evaporator for generating a reforming material gas for a fuel cell.
[0002]
[Prior art]
The natural gas evaporator has a structure in which high-temperature raw material gas for reforming is generated by heat exchange of reforming water, air, and natural gas with high-temperature combustion gas in the evaporator.
Japanese Patent Application Laid-Open No. 2002-39023 discloses an evaporator, in which a laminated heat exchanger having continuous fins in which a raw material gas flow path is arranged in a meandering manner in a straight combustion gas flow path. In this case, a reforming source gas is generated by heat exchange in the above.
[0003]
[Patent Document 1]
JP-A-2002-39023
[Problems to be solved by the invention]
However, the above prior art has the following problems.
Since the combustion gas flow path is straight, the evaporator becomes longer in the direction of the combustion gas flow path, and it is difficult to make the evaporator compact, which makes mounting on a vehicle difficult.
Since the fins are formed continuously, the reforming water splashes from the evaporating section to the superheat section along the fins (liquid reforming water that has not completely evaporated jumps off the superheat section), and Thermal stress occurs due to the temperature difference between the droplet and the combustion gas in the fins of the portion, and the durability of the superheat portion is reduced.
An object of the present invention is to provide a reformer that can make the evaporator compact in the combustion gas flow direction.
It is another object of the present invention to provide a reformer that can prevent the reforming water from splashing from the evaporating section to the superheat section along the fins.
[0005]
[Means for Solving the Problems]
The present invention that achieves the above object is as follows.
(1) a combustion gas flow path having a U-turn portion in the middle and through which combustion gas flows,
A fluid flow path in which a reforming material fluid that is vaporized by heat exchange with the combustion gas flows therein,
A first heat exchange unit that is provided in a combustion gas flow path downstream of the U-turn unit when viewed in the flow direction of the combustion gas and forms a part of the fluid flow path and exchanges heat with the combustion gas;
A second heat exchange section that is provided in a combustion gas flow path on the upstream side of the U-turn section when viewed in the flow direction of the combustion gas and forms a part of the fluid flow path and exchanges heat with combustion gas;
A communication passage that communicates the first heat exchange unit and the second heat exchange unit separately from the U-turn unit, forms a part of the fluid flow path, and flows the fluid vapor therein;
A reformer provided with an evaporator having:
(2) The reformer according to (1), wherein the first heat exchange section comprises an evaporator section, and the second heat exchange section comprises a superheat section.
(3) The reformer according to (1) or (2), wherein a guide for suppressing the movement of the evaporating fluid in a droplet state is provided in the communication path.
(4) The reformer according to (1), (2) or (3), wherein the communication passage is formed of a bellows pipe.
(5) The reformer according to (1), wherein the heat transfer fins of the portion of the first heat exchange section that is in contact with the fluid are discontinuous when viewed in the flow direction of the fluid.
[0006]
In the reformer of the above (1), since the first heat exchange section and the second heat exchange section are connected via the U-turn section when viewed in the combustion gas flow direction, the evaporator can be made compact in the combustion gas flow direction. it can.
In the reformer of the above (2), since the evaporator and the superheater are connected via the U-turn part when viewed in the combustion gas flow direction, the evaporator can be made compact in the combustion gas flow direction.
In the reformer of the above (3), since a guide is provided in a communication path which constitutes a part of the fluid flow path and communicates the evaporating section and the superheat section, it is included in the fluid in the communication path. The movement of liquid droplets that may occur is suppressed, and as a result, liquid splash from the evaporating section to the superheat section can be prevented.
In the reformer of the above (4), since the communication path which constitutes a part of the fluid flow path and connects the evaporating section and the superheat section is constituted by the bellows pipe, it is included in the fluid in the communication path. The movement of liquid droplets that may occur is suppressed, and as a result, liquid splash from the evaporating section to the superheat section can be prevented. In addition, the thermal stress of the bellows pipe can be reduced.
In the reformer of the above (5), since the heat transfer fin that is in contact with the fluid in the evaporating section is discontinuous in the fluid flow direction, the liquid that may be contained in the fluid after passing through the heat transfer fin. The movement of the droplet can be suppressed, and the liquid can be prevented from splashing from the evaporating section to the superheat section.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reformer of the present invention will be described with reference to FIGS. However, FIG. 3 is a comparative example (not included in the present invention).
As shown in FIG. 1, the reformer 1 of the present invention is a reformer provided with an evaporator 10. The reformer 1 includes a reforming section, a shift reaction section, and a CO reduction section on the downstream side of the evaporator 10 as viewed in the flow direction of the fluid 3.
[0008]
The evaporator 10
A combustion gas passage 11 having a U-turn portion 12 in the middle and through which the combustion gas 2 flows;
A fluid passage 13 through which the reforming material fluid 3 which is vaporized by heat exchange with the combustion gas 2 and further turned into superheated steam flows therein;
A first heat exchange section 14 provided in the combustion gas flow path 11 on the downstream side of the U-turn section 12 as viewed in the flow direction of the combustion gas 2 and constituting a part of a fluid flow path 13 and performing heat exchange with the combustion gas 2; ,
A second heat exchange section 15 provided in the combustion gas flow path 11 on the upstream side of the U-turn section 12 as viewed in the flow direction of the combustion gas 2 and constituting a part of the fluid flow path 13 to exchange heat with the combustion gas 2; ,
A communication path 16 that communicates the evaporating section 14 and the superheat section 15 with a separate flow path from the U-turn section 12 to form a part of a fluid flow path 13 and to flow the fluid vapor 3 therein;
Having.
The first heat exchange unit 14 includes an evaporator 14 (same as the first heat exchange unit 14) that evaporates the fluid 3 by heat exchange with the combustion gas 2.
The second heat exchange section 15 is a superheat section 15 (second section) that superheats the fluid vapor (with the same reference numeral 3 as the fluid 3) to the superheated steam (with the same reference numeral 3 as the fluid 3) by heat exchange with the combustion gas 2. 2 is given the same symbol as the heat exchange unit 15).
The combustion gas 2 does not flow between the flow path wall of the communication passage 16 and the casing outside the flow path wall. The combustion gas 2 flows from the superheat section 15 to the evaporation section 14 through the U-turn section 12.
The fluid flow path 13 has manifolds 13A and 13B at the entrance and exit of the evaporating section 14 and manifolds 13C and 13D at the entrance and exit of the superheat section 15 when viewed in the flow direction of the fluid 3.
[0009]
The evaporator 14 and the superheater 15 are parallel to each other, and the communication path 16 is orthogonal to the evaporator 14 and the superheater 15. The flow direction of the high-temperature gas 2 in the evaporating section 14 and the flow direction of the high-temperature gas 2 in the superheat section 15 are opposite to each other. The flow direction of the fluid 3 in the evaporator 14 and the flow direction of the fluid 3 in the superheater 15 are opposite to each other.
[0010]
On the upstream side of the evaporator 14 in the flow direction of the fluid 3, the room temperature reformed water 4 is introduced into the evaporator 14, and at least a part of the reformed water 4 is evaporated in the evaporator 14. On the downstream side of the evaporator 14 in the flow direction of the fluid 3, a reforming air and a raw material gas 5 for mixing natural gas such as methane at room temperature are introduced. The reformed water 4 or its vapor, or a mixed gas of the reformed water 4 or its vapor and the reforming raw material gas 5 constitutes a liquid 3 or a fluid 3 composed of a liquid and a gas.
The fluid 3 composed of the reforming water 4 or a mixed gas of the vapor of the reforming water 4 and the raw material gas 5 flows through the communication passage 16 to the superheat section 15, where it is converted into superheated steam (superheated steam). It becomes a reformed gas (reformed raw material gas) and flows to a reforming section (not shown) in the next step.
[0011]
The temperature of the combustion gas 2 is about 650 ° C. at the entrance of the combustion gas 2 to the superheat section 15 (the exit from the superheat section 15 when viewed from the fluid 3), and the exit of the combustion gas 2 from the superheat section 15 The temperature is about 500 ° C. (at the entrance to the superheat section 15 as viewed from the fluid 3). The combustion gas at about 500 ° C. maintains its temperature and passes through the U-turn section 12 to reach the inlet of the combustion gas 2 to the evaporator section 14 (the outlet from the evaporator section 14 as viewed from the fluid 3). The temperature of the combustion gas 2 is about 500 ° C. at the inlet of the combustion gas 2 to the evaporator 14 (the outlet from the evaporator 14 when viewed from the fluid 3), and the outlet of the combustion gas 2 from the evaporator 14 (the fluid 3) From the entrance to the evaporating section 14).
[0012]
The temperature of the reforming water 4 is normal at the inlet of the fluid 3 to the fluid flow path 13, and is about 200 ° C. at the outlet from the evaporator 14. The temperature of the air-fuel mixture of the natural gas and the reforming air is room temperature at the inlet to the fluid flow path 13, and is about 200 ° C. after merging with the steam of the reforming water 4 at the outlet from the evaporator 14. Fluid 3 vapor (which may contain droplets) flows through communication passage 16 at about 200 ° C. and is at about 200 ° C. at the entrance of fluid 3 vapor to superheat section 15. The fluid 3 vapor is superheated in the superheat section 15, and the temperature of the fluid 3 superheated vapor is about 500 ° C. at the outlet from the superheat section 15.
[0013]
Both the evaporator 14 and the superheater 15 are formed of a stacked heat exchanger. As shown in FIG. 6, for example, the laminated heat exchanger is formed by laminating a corrugated plate (fin) 20 and a flat plate 21 in a plurality of layers, and a layer in which the fluid 3 flows and the combustion gas 2 are formed. The flowing layers are alternately arranged in the laminating direction.
[0014]
The fluid 3 may not be completely evaporated in the evaporator 14, especially during high-load operation (when a large amount of reforming water is introduced), in which case a part of the fluid 3 is liquid at the outlet of the evaporator 14. May be drops. Also, when a mixture of natural gas and air at normal temperature is introduced and mixed with the fluid 3 that has passed through the evaporator 13, part of the evaporative reformed gas may become droplets at the outlet of the evaporator 14. Again, some of the fluid 3 may be droplets at the outlet of the evaporator 14.
When the droplets flow (liquid splash) from the evaporating section 14 into the superheat section 15, one surface of the flat plate of the heat exchanger constituting the superheat portion 15 comes into contact with the high-temperature combustion gas 2 and the other surface of the flat plate becomes liquid. Drops adhere and create a large temperature difference between the two surfaces, causing large thermal stresses and reducing the durability of the heat exchanger. In order to prevent this, in the present invention, at least one of the following two measures (suppression of droplets passing through the fin in the evaporator and suppression of movement in the liquid state in the communication path) is performed as described below. Be taken.
[0015]
FIG. 2 shows the fins 21 made of corrugated sheets in the layer of the heat exchanger constituting the evaporator 14 where the fluid 3 flows. As shown in FIG. 2, the fins 21 are discontinuous (intermittent) fins in the flow direction of the fluid 3 composed of the high-temperature reforming water. That is, a space (gap) 22 is provided between the fins 21 in the flow direction of the fluid 3 (the same as the direction in which the ridges of the fins extend). By providing the space 22, the droplet 3A traveling along the fin 21 is cut at one peak. The water droplet broken at one mountain end evaporates effectively while leaving the mountain and flying in the space 22, or effectively evaporates while the droplet becomes smaller and repeats.
FIG. 3 shows a conventional continuous fin 20 '. When the droplet 3A flows along the continuous fin, the evaporation of the droplet may be hindered, and the liquid may fly to the superheat portion. When the liquid splash occurs, the durability of the heat exchanger in the superheat section is reduced.
[0016]
The space 22 provided on the ridge of one fin 21 and the space 22 provided on the ridge of the adjacent fin 21 are orthogonal to the flow direction of the fluid 3 (the direction in which the ridge of the fin extends). It is desirable that the directions do not coincide, i.e., are offset from each other. By doing so, the distance from one fin peak to the fin peak diagonally forward is increased, and the evaporation of liquid between the fin peaks is accelerated accordingly.
[0017]
FIG. 4 shows a countermeasure for liquid splash from the evaporating section 14 to the superheat section 15 in the communication path 16.
As shown in FIG. 4, a guide 17 for suppressing the movement of the evaporating fluid in a droplet state is provided in the communication path 16. Since the specific gravity of the liquid droplet is larger than that of the vapor, the liquid droplet passes through a lower portion in the cross section of the communication path 16, but the guide 17 is provided at a lower portion in the cross section of the communication path 16. The position of the guide 17 in the communication passage 16 becomes lower as it goes downstream in the flow direction of the fluid 3, and is an inclined surface. The guide 17 has an arc shape in a direction orthogonal to the direction in which the communication path 16 extends, and extends at a fixed interval between the guide 17 and the inner surface of the wall of the communication path 16. When the liquid droplets flow in the communication path 16, the liquid droplets fall on the lower wall surface of the communication path 16 on the guide 17.
[0018]
As shown in FIG. 4, the wall of the communication passage 16 is constituted by a bellows pipe 18. The bellows pipe 18 has a plurality of bellows recesses 19, and the guide 17 is located above the recesses 19. The droplets that fall on the guides 17 and fall under their own weight flow downstream while entering and leaving the dents 19, the flow path lengths become longer, the time and distance of contact with the hot gas become longer, and they are effectively evaporated to complete vapor. And flows to the superheat section 15.
[0019]
Next, the operation will be described.
In the evaporator 10, since the evaporator 14 and the superheater 15 are connected via the U-turn 12 when viewed in the flow direction of the combustion gas 2, the length of the heat exchange part of the evaporator 10 in the flow direction of the combustion gas 2 Is reduced to about 1/2, and the evaporator 10 is made compact. This facilitates mounting on a vehicle or the like.
[0020]
Further, since the guide 17 is provided in the communication path 16, the inflow of the liquid droplets, which may be included in the fluid, into the superheat section 15 in the communication path 16 is suppressed. As a result, liquid splash from the evaporator 14 to the superheater 15 is prevented.
Further, since the wall of the communication passage 16 is formed of the bellows pipe 18, the movement of the droplets that may be included in the fluid in the communication passage 16 is suppressed. As a result, liquid splash from the evaporator 14 to the superheater 15 can be prevented. Moreover, because of the bellows pipe 18, even if there is a difference in thermal expansion between the bellows pipe 18 and both ends of the bellows pipe 18, the thermal stress of the bellows pipe 18 can be reduced by the expansion and contraction of the bellows pipe 18.
[0021]
Further, the heat transfer fins 21 of the heat exchanger layer of the evaporating section 14 that is in contact with the fluid 3 (not the heat transfer fins of the heat exchanger layer that is in contact with the combustion gas 2) are discontinuous in the flow direction of the fluid 3. Therefore, it is possible to suppress the movement of the liquid droplets that may be contained in the fluid 3 along the heat transfer fins 21 and prevent the liquid from jumping from the evaporating unit 14 to the superheat unit 15.
[0022]
【The invention's effect】
According to the reformer of the first aspect, the first heat exchange unit 14 and the second heat exchange unit 15 are connected via the U-turn unit 12 when viewed in the combustion gas 2 flow direction. In addition, the evaporator 10 can be made compact. This is advantageous in mounting on a vehicle.
According to the reformer of claim 2, since the evaporator 14 and the superheater 15 are connected via the U-turn part 12 when viewed in the combustion gas 2 flow direction, the evaporator 10 is connected in the combustion gas 2 flow direction. Can be made compact. This is advantageous in mounting on a vehicle.
According to the reformer of the third aspect, since the guide 17 is provided in the communication path 16, it is possible to prevent the liquid from jumping from the evaporator 14 to the superheater 15.
According to the reformer of the fourth aspect, since the communication path 16 is constituted by the bellows pipe 18, it is possible to prevent the liquid from flowing from the evaporator 14 to the superheater 15. In addition, the thermal stress of the bellows pipe 18 can be reduced.
According to the reformer of the fifth aspect, since the heat transfer fins 21 in contact with the fluid 3 in the evaporator 14 are discontinuous in the flow direction of the fluid 3, the heat transfer fins 21 are included in the fluid after passing through the heat transfer fins 21. It is possible to suppress the movement of liquid droplets that may be flowing, and to prevent the liquid from jumping from the evaporating section 14 to the superheat section 15.
[Brief description of the drawings]
FIG. 1 is a sectional view of an evaporator part of a reformer of the present invention.
FIG. 2 is a perspective view of a heat transfer fin of an evaporator portion of the reformer of FIG.
FIG. 3 is a perspective view of a heat transfer fin of an evaporator portion of a comparative example.
FIG. 4 is a sectional view of a communication passage portion of the reformer of FIG.
FIG. 5 is a cross-sectional view of a heat exchanger constituting an evaporator of the reformer of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reformer 2 Combustion gas 3 Fluid 3A Droplet 10 Evaporator 11 Combustion gas flow path 12 U-turn section 13 Fluid flow paths 13A, 13B, 13C, 13D Manifold 14 First heat exchange section (evaporation section)
15 Second heat exchange section (super heat section)
16 Communication passage 17 Guide 18 Bellows pipe 19 Depression 20 Corrugated plate (fin)
21 flat plate 22 space

Claims (5)

途中にUターン部を有し内部を燃焼ガスが流れる燃焼ガス流路と、
前記燃焼ガスとの熱交換により蒸気化される改質原料用流体が内部を流れる流体流路と、
燃焼ガスの流れ方向に見て前記Uターン部の下流側の燃焼ガス流路に設けられ前記流体流路の一部を構成し燃焼ガスと熱交換を行う第1熱交換部と、
燃焼ガスの流れ方向に見て前記Uターン部の上流側の燃焼ガス流路に設けられ前記流体流路の一部を構成し燃焼ガスと熱交換を行う第2熱交換部と、
前記第1熱交換部と前記第2熱交換部とを前記Uターン部とは別に連通し前記流体流路の一部を構成し内部に前記流体蒸気を流す連通路と、
を有する蒸発器を備えた改質器。
A combustion gas flow path having a U-turn portion in the middle and through which combustion gas flows,
A fluid flow path in which a reforming material fluid that is vaporized by heat exchange with the combustion gas flows therein,
A first heat exchange unit that is provided in a combustion gas flow path downstream of the U-turn unit when viewed in the flow direction of the combustion gas and forms a part of the fluid flow path and exchanges heat with the combustion gas;
A second heat exchange section that is provided in a combustion gas flow path on the upstream side of the U-turn section when viewed in the flow direction of the combustion gas and forms a part of the fluid flow path and exchanges heat with combustion gas;
A communication passage that communicates the first heat exchange unit and the second heat exchange unit separately from the U-turn unit, forms a part of the fluid flow path, and flows the fluid vapor therein;
A reformer provided with an evaporator having:
前記第1熱交換部は蒸発部、前記第2熱交換部はスーパヒート部からなる請求項1記載の改質器。The reformer according to claim 1, wherein the first heat exchange section comprises an evaporator section, and the second heat exchange section comprises a superheat section. 前記連通路内に、蒸発流体の液滴状態での移動を抑制するガイドを設けた請求項1または請求項2記載の改質器。3. The reformer according to claim 1, wherein a guide is provided in the communication path to suppress movement of the evaporating fluid in a droplet state. 4. 前記連通路をジャバラパイプから構成した請求項1または請求項2または請求項3記載の改質器。The reformer according to claim 1, wherein the communication path is formed of a bellows pipe. 前記第1熱交換部の前記流体に接する部分の伝熱フィンを前記流体の流れ方向に見て非連続とした請求項1記載の改質器。2. The reformer according to claim 1, wherein the heat transfer fin of a portion of the first heat exchange section that is in contact with the fluid is discontinuous when viewed in a flow direction of the fluid.
JP2003013025A 2003-01-22 2003-01-22 Reformer Withdrawn JP2004224621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013025A JP2004224621A (en) 2003-01-22 2003-01-22 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013025A JP2004224621A (en) 2003-01-22 2003-01-22 Reformer

Publications (1)

Publication Number Publication Date
JP2004224621A true JP2004224621A (en) 2004-08-12

Family

ID=32901469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013025A Withdrawn JP2004224621A (en) 2003-01-22 2003-01-22 Reformer

Country Status (1)

Country Link
JP (1) JP2004224621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288055A (en) * 2008-05-29 2009-12-10 Ishikawajima Transport Machinery Co Ltd Method of calculating position information of object
KR100981521B1 (en) 2008-09-05 2010-09-10 삼성에스디아이 주식회사 Evaporator and fuel reformer having the same
US8568495B2 (en) 2008-09-05 2013-10-29 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same
CN104154679A (en) * 2014-07-07 2014-11-19 浙江理工大学 Super cooling and supper heating dry type evaporator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288055A (en) * 2008-05-29 2009-12-10 Ishikawajima Transport Machinery Co Ltd Method of calculating position information of object
KR100981521B1 (en) 2008-09-05 2010-09-10 삼성에스디아이 주식회사 Evaporator and fuel reformer having the same
US8568495B2 (en) 2008-09-05 2013-10-29 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same
CN104154679A (en) * 2014-07-07 2014-11-19 浙江理工大学 Super cooling and supper heating dry type evaporator

Similar Documents

Publication Publication Date Title
JP2006514411A (en) Three-fluid evaporative heat exchanger
JP4550885B2 (en) Fluid flow distributor
US8240365B2 (en) Heat exchanger
US20060137867A1 (en) Exhaust gas heat exchanger
EP1306639B1 (en) Method and apparatus for vaporizing fuel for a reformer fuel cell system
JP3961443B2 (en) Evaporator
JP5019822B2 (en) Water evaporator with intermediate steam superheat path
KR100738807B1 (en) Heat exchanger for latent heat recovery
US20090313993A1 (en) Vaporizer for a waste heat recovery system
JP5531570B2 (en) Boiling-cooled heat exchanger
JP2004224621A (en) Reformer
JP2020521935A (en) Method of using an indirect heat exchanger and equipment for treating liquefied natural gas, comprising such a heat exchanger
JP6569522B2 (en) Heat exchanger
JP2003269882A (en) Lamination type evaporator
JP4450056B2 (en) Exhaust heat recovery unit
JP2007255857A (en) Evaporator
US20010023760A1 (en) Apparatus for evaporating and/or superheating a medium
JP2005291546A (en) Heat exchanger
JP5089938B2 (en) Heat exchange device and combustion device equipped with the same
JP2006015323A (en) Microchannel-type evaporator and system using it
JP6242143B2 (en) Combined heat exchange and fluid mixing device
US20030178189A1 (en) Stacked heat exchanger
JP4649349B2 (en) Evaporator with excellent distribution performance
JP2004047260A (en) Evaporator
JPH0512400U (en) Plate fin type flash evaporator for exhaust heat control of spacecraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071207