JP2004224578A - Environmentally harmonized type calcium-containing hydrated hardened body and method of manufacturing the same - Google Patents
Environmentally harmonized type calcium-containing hydrated hardened body and method of manufacturing the same Download PDFInfo
- Publication number
- JP2004224578A JP2004224578A JP2003010467A JP2003010467A JP2004224578A JP 2004224578 A JP2004224578 A JP 2004224578A JP 2003010467 A JP2003010467 A JP 2003010467A JP 2003010467 A JP2003010467 A JP 2003010467A JP 2004224578 A JP2004224578 A JP 2004224578A
- Authority
- JP
- Japan
- Prior art keywords
- cured product
- hydrated
- water
- carbon dioxide
- containing hydrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Revetment (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Artificial Fish Reefs (AREA)
Abstract
Description
【0001】
【発明が属する技術分野】
本発明は、例えば、水中に設置した場合に生物の付着性(着生性)、棲息・生育性が良く、生物に好適な棲息・生育環境を提供することができる環境調和型のCa含有水和硬化体及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、沿岸海域の水質・底質の汚染や所謂磯焼けなどによる藻場・漁場の衰退という問題に対して、藻礁や漁礁用の資材を海底に設置することが広く行われるようになってきた。この藻礁や漁礁用の資材としては、製造の容易さ、海中での安定性、製造コストなどの面で、コンクリートブロックなどのコンクリート製品が広く用いられている。また、水中又はその周辺で使用される土木材料、例えば、側溝ブロック、水路用ブロック、水質浄化用ブロック、根固め用ブロックなどの各種材料も殆どがコンクリート製品で構成されている。
【0003】
【発明が解決しようとする課題】
しかし、コンクリートを水中に設置すると、コンクリートから溶出するCaが周囲の水のpHを上昇させ、水中生物(動植物、微生物)の棲息・生育環境に悪影響を与えるという問題がある。このため、例えばコンクリートブロックを藻礁用の資材として単に海底に設置しても、十分満足できるような量の海藻を着生・生育させることができない。また、海中に設置されたコンクリートは、所謂磯焼けの原因となる石灰藻の付着繁殖を促すとの指摘もあり、さらに、水中に設置されたコンクリートは、これに含まれる石灰分がカルシウムイオンとして水中に溶出することにより強度が低下するという問題もある。
【0004】
従来、藻礁用のコンクリートブロックへの海藻着生を促すために、ブロック面に凹凸や溝を付けたり、着生促進物質を塗布又は添付したり、或いはブロック中に着生促進物質を添加するといった対策(例えば、特許文献1、特許文献2、非特許文献1)も試みられているが、これらの対策は資材のコスト上昇を招くとともに、その効果が必ずしも明確でなく、また、いずれにしても周囲の水のpHを上昇させるというコンクリートの欠点を解消するものではない。
【0005】
【特許文献1】
特開2001−275506号公報
【特許文献2】
特開2002−45080号公報
【非特許文献1】
「第54回セメント技術大会講演要旨 2000」p.410−411
【0006】
また、藻礁や漁礁用の資材以外の水中又はその周辺で使用されるコンクリートについても上記と同様の問題があり、例えば、コンクリートで作られた水路には水棲の動植物は繁殖しにくい傾向がある。
また、例えば、所謂ポーラスコンクリートを水質浄化材や陸上の植生基盤などに利用することも行われているが、水質浄化材としての利用では、多孔質内部や周囲の水のpH上昇を招くため微生物の生存環境などに悪影響が及ぶという問題があり、また植生基盤としての利用では雨水等の付着水やその周辺のpHを上昇させるため、植物の生育が阻害されるという問題がある。
【0007】
したがって本発明の目的は、コンクリートなどのような水和硬化体でありながら、水中に設置した場合に周囲の水のpHを過剰に上昇させることがなく、水中生物(動植物、微生物)の生存に好適な環境を与えることができ、また、陸上の植生基盤などに用いた場合でも植物生育環境のpHを過剰に上昇させることがなく、植物の生育に好適な環境を与えることができる、環境調和型の水和硬化体及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく検討を重ねた結果、コンクリートに代表されるCa含有水和硬化体の表面に炭酸カルシウムの被覆層を形成することにより、水中に設置した場合に周囲の水のpHを過剰に上昇させることがなく、また、陸上の植生基盤などに用いた場合でも植物生育環境のpHを過剰に上昇させることがなく、いずれも生物(動植物、微生物)の棲息・生育に好適な環境を提供できることが判った。
【0009】
本発明はこのような知見に基づきなされたもので、その特徴は以下のとおりである。
[1] 少なくとも外表面に炭酸カルシウム被覆層を有することを特徴とする環境調和型Ca含有水和硬化体。
[2] 上記[1]のCa含有水和硬化体において、内部に連続空隙を有する多孔質体であり、前記連続空隙内面にも炭酸カルシウム被覆層を有することを特徴とする環境調和型Ca含有水和硬化体。
[3] 上記[1]又は[2]のCa含有水和硬化体において、炭酸カルシウム被覆層が、Ca含有水和硬化体を炭酸化処理することにより生成させたものであることを特徴とする環境調和型Ca含有水和硬化体。
[4] 上記[1]〜[3]のいずれかのCa含有水和硬化体において、現場打ちされた水和硬化体であることを特徴とする環境調和型Ca含有水和硬化体。
【0010】
[5] 上記[1]〜[4]のいずれかのCa含有水和硬化体において、水中に沈設され若しくは水に接した状態で使用され又は植生基盤として使用される、水和硬化体製品又は現場打ちされた水和硬化体であることを特徴とする環境調和型Ca含有水和硬化体。
[6] 少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させたCa含有水和硬化体に炭酸ガス雰囲気又は炭酸ガス含有雰囲気下で炭酸化処理を施し、Ca含有水和硬化体表層に含まれる未炭酸化Caを炭酸化させることにより、Ca含有水和硬化体の少なくとも外表面に炭酸カルシウム被覆層を生成させることを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[7] 上記[6]の製造方法において、Ca含有水和硬化体が内部に連続空隙を有し、炭酸化処理によって前記連続空隙の内面表層に含まれる未炭酸化Caを炭酸化させることにより、該連続空隙内面にも炭酸カルシウム被覆層を生成させることを特徴とする環境調和型Ca含有水和硬化体の製造方法。
【0011】
[8] 上記[7]の製造方法において、内部に連続空隙を有するCa含有水和硬化体に水を含浸させた後、該Ca含有水和硬化体の内部を減圧することにより前記水の一部を排出し、しかる後、Ca含有水和硬化体に炭酸ガス雰囲気又は炭酸ガス含有雰囲気下で炭酸化処理を施し、Ca含有水和硬化体表層及び前記連続空隙の内面表層に含まれる未炭酸化Caを炭酸化させることにより、Ca含有水和硬化体の外表面及び前記連続空隙の内面に炭酸カルシウム被覆層を生成させることを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[9] 上記[8]の製造方法において、Ca含有水和硬化体の内部を減圧する工程では、Ca含有水和硬化体の内部を0.8気圧以下に減圧することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[10] 上記[6]〜[9]のいずれかの製造方法において、Ca含有水和硬化体を炭酸化処理する工程では、Ca含有水和硬化体を密閉容器内に置き、該密閉容器内に炭酸ガス又は炭酸ガス含有ガスを供給することにより、Ca含有水和硬化体を炭酸化処理することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
【0012】
[11] 上記[7]〜[9]のいずれかの製造方法において、Ca含有水和硬化体が内部に連続空隙を有し、Ca含有水和硬化体を炭酸化処理する工程では、ガス供給手段を通じて前記Ca含有水和硬化体の外面からその内部に炭酸ガス又は炭酸ガス含有ガスを供給することにより、Ca含有水和硬化体を炭酸化処理することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[12] 上記[11]の製造方法において、容器内に置かれたCa含有水和硬化体にガス供給手段を通じて炭酸ガス又は炭酸ガス含有ガスを供給することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[13] 上記[7]〜[9]のいずれかの製造方法において、Ca含有水和硬化体が内部に連続空隙を有するとともに、外面から水和硬化体内部に達する孔を有し、Ca含有水和硬化体を炭酸化処理する工程では、ガス供給手段から前記孔内に炭酸ガス又は炭酸ガス含有ガスを供給することにより、Ca含有水和硬化体を炭酸化処理することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
[14] 上記[13]の製造方法において、容器内に置かれたCa含有水和硬化体の孔内にガス供給手段から炭酸ガス又は炭酸ガス含有ガスを供給することを特徴とする環境調和型Ca含有水和硬化体の製造方法。
【0013】
【発明の実施の形態】
本発明のCa含有水和硬化体は、少なくとも外表面に炭酸カルシウム被覆層を有するものであるが、基体となるCa含有水和硬化体としては、未炭酸化Caを含有するものであればその種類を問わない。ここで、Ca含有水和硬化体とは、Caを含有する結合材(セメントなど)、骨材(細骨材及び/又は粗骨材)、水、必要に応じて配合される混和材等を混練し、水和硬化させたもの、或いは結合材程度から骨材程度までの広い粒径分布を有するCa含有材、水、必要に応じて配合される混和材等を混練し、水和硬化させたものである。最も一般的なCa含有水和硬化体はコンクリートであるが、これに限定されるものではなく、例えば、FSコンクリート、エコセメントコンクリート、石炭灰水和硬化体(例えば、フライアッシュセメントコンクリート)や、鉄鋼製造プロセスで発生するスラグを主原料とする水和硬化体(例えば、溶銑予備処理スラグ、高炉スラグ微粉末、消石灰などを配合した水和硬化体)、など、任意のCa含有水和硬化体を対象とすることができる。
また、コンクリートには、ポルトランドセメント、高炉セメントなど任意のセメントを用いたコンクリートが含まれる。
【0014】
また、これらのCa含有水和硬化体の内部に連続空隙(開気孔)が形成されている場合、好ましくはこの連続空隙(主要な連続空隙)の内面にも炭酸カルシウム被覆層が形成される。このような連続空隙を有するCa含有水和硬化体の代表例は所謂ポーラスコンクリート(多孔質コンクリート)であるが、これに限定されない。一般にポーラスコンクリートは、10%以上の連続空隙率(社団法人日本道路協会発行の「排水性舗装技術指針(案)」付録−8 の連続空隙率測定法による)を有している。通常、ポーラスコンクリートは粗骨材とセメントペーストとを一定の割合で配合し、これを混練することにより得られる。
Ca含有水和硬化体の外表面や連続空隙の内面に炭酸カルシウム被覆層を形成させる方法は任意であるが、通常はCa含有水和硬化体を炭酸ガスと接触させる炭酸化処理で形成させる。この炭酸化処理の実施方法については、後に詳述する。
本発明が対象とするCa含有水和硬化体は、ブロックなどの水和硬化体(固化体)製品だけでなく、現場打ちコンクリートなどの現場で施工される水和硬化体も含まれる。
【0015】
本発明において対象となる水和硬化体製品や現場打ち水和硬化体の種類に特別な制限はないが、水中又はその近傍で使用されるもの、水に接した状態で使用されるもの、植生基盤として使用されるものが特に好適である。具体的には、海、河川、湖沼などにおいて藻礁用、築磯用、魚礁用、海底マウンド用、河床用、魚道(例えば、ダムや堰に設けられる魚道)用、人工河床(例えば、石張りまたは石組により構築された河床)用、水質浄化用などの各種用途で水中に沈設される水和硬化体製品又は現場打ち水和硬化体;側溝用ブロック(U字側溝ブロック、L字側溝ブロック、可変勾配型側溝ブロック(下部開放型側溝ブロック)など)、開渠または暗渠の水路用のブロック、擁壁用ブロック、水路底用ブロックなどの水路用の水和硬化体製品又は現場打ち水和硬化体;緑化ブロック、景観ブロック、土壌被覆ブロック(護岸構築用ブロック、傾斜地被覆用ブロック、斜面安定ブロック等)などの植生基盤として用いられる水和硬化体製品又は現場打ち水和硬化体、などが挙げられる。
なお、本発明のCa含有水和硬化体は、上述した水中沈設材料、水路用材料、植生基盤用材料以外にも種々の用途に利用することができる。
【0016】
以下、本発明のCa含有水和硬化体の機能について説明する。
水中に設置された藻礁用資材(海藻の着生基質)に対する海藻の着生・繁殖形態は、別の場所で生育している胞子体(親個体)から放出された数μm〜数百μm程度の大きさの遊走子や卵が海水中を浮遊して基質に到達し、その表面に着生した後、胞子体や幼体へと成長するというものであり、したがって、基質に海藻が適切に着生するには、基質表面に接している海水、特に基質表面に存在する流動性が低い微小な海水層(所謂境界層)の水質が遊走子や卵の着生・生育に適したものであることが必要であると考えられる。そして、従来のコンクリート製の基質(資材)は、コンクリートから溶出するCaが周囲の水、特に基質表面に接する微小な海水層のpHを大きく上昇させ、この結果、海水中を浮遊して基質に到達した遊走子や卵が基質表面でうまく着生・生育できないものと考えられる。通常の海水はpH7.8〜8.4程度の弱アルカリであり、そのpHが10を超えると遊走子や卵の着生や生育が著しく阻害されると考えられるが、従来のコンクリート製の基質(資材)では基質表面に存在する境界層のpHは12程度にもなり、この境界層は遊走子や卵が極めて着生・生育しにくい環境であると言える。
【0017】
これに対して本発明のCa含有水和硬化体は、その表面(連続空隙を有する場合には連続空隙の内面も含む表面)に炭酸カルシウム被覆層が形成されているため、基質からのCaの溶出とこれに伴う海水(特に基質表面の境界層の海水)のpH上昇が抑えられ、基質表面の海水層を遊走子や卵の着生や生育に好適な環境とすることができる。このような本発明のCa含有水和硬化体の機能は、藻礁や漁礁用として設置された場合に限らず、築磯用、海底マウンド用などの種々の資材として水中に設置された場合も同様に発揮される。なお、着生する動植物としては、例えば、海藻、サンゴ、貝類、フジツボ類、ゴカイ類などが挙げられるが、これに限定されるものではない。
また、本発明のCa含有水和硬化体を、用水路などの水路用、ダムや堰に設けられる魚道用、人工河床用などの水和硬化体製品(ブロックなど)や現場打ち水和硬化体に適用した場合には、上記と同様の理由により、水中生物(魚類、甲殻類、水生昆虫等)や水生植物(藻類、水草等)が棲息、生育しやすい環境を与えることができる。
【0018】
また、従来、海、河川、湖沼、池などの水質浄化のための一つの手法として、微生物を中心とした生物の生態系による自浄作用を利用することを狙いとし、水中での生物間の活発な食物連鎖の環境を人為的に提供するために、水中や水辺に水質浄化用資材としてポーラスコンクリートブロックを設置することが行われている。ところで、生物の食物連鎖による水質自浄作用が適切に得られるような環境を、水質浄化用資材によって提供するためには、資材自体が、有機汚濁物質を分解する好気性微生物が付着・繁殖し、且つこれらが活発に活動できる環境を備えていること、また、それら微生物を捕食する原生動物が活発に活動できる環境を備えていること、さらには、有機汚濁物質の分解物を栄養源として取り込む藻類等の水生植物が着生・生育できる環境を備えていることが必要である。この点、従来のポーラスコンクリート製の資材はその多孔質の内部や周囲の水のpHが上昇するため、好気性微生物の生存環境や藻類の成育環境のいずれの面でも大きな問題があり(例えば、硝化菌はpH7〜9が適正環境である)、むしろそれらの環境をより悪化させる可能性さえある。
【0019】
これに対して本発明のCa含有水和硬化体を水質浄化用資材として用いた場合には、多孔質の内部や周囲の水のpHを上昇させるおそれは殆どなく、このため好気性微生物の生存環境や藻類の成育環境がpH上昇によって阻害されることはなく、したがって、高い生物担体機能(特に、好気性微生物の担体機能)、さらには水生植物や湿性植物の植生基盤としての高い機能を有する。このため微生物による有機性汚濁物質の分解と窒素化合物の硝化を効率的に促進させるとともに、藻類のような水生植物、さらには湿性植物の生育環境を提供することで植物による富栄養分の吸収を促進させることができ、これらの作用により微生物を中心とした生物の生態系による水質浄化能力を効果的に促進させることができる。
また、本発明のCa含有水和硬化体は、水中に設置した際に、その構成成分であるCaの水中への溶出(Caイオンとしての溶出)が抑えられるため、水中での強度の低下も生じにくい。
【0020】
次に、本発明のCa含有水和硬化体の製造方法について説明する。
本発明のCa含有水和硬化体の製造方法では、少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させたCa含有水和硬化体に炭酸ガス雰囲気又は炭酸ガス含有雰囲気(以下、便宜上これらを総称して「炭酸ガス雰囲気」という)下で炭酸化処理を施し、Ca含有水和硬化体の表層に含まれる未炭酸化Caを炭酸化させることにより、Ca含有水和硬化体の少なくとも外表面に炭酸カルシウム被覆層を生成させる。
【0021】
Ca含有水和硬化体の外表面の炭酸化処理を効率的に行うには、Ca含有水和硬化体の表面に水(表面付着水)が存在することが事実上不可欠であり、このためCa含有水和硬化体の少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させることが必要である。すなわち、炭酸化処理におけるCa含有水和硬化体表層に含まれる未炭酸化CaとCO2との反応機構は、水和硬化体表面に存在する水(表面付着水)にCO2が溶解するとともに、水和硬化体側からはCaイオンが溶出し、この水に溶解・溶出したCO2とCaイオンとが反応(炭酸化反応)することにより、水和硬化体表面にCaCO3が析出するものであると考えられる。したがって、上記機構による炭酸化を生じさせるには、水和硬化体表面に水(表面付着水)が存在することが必要となる。
Ca含有水和硬化体に水を付着させ又は水を含浸させる方法は任意であり、例えば、水和硬化体を水中に浸漬する方法、水和硬化体に散水する方法、などの方法を採ることができる。本発明では、これらの方法により、Ca含有水和硬化体の少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させる。
【0022】
上記炭酸化処理の具体的な方法は任意であるが、例えば、上記のように水を付着させ又は水を含浸させたCa含有水和硬化体を密閉容器(気密性を保つことができる容器)内に置き、この密閉容器内に炭酸ガス又は炭酸ガス含有ガス(以下、便宜上これらを総称して「炭酸ガス」という)を供給することにより炭酸化処理を行う。図1は、この炭酸化処理の一実施形態を示すもので、上記のように水を付着させ又は水を含浸させたCa含有水和硬化体Aを密閉容器B内に置き、この密閉容器B内にガス供給系Cを通じて炭酸ガスを供給することにより炭酸化処理を行う。この際、密閉容器B内に供給されたガスをガス排出系Dを通じて適宜排出してもよい。
上記炭酸化処理によりCa含有水和硬化体の外表面には、炭酸カルシウム被覆層が形成される。また、Ca含有水和硬化体には、程度の差はあるものの内部に連続空隙を有しているものがあり、このような連続空隙を有するCa含有水和硬化体では、炭酸化処理により連続空隙の内面表層に含まれる未炭酸化Caも炭酸化され、連続空隙内面にも炭酸カルシウム被覆層が形成される。
【0023】
また、内部に連続空隙を有するCa含有水和硬化体、特に所謂ポーラスコンクリートなどの場合には、Ca含有水和硬化体に水を含浸させた後(この場合には水和硬化体内部まで水を含浸させる)、このCa含有水和硬化体内部を減圧することにより前記水の一部を排出し、しかる後、Ca含有水和硬化体に炭酸ガス雰囲気下で炭酸化処理を施すことが好ましい。これによりCa含有水和硬化体表層及び前記連続空隙の内面表層に含まれる未炭酸化Caを適切に炭酸化させ、Ca含有水和硬化体の外表面及び前記連続空隙の内面に炭酸カルシウム被覆層を適切に形成させることができる。
【0024】
Ca含有水和硬化体の表層に含まれる未炭酸化CaとCO2との基本的な反応機構は先に述べた通りであるが、内部に連続空隙を有する水和硬化体を炭酸化処理して連続空隙の内面表層に含まれる未炭酸化Caを炭酸化させるには、連続空隙内面に水(表面付着水)が存在するとともに、連続空隙内にCO2の通り道が適切に確保される必要がある。しかし、炭酸化処理に先立ち散水などの方法によってCa含有水和硬化体に水を含浸させただけでは、連続空隙内に過剰の水が含浸されたり(極端な場合には連続空隙全体に水が充満する)、或いは部分的に水が含浸されない連続空隙が生じるといった問題を生じる。この結果、水の多いところではCO2の通り路が十分に確保されないためCO2が十分に流れず、このため炭酸化反応が生じにくく、一方、水が少ないところではCO2の通り路が十分に確保されるためCO2は流れるが、肝心の水分が少ないため、連続空隙内面から溶出するCaイオンが少なく、この場合も炭酸化反応が生じにくくなるものと考えられる。そして、これら結果、連続空隙全体に炭酸カルシウム被覆層を均一に形成させることが困難となる。
【0025】
本発明者らは、このような問題に対処できる方法について検討した結果、Ca含有水和硬化体の内部に水を十分に含ませた後、水和硬化体の内部を減圧してその水の一部(すなわち、連続空隙内面の表面付着水以外の余分な水)を排出し、しかる後、Ca含有水和硬化体に炭酸ガス雰囲気下で炭酸化反応を生じさせる方法が非常に有効であることを見い出した。このような方法により、Ca含有水和硬化体の連続空隙内の水の分布状態が均一化すると考えられる原理を、図2(模式図)に基づいて説明する。
【0026】
図2(a)は、Ca含有水和硬化体内部の連結空隙内に水を十分に含ませた状態を示している。この状態ではCa含有水和硬化体の連続空隙の多くに水が存在するとともに、その空隙水中に気泡が存在している。この気泡はCa含有水和硬化体に水を含ませる際に連続空隙内に閉じ込めたれた気泡であり、このような気泡はCa含有水和硬化体全体に広く存在している。そして、この状態でCa含有水和硬化体を減圧すると、図2(b)に示すように空隙水中の気泡が大きく膨張し、この気泡が空隙水をCa含有水和硬化体外部に押し出し、最終的には図2(c)に示すように、連続空隙内面に付着した水(表面付着水)を残して空隙水の大部分がCa含有水和硬化体の外に流出する。つまり、炭酸化反応に不必要なだけでなく、連続空隙内でのCO2の通過を阻害する水の大部分がCa含有水和硬化体内部から除かれる。一方、部分的に水が含浸されていない連続空隙が存在する場合には、上記減圧時における連続空隙からの水の排出(連続空隙内での水の移動)により、水が含浸されていなかった連続空隙にも水が移動し、この連続空隙内面にも水が付着することになる。この結果、連続空隙全体に表面付着水が均一に存在し且CO2の通り路が適切に確保された状態がCa含有水和硬化体の連続空隙全体に実現することになる。
【0027】
そして、以上のように水(空隙水)の分布状態が適正化されたCa含有水和硬化体に炭酸ガス雰囲気下で炭酸化反応を生じさせることにより、Ca含有水和硬化体の連続空隙全体で効率的且つ均一に炭酸化反応が進行し、Ca含有水和硬化体の外表面だけでなく、連続空隙内面にも炭酸カルシウム被覆層が均一に生成する。
上記方法において、Ca含有水和硬化体に水を含浸させる方法は任意であり、例えば、Ca含有水和硬化体を水中に浸漬する方法、Ca含有水和硬化体に散水する方法などにより、それらに水を含浸させることができるが、いずれの場合でも内部の連続空隙内に十分に水が含浸されることが好ましい。
【0028】
また、上記のように水を含浸させたCa含有水和硬化体について、その内部を減圧する方法も任意であり、例えば、真空ポンプなどの排気(吸引)機構を備えた密閉容器内にCa含有水和硬化体を収容し、この気密容器内を減圧するようにしてもよい。
上記減圧工程での減圧の程度にも特別な制限はないが、Ca含有水和硬化体内部の余分な水を速やかに排出ためには、Ca含有水和硬化体内部を(連続空隙内部)0.8気圧以下、より望ましくは0.2気圧以下に減圧することが好ましい。
このようにCa含有水和硬化体の内部を減圧して余分な水(空隙水)を排出した後、Ca含有水和硬化体を炭酸ガス雰囲気下で炭酸化処理する。
【0029】
内部に連続空隙を有するCa含有水和硬化体を炭酸化処理するための具体的な方法は任意であるが、例えば、以下のような方法を採ることができる。
▲1▼ Ca含有水和硬化体を密閉容器(気密性を保つことができる容器)内に置き、この密閉容器内に炭酸ガスを供給することにより、水和硬化体内部の連続空隙に炭酸ガスを浸透させる方法
▲2▼ ガス供給手段を通じてCa含有水和硬化体の外面からその内部に炭酸ガスを供給することにより、水和硬化体内部の連続空隙内に炭酸ガスを流す方法
▲3▼ Ca含有水和硬化体の外面から内部に達する孔を形成しておき、ガス供給手段から前記孔内に炭酸ガスを供給することにより、孔内から水和硬化体の外面側に向けて連続空隙内に炭酸ガスを流す方法
【0030】
ここで、内部に連続空隙を有するCa含有水和硬化体を上記▲1▼の方法で炭酸化処理するに際し、処理用のガスとして実質的にCO2単味(CO2:100%)又はそれに近い組成のガスを用いた場合には、ガス成分の全量が炭酸化反応によりCaCO3の一部となって気相から消失し、このCO2が消失した空間に次々とCO2が供給される。このため、Ca含有水和硬化体が比較的厚いものであっても、効率的な炭酸化処理を行うことができる。これに対して、処理用のガスとしてCO2とそれ以外のガス成分(例えば、N2、H2O等)を含むガスを用いた場合には、炭酸化反応によりCO2が気相から消失しても、それ以外のガス成分は残り、これらガス成分がさらなるCO2の供給(CO2分子の拡散による供給)の阻害要因となる。このため、Ca含有水和硬化体の厚さが比較的薄い場合は大きな問題はないが、厚さが大きくなると炭酸化処理の効率が低下してしまう。
この点、上記▲2▼、▲3▼の方法は上記▲1▼の方法のようなバッチ式ではなく、処理用のガスをCa含有水和硬化体内部(連続空隙)に連続的に流し、このガス流により炭酸化処理を行うので、比較的厚さのあるCa含有水和硬化体であっても効率的な炭酸化処理を行うことができる。なお、上記▲1▼〜▲3▼の各炭酸化処理方法は、炭酸化処理に先立って上述したような水の含浸とこれに続く減圧を行うと否とに拘りなく実施することができる。
【0031】
図3は、Ca含有水和硬化体に水を含浸させた後、減圧し、次いで上記▲1▼の方法で炭酸化処理を行う本発明法の一実施形態を示している。
使用する処理容器1は実質的に気密にすることが可能な容器であって、本実施形態では、本体100とその上部を閉塞する蓋体101とから構成されている。前記本体100にはガス給排気管3が接続されるとともに、このガス給排気管3には、炭酸ガスを供給するためのガス供給管系4と、処理容器1内の減圧を行うための吸引ポンプ6を備えた吸引管系5とが接続されている。また、処理容器1の上部には処理容器1内に供給されたガスの排気を行うための排気管7が接続されている。その他図面において、8〜10は各配管系に設けられた開閉弁である。
【0032】
前記処理容器内1には、Ca含有水和硬化体Aが装入される。本発明法では、まず、このCa含有水和硬化体Aに十分な水を含浸させるが、その方法としては、処理容器1の上部を開放した状態で、処理容器ごと水槽内の水に浸漬してもよいし、Ca含有水和硬化体Aの上部から十分な量の水を散水してもよい。また、処理容器1に入れる前に浸漬又は散水によってCa含有水和硬化体Aに水を含浸させるようにしてもよい。
上記のようにCa含有水和硬化体Aに水を十分に含浸させた後、蓋体101を装着して処理容器1を気密状態にし、しかる後、吸引管系5の吸引ポンプ6を用いた吸引により処理容器1内から排気を行う。これによりCa含有水和硬化体A(処理容器)の内部が減圧され、Ca含有水和硬化体Aの連続空隙内の空気及び水(間隙水)が水和硬化体から押し出され、処理容器1から排出される。この結果、Ca含有水和硬化体A内には先に述べたような水(空隙水)の適切な分布状態、すなわち、連続空隙内面に表面付着水が均一に存在し且つ連続空隙にCO2の通り路が適切に確保された状態が実現する。
【0033】
次いで、開閉弁8,9の操作によって吸引管系5とガス供給管系4とを切り替え、ガス供給管系4から処理容器1内に炭酸ガスを一定期間(例えば、数時間〜数百時間程度)供給する。処理容器1内に供給された炭酸ガスの一部がCa含有水和硬化体Aの外表面及び連続空隙内で炭酸化反応を生じさせる。炭酸ガスの残りは排気管7から処理容器1外に排出される。また、場合によっては、排気管7の開閉弁10を閉じた状態で処理容器1内に炭酸ガスを供給するようにしてもよいが、その場合には、時々開閉弁10を開にして処理容器1内に溜まったガスを放出し、処理容器1内の炭酸ガス濃度が所定レベル以上に維持されるようにすることが好ましい。以上のような炭酸ガスの供給を一定期間行った後、処理容器1からCa含有水和硬化体Aを取り出す。
【0034】
図4は、上記▲2▼の方法で炭酸化処理を行う場合の一実施形態を示しており、Ca含有水和硬化体Aの下面に面してガス供給用の風箱11(ガス供給手段)を設け、この風箱11内に供給された炭酸ガスがCa含有水和硬化体Aの下面からその内部に供給されるようにしたものである。これによりCa含有水和硬化体Aの下面からその内部、さらには上面(さらには側面)に向けて炭酸ガスの流れが形成され、この炭酸ガスにより炭酸化処理が行われる。
また、図5は上記▲2▼の方法を適度な気密性を有する容器内で行う場合の一実施形態を示しており、この実施形態では、容器Eの底部に多孔板110などを利用して風箱11a(ガス供給手段)を設け、この風箱11a上(多孔板110上)にCa含有水和硬化体Aを載せ、風箱11a内に炭酸ガスを供給するとともに、容器Eに設けたガス排出系Fから容器E内のガスの一部を排気するものである。この方法によれば、ガス排出系Fからのガス排出量を制御し、容器内を適当な圧力条件とすることにより、Ca含有水和硬化体Aの外面側からの炭酸化も効率的に進行させることがきる。
なお、上記▲2▼の方法において、ガス供給手段から炭酸ガスを供給するCa含有水和硬化体の面は、下面に限らず任意の面(例えば、側面、上面など)とすることができる。また、図4及び図5に示すようにCa含有水和硬化体Aの側面をシール15し、炭酸ガスがCa含有水和硬化体Aの一方の面から反対側の面(本実施形態では下面から上面側)にのみ流れるようにしてもよい。
【0035】
図6は、上記▲3▼の方法で炭酸化処理を行う場合の一実施形態を示すもので、Ca含有水和硬化体Aには、その外表面から硬化体内部(本実施形態では、略中心部)に達する孔12が事前に形成されており、この孔12に炭酸ガスを供給するようにしたものである。
上記孔12を形成する方法としては、例えば、本実施形態のように水和硬化体Aを製造する際に原材料中に金属管などの管体13埋め込んでおく方法、水和硬化体Aを製造する際の型枠(水和硬化体の硬化後に除去できる部材であれば、どのようなものでもよい)の一部で孔を形成する方法、製造された水和硬化体Aに穿孔手段で穿孔する方法、など適宜な方法でよい。また、孔12内に炭酸ガスを供給する手段についても、図6に示すような孔12に挿し込みできるガス供給管14など、任意のガス供給手段を用いることができる。孔12内に供給された炭酸ガスは、Ca含有水和硬化体Aの内部から外面側に向けてのガス流れを形成し、この炭酸ガスにより炭酸化処理が行われる。
【0036】
また、図7は、上記▲3▼の方法を適度な気密性を有する容器内で行う場合の一実施形態を示しており、この実施形態では、例えば、容器の底部にガス導入口14a(ガス供給手段)を設け、このガス導入口14aと孔12とが一致するようCa含有水和硬化体Aを容器E内に置き、ガス導入口14aから孔12内に炭酸ガスを供給するとともに、容器Eに設けたガス排出系Fから容器E内のガスの一部を排気するものである。この方法によれば、ガス排出系Fからのガス排出量を制御し、容器E内を適当な圧力条件とすることにより、Ca含有水和硬化体Aの外面側からの炭酸化も効率的に進行させることができる。
なお、上記▲3▼の方法において、Ca含有水和硬化体Aに形成する孔12の大きさや深さ(孔先端の位置)、孔の数等は任意であるが、孔の深さはCa含有水和硬化体Aの略中心またはその近傍に達するようなものが好ましい。
【0037】
また、本発明法は現場打ちCa含有水和硬化体にも適用できる。この場合には、現場打ちされたCa含有水和硬化体の少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させるとともに、このCa含有水和硬化体の外表面を囲う閉鎖空間を形成し、この閉鎖空間内に炭酸ガスを供給するか若しくは炭酸ガス発生源を置き、Ca含有水和硬化体表層に含まれる未炭酸化Caを炭酸化させることにより、Ca含有水和硬化体の少なくとも外表面に炭酸カルシウム被覆層を形成させる。また、このCa含有水和硬化体が内部に連続空隙を有するものである場合には、炭酸化処理により連続空隙の内面表層に含まれる未炭酸化Caも炭酸化され、連続空隙内面にも炭酸カルシウム被覆層が形成される。
例えば、水路や側溝の設置に当たって、これらの土木構造物の全部又は一部(例えば、下部開放型側溝の場合には底部のみ)を現場打ち水和硬化体で構成させる場合には、構築された水路又は側溝の両端及び上部の開放部を適当な手段(例えば、シートなど)で閉鎖して、構築された水路又は側溝内を閉鎖空間とし、この閉鎖空間内に炭酸ガスを供給するか又は炭酸ガス発生源を置く。これにより水路又は側溝内面を構成する現場打ち水和硬化体の外表面に炭酸カルシウム被覆層が形成される。
【0038】
Ca含有水和硬化体に炭酸化反応を生じさせるために使用される炭酸ガス又は炭酸ガス含有ガスとしては、例えば、一貫製鉄所内で排出される石灰焼成工場排ガス(通常、CO2:25%前後)や加熱炉排ガス(通常、CO2:6.5%前後)などが好適であるが、これらに限定されるものではない。また、ガス中のCO2濃度が低すぎると処理効率が低下するという問題を生じるが、それ以外の問題は格別ない。したがって、CO2濃度は特に限定しないが、効率的な処理を行うには3%以上のCO2濃度とすることが好ましい。
また、炭酸ガスの供給量にも特別な制限はないが、一般的な目安としては0.004〜0.5m3/min・t(水和硬化体ton)程度のガス供給量が確保できればよい。また、ガス供給時間(炭酸化処理時間)にも特別な制約はないが、目安としては水和硬化体1t当たり15m3以上、好ましくは200m3以上の炭酸ガスが供給されるまでガス供給を行うことが好ましい。
【0039】
供給される炭酸ガス又は炭酸ガス含有ガスは常温でよいが、ガスが常温よりも高温であればそれだけ反応性が高まるため有利である。但し、ガスの温度が過剰に高いとCa含有水和硬化体に含浸させた水分を乾燥させたり、或いはCaCO3がCaOとCO2に分解してしまうため、高温ガスを用いる場合でもこのような分解を生じない程度の温度のガスを用いる必要がある。
また、炭酸ガス又は炭酸ガス含有ガスは、Ca含有水和硬化体の乾燥を防ぐために加湿した状態で供給されることが好ましい。このため炭酸ガス又は炭酸ガス含有ガスを一旦水中に吹き込んでH2Oを飽和させた後に供給することが好ましく、これによりCa含有水和硬化体の乾燥を防止して炭酸化反応を促進させることができる。
【0040】
【実施例】
[実施例1]
25cm×25cm×5cmのサイズのコンクリートプレート(ポルトランドセメント:258kg/m3、細骨材:892kg/m3、粗骨材:988kg/m3、水:170kg/m3を混練して水和硬化させ、これを28日間養生したコンクリートブロック)を50枚製造し、そのうち25枚に散水した後、内容積3m3の密閉容器に入れ、0.2気圧になるまで減圧した。次いで、この密閉容器内にCO2を25%含有する排ガスを10日間かけて500m3導入し、炭酸化処理を行った。なお、密閉容器はガス排気部を有しており、炭酸化処理中に容器内に導入された排ガスの一部はガス排気部から順次排出されるようにした。
【0041】
天然藻場の近くの水深6mの海底の天然岩礁を試験的な藻場造成場所に選定し、上記炭酸化処理した25枚のコンクリートプレート(本発明例)と炭酸化処理していない残り25枚のコンクリートプレート(比較例)を、それぞれ上記天然岩礁に水中用接着剤によって貼り付けた。このコンクリートプレートの設置時期としては、海中の沈降物が海藻類の胞子等の付着前にコンクリートプレート表面を覆ってしまわないようにするため、天然藻場の海藻類から胞子が放出される直前の時期(10月)を選んだ。
上記コンクリートプレートを約半年後に調査した結果、いずれのコンクリートプレートにも海藻類(主にカジメ)が着生し、生育していることが確認されたが、比較例のコンクリートプレートには平均して約30本のカジメが着生・生育していたのに対し、本発明例のコンクリートプレートには平均して約70本のカジメが着生・生育しており、本発明例の方が海藻類の着生率、生育性が良好であることが確認された。
【0042】
[実施例2]
サイズ:1m×1m×0.5m、連続空隙率:20%の多孔質コンクリートブロック(ポルトランドセメント:296kg/m3、粗骨材:1485kg/m3、水:59kg/m3を混練して水和硬化させ、これを28日間養生したポーラスコンクリートブロック)に散水した後、内容積3m3の密閉容器に入れ、0.2気圧になるまで減圧した。この際、多孔質コンクリートブロックから排出された水が密閉容器の下部に溜まったので、密閉容器内を復圧してその容器内の水を取り除いた後、再度減圧した。次いで、多孔質コンクリートブロックを内容積10m3の密閉容器に入れ替え、この密閉容器内にCO2を30%含有する排ガスを10m3導入し、容器内に封入した。このガス封入状態で2日間反応(炭酸化)させたところ、圧力計で測定された容器内圧力から、容器内に導入した排ガス中のCO2分の80%が炭酸化反応で消費されたことが判ったため、密閉容器内のガスを最初に導入した排ガスと同じ排ガス(CO2:30%)でパージした後、この排ガスを容器内に封入し、この状態で2日間反応(炭酸化)させた。以上のような、密閉容器内の排ガスを入れ替えて2日間反応させる工程を、計10回繰り返す炭酸化処理を行った。
炭酸化処理終了後、上記繰り返し工程での容器内ガス圧力の減少分から炭酸化したCaO量を計算した。その結果では、コンクリート質量の約2mass%のCaO分が炭酸化していることが判った。
【0043】
【発明の効果】
以上述べた本発明のCa含有水和硬化体は、水中に設置した場合に周囲の水のpHを過剰に上昇させることがなく、水中の生物(動植物、微生物など)の生存に好適な環境を与えることができ、また、陸上の植生基盤などに用いた場合でも植物生育環境のpHを過剰に上昇させることがなく、植物の生育に好適な環境を与えることができる。さらに、水中に設置した場合にCa(Caイオン)の溶出が抑えられるため、水中での強度の低下なども適切に防止できる。また、本発明の製造方法によれば、上記のような優れた特性を有するCa含有水和硬化体を安定して製造することができる。
【図面の簡単な説明】
【図1】本発明の製造方法の一実施形態を、処理容器を縦断面した状態で示す説明図
【図2】本発明法においてCa含有水和硬化体の連続空隙内での水の分布状態が均一化する原理を示す説明図
【図3】本発明の製造方法の他の実施形態を、処理容器を縦断面した状態で示す説明図
【図4】本発明の製造方法の他の実施形態を示す説明図
【図5】本発明の製造方法の他の実施形態を、処理容器を縦断面した状態で示す説明図
【図6】本発明の製造方法の他の実施形態を示す説明図
【図7】本発明の製造方法の他の実施形態を、処理容器を縦断面した状態で示す説明図
【符号の説明】
1…処理容器、2…ガス給排気部、3…ガス給排気管、4…ガス供給管系、5…吸引管系、6…吸引ポンプ、7…排気管、8,9,10…開閉弁、11,11a…風箱、12…孔、13…管体、14…ガス供給管、14a…ガス導入口、15…シール、100…本体、101…蓋体、110…多孔板、A…Ca含有水和硬化体、B…密閉容器、C…ガス供給系、D…ガス排出系,E…容器、F…ガス排出系[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides, for example, an environment-friendly Ca-containing hydration that can provide a favorable habitat / growth environment for living organisms, for example, when it is installed in water, the organism has good adhesion (adherence) and good habitat / growth. The present invention relates to a cured product and a method for producing the same.
[0002]
[Prior art]
In recent years, seagrass reefs and materials for fishing reefs have been widely installed on the seabed in response to the problem of seagrass beds and fishing grounds deteriorating due to pollution of water and sediment in the coastal sea area and so-called sea scorching. Was. Concrete products such as concrete blocks are widely used as materials for such algae reefs and fishing reefs in terms of ease of production, stability in the sea, production costs, and the like. In addition, most of civil engineering materials used underwater or in the vicinity thereof, such as gutter blocks, waterway blocks, water purification blocks, and consolidation blocks, are mostly made of concrete products.
[0003]
[Problems to be solved by the invention]
However, when concrete is placed in water, there is a problem that Ca eluted from the concrete raises the pH of surrounding water and adversely affects the habitat and growth environment of underwater organisms (animals and plants, microorganisms). For this reason, even if a concrete block is simply installed on the seabed as a material for algae reefs, a sufficiently satisfactory amount of seaweed cannot be established and grown. In addition, it has been pointed out that concrete installed in the sea promotes the adhesion and propagation of lime algae, which causes so-called scorching, and furthermore, concrete installed in water, the lime contained therein is converted to calcium ions. There is also a problem that strength is reduced by elution into water.
[0004]
Conventionally, in order to promote the growth of seaweed on concrete blocks for algae reefs, unevenness or grooves are formed on the block surface, or an adhesion promoting substance is applied or attached, or an adhesion promoting substance is added to the block. (For example,
[0005]
[Patent Document 1]
JP 2001-275506 A
[Patent Document 2]
JP-A-2002-45080
[Non-patent document 1]
"The 54th Annual Meeting of the Cement Technology Congress 2000" p. 410-411
[0006]
In addition, there is a problem similar to the above for concrete used in or around water other than materials for algae reefs and fishing reefs.For example, aquatic flora and fauna tend to hardly propagate in waterways made of concrete. .
In addition, for example, so-called porous concrete is also used for water purification materials and vegetation bases on land. In addition, there is a problem that the living environment is adversely affected, and when used as a vegetation base, the attached water such as rainwater and the pH of the surrounding water are increased, so that the growth of the plant is inhibited.
[0007]
Therefore, an object of the present invention is to provide a living body (animals and plants, microorganisms) for living organisms (animals and plants, microorganisms) without excessively increasing the pH of surrounding water when installed in water, even when the object is a hydrated hardened material such as concrete. Environmental harmony that can provide a suitable environment, and can provide a suitable environment for plant growth without excessively increasing the pH of the plant growth environment even when used for land vegetation bases, etc. It is an object of the present invention to provide a hydrated cured product of a mold and a method for producing the same.
[0008]
[Means for Solving the Problems]
As a result of repeated studies to solve the above-described problems, the present inventors formed a coating layer of calcium carbonate on the surface of a Ca-containing hydrated cured product typified by concrete so that when placed in water, Water does not excessively increase, nor does it excessively increase the pH of the plant growth environment when used for land vegetation bases, etc. It was found that an environment suitable for growth could be provided.
[0009]
The present invention has been made based on such findings, and the features thereof are as follows.
[1] An environmentally-friendly Ca-containing hydrated cured product having a calcium carbonate coating layer on at least the outer surface.
[2] The environmentally friendly Ca-containing hydrated hardened product of [1], which is a porous body having continuous voids therein, and having a calcium carbonate coating layer also on the inner surface of the continuous voids. Hydrated hardened body.
[3] The Ca-containing hydrated cured product according to the above [1] or [2], wherein the calcium carbonate coating layer is formed by carbonating the Ca-containing hydrated cured product. Environment-friendly Ca-containing hydrated cured product.
[4] The environment-friendly Ca-containing hydrated cured product according to any one of the above [1] to [3], which is a hydrated cured product cast in situ.
[0010]
[5] The hydrated cured product according to any one of the above [1] to [4], which is used in a state of being immersed in or in contact with water or used as a vegetation base, or An environmentally friendly hydrated cured product containing Ca, which is a hydrated cured product cast in situ.
[6] A Ca-containing hydrated hardened material having water adhered to at least the outer surface or at least a surface layer of which is impregnated with water is subjected to a carbonation treatment in a carbon dioxide gas atmosphere or a carbon dioxide gas-containing atmosphere, and the Ca-containing hydrated hardened material surface layer is formed. A method for producing an environment-friendly Ca-containing hydrated hardened product, comprising: forming a calcium carbonate coating layer on at least the outer surface of a Ca-containing hydrated hardened product by carbonating uncarbonated Ca contained in the hydrated Ca-containing product.
[7] In the production method according to the above [6], the Ca-containing hydrated cured product has continuous voids therein, and carbonates uncarbonated Ca contained in the inner surface layer of the continuous voids by carbonation treatment. And a method for producing an environment-friendly Ca-containing hydrated cured product, wherein a calcium carbonate coating layer is also formed on the inner surface of the continuous void.
[0011]
[8] In the method of the above-mentioned [7], after the Ca-containing hydrated cured product having continuous voids therein is impregnated with water, the pressure inside the Ca-containing hydrated cured product is reduced to reduce the water content. And then subjecting the Ca-containing hydrated cured product to a carbonation treatment under a carbon dioxide gas atmosphere or a carbon dioxide gas-containing atmosphere to obtain a carbon-containing hydrated cured product surface layer and an uncarbonated material contained in the inner surface layer of the continuous voids. A method for producing an environment-friendly cured hydrated Ca-containing material, wherein a calcium carbonate coating layer is formed on the outer surface of the hydrated hydrated Ca-containing material and on the inner surface of the continuous voids by carbonating hydrated Ca.
[9] In the manufacturing method according to the above [8], in the step of depressurizing the inside of the Ca-containing hydrated cured product, the inside of the Ca-containing hydrated cured product is depressurized to 0.8 atm or less. A method for producing a hydrated cured product containing type Ca.
[10] In the production method according to any one of the above [6] to [9], in the step of carbonating the Ca-containing hydrated cured product, the Ca-containing hydrated cured product is placed in an airtight container, A carbon-containing hydrated cured product by supplying carbon dioxide gas or a carbon dioxide-containing gas to the mixture, thereby producing an environment-friendly hydrated hydrated Ca-containing product.
[0012]
[11] In the production method according to any one of the above [7] to [9], in the step of carbonizing the Ca-containing hydrated cured product having continuous voids therein, An environment-friendly Ca-containing water, wherein the Ca-containing hydrated hardened product is carbonated by supplying carbon dioxide gas or a carbon dioxide-containing gas from the outer surface of the Ca-containing hydrated hardened product to the inside thereof through means. A method for producing a cured product.
[12] The method for manufacturing according to [11], wherein the carbon-containing gas or the carbon-containing gas is supplied to the Ca-containing hydrated cured product placed in the container through a gas supply means. A method for producing a cured product.
[13] In the production method according to any one of the above [7] to [9], the Ca-containing hydrated cured product has continuous voids inside, and has a hole reaching from the outer surface to the inside of the hydrated cured product, In the step of carbonating the hydrated hardened product, the carbon-containing hydrated hardened product is carbonated by supplying a carbon dioxide gas or a carbon dioxide-containing gas into the hole from a gas supply means. A method for producing a hydrated cured product containing harmonic Ca.
[14] The method of [13], wherein the carbon-containing gas or the carbon-containing gas is supplied from the gas supply means into the hole of the Ca-containing hydrated cured product placed in the container. A method for producing a Ca-containing hydrated cured product.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Although the Ca-containing hydrated cured product of the present invention has a calcium carbonate coating layer on at least the outer surface, the Ca-containing hydrated cured product serving as a substrate is not limited as long as it contains uncarbonated Ca. Regardless of the type. Here, the Ca-containing hydrated hardened product is a binder containing Ca (such as cement), an aggregate (fine aggregate and / or coarse aggregate), water, and an admixture optionally blended. Kneaded, hydrated and hardened, or a Ca-containing material with a wide particle size distribution from binder to aggregate, kneaded with water, admixture blended as necessary, etc., and hydrated and hardened It is a thing. The most common Ca-containing hydrated hardened body is concrete, but is not limited thereto. For example, FS concrete, eco-cement concrete, coal ash hydrated hardened body (eg, fly ash cement concrete), Any Ca-containing hydrated hardened product such as a hydrated hardened product containing slag generated in the steelmaking process as a main raw material (for example, a hydrated hardened product containing molten iron pretreated slag, blast furnace slag fine powder, slaked lime, etc.) Can be targeted.
The concrete includes concrete using arbitrary cement such as Portland cement and blast furnace cement.
[0014]
Further, when continuous voids (open pores) are formed inside these Ca-containing hydrated cured products, a calcium carbonate coating layer is preferably formed also on the inner surface of the continuous voids (main continuous voids). A typical example of the Ca-containing hydrated cured product having such continuous voids is a so-called porous concrete (porous concrete), but is not limited thereto. In general, porous concrete has a continuous porosity of 10% or more (based on the continuous porosity measurement method in Appendix-8 of “Drainable Pavement Technology Guideline (draft)” issued by the Japan Road Association). Normally, porous concrete is obtained by mixing a coarse aggregate and a cement paste at a fixed ratio and kneading the mixture.
The method of forming the calcium carbonate coating layer on the outer surface of the Ca-containing hydrated cured product or the inner surface of the continuous voids is optional, but is usually formed by a carbonation treatment in which the Ca-containing hydrated cured product is brought into contact with carbon dioxide gas. The method of performing the carbonation treatment will be described later in detail.
The Ca-containing hydrated hardened product targeted by the present invention includes not only a hydrated hardened product (solidified product) such as a block, but also a hydrated hardened product to be applied on site such as cast-in-place concrete.
[0015]
There are no particular restrictions on the type of hydrated cured product or cast-in-place hydrated cured product that is the subject of the present invention, but those used in or near water, those used in contact with water, vegetation bases Those used as are particularly preferred. Specifically, in the sea, rivers, lakes, marshes, etc., for algae reefs, rocky shores, fish reefs, for seabed mounds, for riverbeds, for fishways (for example, fishways provided in dams and weirs), for artificial riverbeds (for example, stones) Hydrated hardened product or cast-in-place hydrated hardened product to be immersed in water for various uses such as for riverbed constructed by upholstery or stonework, and for water purification; gutter block (U-shaped gutter block, L-shaped gutter block, Hydrated hardened products or cast-in-place hydrated products for waterways, such as variable slope type gutter blocks (open bottom gutter blocks), open or culvert waterway blocks, retaining wall blocks, waterway bottom blocks, etc. Hydration-hardened products or cast-in-place hydration products used as vegetation bases such as greening blocks, landscape blocks, soil covering blocks (blocks for seawall construction, blocks for sloping land covering, slope stabilizing blocks, etc.) Body, and the like.
The Ca-containing hydrated cured product of the present invention can be used for various purposes other than the above-described submerged materials, waterway materials, and vegetation base materials.
[0016]
Hereinafter, the function of the Ca-containing hydrated cured product of the present invention will be described.
The formation and propagation of seaweed on the algae reef material (seaweed epithelial substrate) installed in the water is several μm to several hundred μm released from sporophytes (parent individuals) growing elsewhere. Small zoospores and eggs float in the seawater, reach the substrate, settle on the surface, and then grow into sporophytes and juveniles. For the settlement, the water quality of the seawater in contact with the substrate surface, especially the water layer of the small seawater layer with low fluidity (the so-called boundary layer) existing on the substrate surface is suitable for the settlement and growth of zoospores and eggs. It seems necessary to have something. In the conventional concrete substrate (material), Ca eluted from the concrete greatly increases the pH of the surrounding water, particularly a minute seawater layer in contact with the surface of the substrate, and as a result, the substrate floats in the seawater to form a substrate. It is thought that the zoospores and eggs that arrived could not settle and grow well on the substrate surface. Normal seawater is a weak alkali having a pH of about 7.8 to 8.4, and if its pH exceeds 10, it is considered that the formation and growth of zoospores and eggs are significantly inhibited. In the case of (material), the pH of the boundary layer existing on the surface of the substrate is as high as about 12, and this boundary layer can be said to be an environment in which zoospores and eggs are extremely difficult to set and grow.
[0017]
On the other hand, the Ca-containing hydrated cured product of the present invention has a calcium carbonate coating layer formed on its surface (the surface including the inner surface of the continuous void if it has continuous voids). The elution and the accompanying increase in pH of seawater (especially, seawater in the boundary layer on the surface of the substrate) are suppressed, and the seawater layer on the surface of the substrate can be set as an environment suitable for the formation and growth of zoospores and eggs. The function of the Ca-containing hydrated cured product of the present invention is not limited to the case where it is installed for algae reefs and fishing reefs, but also the case where it is installed in water as various materials such as for construction of shores and sea bottom mounds. It works similarly. In addition, examples of the settled animals and plants include seaweeds, corals, shellfish, barnacles, and mosquitoes, but are not limited thereto.
In addition, the Ca-containing hydrated cured product of the present invention is applied to hydrated cured products (blocks, etc.) and cast-in-place hydrated cured products such as for waterways such as irrigation canals, fishways provided for dams and weirs, and artificial riverbeds. In this case, for the same reason as described above, it is possible to provide an environment where underwater organisms (fish, crustaceans, aquatic insects, etc.) and aquatic plants (algae, aquatic plants, etc.) can easily live and grow.
[0018]
Conventionally, as one method for purifying the water quality of the sea, rivers, lakes, marshes, ponds, etc., the aim was to use the self-cleaning action of the ecosystem of living organisms, especially microorganisms, and to promote the activity between living organisms in the water. 2. Description of the Related Art In order to artificially provide an environment of a food chain, a porous concrete block has been installed as a water purification material underwater or on the waterside. By the way, in order to provide an environment where water quality self-cleaning action by the food chain of living organisms can be obtained properly by using water purification material, the material itself attaches and propagates aerobic microorganisms that decompose organic pollutants, And that they have an environment in which they can be active, and that they have an environment in which protozoa that prey on these microorganisms can be active, and that algae that take in degradation products of organic pollutants as nutrient sources It is necessary to provide an environment in which aquatic plants such as can grow and grow. In this regard, the conventional porous concrete material has a large problem in both the survival environment of aerobic microorganisms and the growth environment of algae because the pH of the water inside and around the porous material is increased (for example, Nitrifying bacteria are suitable environments at pH 7-9), but may even worsen their environment.
[0019]
On the other hand, when the Ca-containing hydrated cured product of the present invention is used as a water purification material, there is almost no possibility of increasing the pH of the water inside or around the porous material, and therefore the survival of aerobic microorganisms The environment and the growth environment of algae are not inhibited by the increase in pH, and therefore, have a high biological carrier function (particularly, a carrier function of aerobic microorganisms) and a high function as a vegetation base for aquatic plants and wet plants. . This effectively promotes the decomposition of organic pollutants and the nitrification of nitrogen compounds by microorganisms, and promotes the absorption of nutrients by plants by providing a growth environment for aquatic plants such as algae and also for wet plants. These effects can effectively promote the water purification ability of the ecosystem of organisms, mainly microorganisms.
Further, when the Ca-containing hydrated cured product of the present invention is installed in water, the elution of Ca as a component thereof into water (elution as Ca ions) is suppressed, and the strength in water is also reduced. It is unlikely to occur.
[0020]
Next, a method for producing the Ca-containing hydrated cured product of the present invention will be described.
In the method for producing a Ca-containing hydrated cured product of the present invention, a carbon-containing gas atmosphere or a carbon-containing gas-containing atmosphere (hereinafter referred to for convenience) is applied to the Ca-containing hydrated cured product in which water is adhered to at least the outer surface or at least the surface layer is impregnated with water. These are collectively referred to as “carbon dioxide atmosphere”), and carbonation is performed under non-carbonated Ca contained in the surface layer of the Ca-containing hydrated hardened body, thereby at least the Ca-containing hydrated hardened body is carbonated. A calcium carbonate coating layer is formed on the outer surface.
[0021]
In order to efficiently perform the carbonation treatment of the outer surface of the Ca-containing hydrated cured product, it is essentially essential that water (surface-adhered water) be present on the surface of the Ca-containing hydrated cured product. It is necessary to make water adhere to at least the outer surface of the contained hydrated cured product, or to impregnate at least the surface layer with water. That is, uncarbonated Ca and CO contained in the surface layer of the Ca-containing hydrated cured product in the carbonation treatment 2 The mechanism of the reaction with water is that the water (surface adhering water) 2 Is dissolved, and Ca ions are eluted from the hydrated cured body, and the CO dissolved and eluted in the water 2 Reacts with Ca ions (carbonation reaction) to cause CaCO 3 Is considered to precipitate. Therefore, in order to cause carbonation by the above mechanism, it is necessary that water (water adhering to the surface) be present on the surface of the hydrated cured product.
The method of adhering or impregnating water to the Ca-containing hydrated cured product is optional. For example, a method of immersing the hydrated cured product in water, a method of sprinkling water on the hydrated cured product, or the like may be employed. Can be. In the present invention, water is adhered to at least the outer surface of the Ca-containing hydrated cured product or at least the surface layer is impregnated with water by these methods.
[0022]
The specific method of the carbonation treatment is optional. For example, a Ca-containing hydrated cured product to which water is adhered or impregnated with water as described above is sealed in a closed container (a container capable of maintaining airtightness). The carbonation treatment is performed by supplying carbon dioxide gas or a carbon dioxide-containing gas (hereinafter collectively referred to as “carbon dioxide gas” for convenience) into the closed container. FIG. 1 shows an embodiment of the carbonation treatment, in which a Ca-containing hydrated cured product A to which water is adhered or impregnated with water as described above is placed in a closed container B, and the closed container B Carbonation is performed by supplying carbon dioxide through the gas supply system C. At this time, the gas supplied into the closed container B may be appropriately discharged through the gas discharge system D.
By the above carbonation treatment, a calcium carbonate coating layer is formed on the outer surface of the Ca-containing hydrated cured product. In addition, some of the Ca-containing hydrated cured products have continuous voids therein, though to varying degrees, and the Ca-containing hydrated cured products having such continuous voids are continuously subjected to carbonation treatment. Uncarbonated Ca contained in the inner surface layer of the void is also carbonated, and a calcium carbonate coating layer is formed on the inner surface of the continuous void.
[0023]
In the case of a Ca-containing hydrated hardened product having continuous voids therein, particularly in the case of so-called porous concrete, the Ca-containing hydrated hardened product is impregnated with water (in this case, water is introduced to the inside of the hydrated hardened product). ), And a part of the water is discharged by depressurizing the inside of the Ca-containing hydrated cured product. Thereafter, the Ca-containing hydrated cured product is preferably subjected to a carbonation treatment under a carbon dioxide gas atmosphere. . Thereby, uncarbonated Ca contained in the Ca-containing hydrated cured product surface layer and the inner surface layer of the continuous voids is appropriately carbonated, and the outer surface of the Ca-containing hydrated cured product and the inner surface of the continuous voids are coated with a calcium carbonate coating layer. Can be appropriately formed.
[0024]
Uncarbonated Ca and CO contained in the surface layer of the Ca-containing hydrated cured product 2 The basic reaction mechanism is as described above, but the carbonation treatment of the hydrated cured product having continuous voids inside causes carbonation of uncarbonated Ca contained in the inner surface layer of the continuous voids. Means that water (surface adhering water) is present on the inner surface of the continuous void and CO 2 Routes need to be properly secured. However, simply impregnating the Ca-containing hydrated cured product with water by a method such as water spraying prior to the carbonation treatment may cause excessive water to be impregnated in the continuous voids (in extreme cases, the entire continuous voids may be impregnated with water). Filling) or a continuous void that is partially impregnated with water. As a result, where water is high, CO 2 CO is not secured due to insufficient route 2 Does not flow sufficiently, which makes it difficult for the carbonation reaction to occur. 2 Because the route of the road is sufficiently secured 2 Flows, but the amount of Ca ions eluted from the inner surface of the continuous voids is small because the essential water content is small. In this case, it is considered that the carbonation reaction is unlikely to occur. And as a result, it becomes difficult to form a calcium carbonate coating layer uniformly over the entire continuous voids.
[0025]
The present inventors have studied a method capable of coping with such a problem, and as a result, after sufficiently containing water inside the Ca-containing hydrated cured product, the inside of the hydrated cured product is decompressed to reduce the water. It is very effective to discharge a part (that is, excess water other than the water adhering to the inner surface of the continuous void) and then cause a carbonation reaction in the Ca-containing hydrated cured product in a carbon dioxide gas atmosphere. I found something. The principle that the distribution state of water in the continuous voids of the Ca-containing hydrated cured product is made uniform by such a method will be described based on FIG. 2 (schematic diagram).
[0026]
FIG. 2A shows a state in which water is sufficiently contained in the connection gap inside the Ca-containing hydrated cured product. In this state, water is present in many continuous voids of the Ca-containing hydrated cured product, and bubbles are present in the void water. These bubbles are bubbles trapped in continuous voids when water is contained in the Ca-containing hydrated cured product, and such bubbles are widely present throughout the Ca-containing hydrated cured product. Then, when the Ca-containing hydrated cured product is decompressed in this state, the bubbles in the pore water greatly expand as shown in FIG. 2 (b), and the bubbles push the pore water to the outside of the Ca-containing hydrate cured product. Specifically, as shown in FIG. 2 (c), most of the pore water flows out of the Ca-containing hydrated hardened material except for the water adhered to the inner surfaces of the continuous pores (water adhering to the surface). In other words, not only is it unnecessary for the carbonation reaction, but also the CO 2 Most of the water that hinders the passage of water is removed from inside the Ca-containing hydrated cured product. On the other hand, when there is a continuous void partially impregnated with water, water was not impregnated due to the discharge of water from the continuous void (movement of water in the continuous void) during the pressure reduction. Water also moves to the continuous void, and water adheres to the inner surface of the continuous void. As a result, the water adhering to the surface is uniformly present in the entire continuous voids and the CO 2 A state in which the path is appropriately secured is realized over the entire continuous voids of the Ca-containing hydrated cured product.
[0027]
Then, by causing a carbonation reaction in the carbon-containing gas atmosphere to the Ca-containing hydrated hardened material in which the distribution state of water (gap water) is optimized as described above, the entire continuous voids of the Ca-containing hydrated hardened material are formed. As a result, the carbonation reaction proceeds efficiently and uniformly, and the calcium carbonate coating layer is uniformly formed not only on the outer surface of the Ca-containing hydrated cured product but also on the inner surface of the continuous void.
In the above method, the method of impregnating the Ca-containing hydrated cured product with water is arbitrary, for example, by immersing the Ca-containing hydrated cured product in water, spraying water on the Ca-containing hydrated cured product, and the like. Can be impregnated with water, but in any case, it is preferable that the internal continuous voids be sufficiently impregnated with water.
[0028]
Further, with respect to the Ca-containing hydrated cured product impregnated with water as described above, a method of depressurizing the inside is also optional. For example, the Ca-containing hydrated cured product is contained in a closed container equipped with an exhaust (suction) mechanism such as a vacuum pump. The hydrated cured product may be accommodated, and the pressure inside the airtight container may be reduced.
There is no particular limitation on the degree of decompression in the depressurization step. However, in order to quickly discharge excess water inside the Ca-containing hydrated hardened product, the inside of the Ca-containing hydrated hardened product (the inside of the continuous gap) should be reduced to 0%. The pressure is preferably reduced to 0.8 atm or less, more preferably 0.2 atm or less.
After the inside of the Ca-containing hydrated cured product is depressurized to discharge excess water (void water), the Ca-containing hydrated cured product is subjected to a carbonation treatment in a carbon dioxide gas atmosphere.
[0029]
A specific method for carbonating the Ca-containing hydrated cured product having continuous voids inside is arbitrary, and for example, the following method can be employed.
{Circle around (1)} The Ca-containing hydrated cured product is placed in an airtight container (a container capable of maintaining airtightness), and carbon dioxide gas is supplied into the closed container to cause carbon dioxide gas to enter the continuous voids inside the hydrated cured material. How to infiltrate
{Circle around (2)} A method in which carbon dioxide gas is supplied from the outer surface of the Ca-containing hydrated cured product through the gas supply means to the inside thereof, thereby flowing carbon dioxide gas into continuous voids inside the hydrated cured product.
{Circle around (3)} By forming a hole reaching the inside from the outer surface of the Ca-containing hydrated hardened body and supplying carbon dioxide gas into the hole from a gas supply means, the hole is directed from the inside of the hole to the outer surface side of the hydrated hardened body. To flow carbon dioxide gas through continuous voids
[0030]
Here, when the Ca-containing hydrated cured product having continuous voids inside is subjected to the carbonation treatment by the above method (1), substantially CO 2 is used as a treatment gas. 2 Plain (CO 2 : 100%) or a gas having a composition close thereto is used. 3 Disappears from the gas phase as a part of 2 One after another in the space where disappeared 2 Is supplied. Therefore, even if the Ca-containing hydrated cured product is relatively thick, an efficient carbonation treatment can be performed. On the other hand, CO as a processing gas 2 And other gas components (eg, N 2 , H 2 O), a gas containing CO 2 Disappears from the gas phase, other gas components remain, and these gas components are 2 Supply (CO 2 Supply by diffusion of molecules). For this reason, when the thickness of the Ca-containing hydrated cured product is relatively small, there is no major problem, but when the thickness is large, the efficiency of the carbonation treatment is reduced.
In this regard, the methods (2) and (3) are not batch type as in the method (1), but a processing gas is continuously flowed into the Ca-containing hydrated cured product (continuous voids), Since the carbonation is performed by this gas flow, an efficient carbonation can be performed even for a Ca-containing hydrated cured product having a relatively large thickness. The above carbonation treatment methods (1) to (3) can be carried out irrespective of whether or not the above-described water impregnation and the subsequent pressure reduction are performed prior to the carbonation treatment.
[0031]
FIG. 3 shows an embodiment of the method of the present invention in which after the Ca-containing hydrated cured product is impregnated with water, the pressure is reduced, and then the carbonation treatment is performed by the method (1).
The
[0032]
The Ca-containing hydrated cured product A is charged into the
After the Ca-containing hydrated cured product A was sufficiently impregnated with water as described above, the
[0033]
Next, the
[0034]
FIG. 4 shows an embodiment in which the carbonation treatment is carried out by the above method (2). The gas supply wind box 11 (gas supply means) facing the lower surface of the Ca-containing hydrated cured product A ), So that the carbon dioxide gas supplied into the
FIG. 5 shows an embodiment in which the above method (2) is performed in a container having an appropriate airtightness. In this embodiment, a
In the above method (2), the surface of the Ca-containing hydrated cured product to which carbon dioxide gas is supplied from the gas supply means is not limited to the lower surface, but may be any surface (for example, a side surface, an upper surface, etc.). As shown in FIGS. 4 and 5, the side surface of the Ca-containing hydrated cured product A is sealed with a
[0035]
FIG. 6 shows an embodiment in which the carbonation treatment is carried out by the above method (3). A
Examples of the method of forming the
[0036]
FIG. 7 shows an embodiment in which the above method (3) is performed in a container having an appropriate airtightness. In this embodiment, for example, the gas inlet 14a (gas Supply means), the Ca-containing hydrated cured product A is placed in the container E such that the gas inlet 14a and the
In the above method (3), the size and depth (position of the hole tip) of the
[0037]
Further, the method of the present invention can also be applied to a cast-in-place Ca-containing hydrated cured product. In this case, water is adhered to at least the outer surface of the in-situ cured Ca-containing hydrated body, or at least the surface layer is impregnated with water, and a closed space surrounding the outer surface of the Ca-containing hydrated cured body is formed. Then, a carbon dioxide gas is supplied or a carbon dioxide gas generation source is placed in the closed space, and the non-carbonated Ca contained in the surface layer of the Ca-containing hydrated hardened body is carbonated, so that at least the Ca-containing hydrated hardened body is obtained. A calcium carbonate coating layer is formed on the outer surface. When the Ca-containing hydrated cured product has continuous voids inside, the uncarbonated Ca contained in the inner surface layer of the continuous voids is also carbonated by the carbonation treatment, and the inner surface of the continuous voids is also carbonated. A calcium coating layer is formed.
For example, in installing a waterway or a gutter, when all or a part of these civil engineering structures (for example, only the bottom portion in the case of a lower open type gutter) is formed from a cast-in-place hydrated and hardened body, a constructed waterway is used. Alternatively, both ends of the gutter and the opening at the top are closed by appropriate means (for example, a sheet or the like) to form a closed space inside the constructed waterway or gutter, and supply or supply of carbon dioxide gas into the closed space. Put source. As a result, a calcium carbonate coating layer is formed on the outer surface of the cast-in-place hydrated cured product constituting the inner surface of the water channel or the gutter.
[0038]
Examples of the carbon dioxide or carbon dioxide-containing gas used to cause a carbonation reaction in the Ca-containing hydrated cured product include, for example, a lime burning plant exhaust gas (usually CO 2) discharged in an integrated steel mill. 2 : Around 25%) and heating furnace exhaust gas (usually CO 2 : About 6.5%) and the like, but are not limited thereto. In addition, CO in gas 2 If the concentration is too low, there is a problem that the processing efficiency is reduced, but the other problems are not exceptional. Therefore, CO 2 The concentration is not particularly limited, but in order to perform an efficient treatment, the concentration of 2 The concentration is preferably set.
Although there is no particular limitation on the supply amount of carbon dioxide gas, a general standard is 0.004 to 0.5 m. 3 It is sufficient that a gas supply amount of about / min · t (a hydrated cured body ton) can be secured. Although there is no particular restriction on the gas supply time (carbonation time), the standard is 15 m per 1 t of the hydrated cured product. 3 Above, preferably 200m 3 It is preferable to supply gas until the above carbon dioxide gas is supplied.
[0039]
The supplied carbon dioxide gas or carbon dioxide-containing gas may be at room temperature, but if the temperature of the gas is higher than room temperature, it is advantageous because the reactivity increases accordingly. However, if the temperature of the gas is excessively high, the moisture impregnated in the Ca-containing hydrated cured product may be dried or CaCO 2 3 Is CaO and CO 2 Therefore, even when a high-temperature gas is used, it is necessary to use a gas having a temperature that does not cause such decomposition.
Further, the carbon dioxide gas or the carbon dioxide-containing gas is preferably supplied in a humidified state in order to prevent the Ca-containing hydrated cured product from drying. Therefore, carbon dioxide or carbon dioxide-containing gas is blown into water once 2 It is preferable to supply O after saturating it, whereby the Ca-containing hydrated cured product can be prevented from drying and the carbonation reaction can be promoted.
[0040]
【Example】
[Example 1]
Concrete plate of 25 cm x 25 cm x 5 cm (Portland cement: 258 kg / m 3 , Fine aggregate: 892 kg / m 3 , Coarse aggregate: 988 kg / m 3 , Water: 170 kg / m 3 Were hydrated and hardened, and this was cured for 28 days to produce 50 concrete blocks), sprinkling water on 25 of them, and then having an inner volume of 3 m 3 And the pressure was reduced to 0.2 atm. Next, CO 2 500m over 10 days containing 25% 3 And subjected to a carbonation treatment. Note that the closed container had a gas exhaust portion, and a part of the exhaust gas introduced into the container during the carbonation treatment was sequentially discharged from the gas exhaust portion.
[0041]
A natural rock reef at a depth of 6 m near the natural seaweed bed was selected as a test seaweed bed creation site, and the above 25 carbonized concrete plates (example of the present invention) and the remaining 25 uncarbonated concrete plates Concrete plates (comparative examples) were attached to the natural reefs with an underwater adhesive. This concrete plate should be installed just before spores are released from the seaweed in the natural seaweed bed to prevent sediment in the sea from covering the surface of the concrete plate before spores of seaweed adhere. I chose the time (October).
Inspection of the above concrete plate about half a year later confirmed that seaweeds (mainly scallops) settled and grew on all concrete plates, but the concrete plate of the comparative example averaged On the other hand, while about 30 bamboo shoots settled and grew, on the concrete plate of the present invention example, about 70 bamboo shoots settled and grew on average. It was confirmed that the growth rate and growth rate of the cultivar were good.
[0042]
[Example 2]
Size: 1m x 1m x 0.5m, continuous porosity: 20% porous concrete block (Portland cement: 296kg / m 3 , Coarse aggregate: 1485 kg / m 3 , Water: 59kg / m 3 Is kneaded, hydrated and hardened, and sprinkled on a porous concrete block (cured for 28 days). 3 And the pressure was reduced to 0.2 atm. At this time, since the water discharged from the porous concrete block accumulated in the lower part of the closed container, the pressure in the closed container was restored to remove the water in the container, and the pressure was reduced again. Next, the porous concrete block was filled with an internal volume of 10 m. 3 Replace with a closed container of 2 10m exhaust gas containing 30% 3 It was introduced and sealed in a container. When the reaction (carbonation) was carried out for 2 days in this gas-filled state, the CO in the exhaust gas introduced into the container was determined from the pressure in the container measured by a pressure gauge. 2 It was found that 80% of the gas was consumed in the carbonation reaction. 2 : 30%), the exhaust gas was sealed in a container, and reacted (carbonated) for 2 days in this state. The carbonation treatment was repeated 10 times in total, in which the above-described process of exchanging the exhaust gas in the closed container and reacting for 2 days was repeated 10 times.
After the carbonation treatment was completed, the amount of carbonated CaO was calculated from the decrease in the gas pressure in the vessel in the above-described repetitive steps. As a result, it was found that about 2 mass% of CaO content of the concrete was carbonated.
[0043]
【The invention's effect】
The Ca-containing hydrated cured product of the present invention described above does not excessively raise the pH of surrounding water when placed in water, and provides an environment suitable for the survival of living organisms (animals, plants, microorganisms, etc.) in water. In addition, even when used for a land-based vegetation base or the like, it is possible to provide an environment suitable for plant growth without excessively increasing the pH of the plant growth environment. Furthermore, since the elution of Ca (Ca ion) when installed in water is suppressed, a decrease in strength in water and the like can be appropriately prevented. Further, according to the production method of the present invention, a Ca-containing hydrated cured product having the above-mentioned excellent properties can be produced stably.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing one embodiment of a production method of the present invention in a state in which a processing container is longitudinally sectioned.
FIG. 2 is an explanatory view showing the principle of uniform distribution of water in continuous voids of a Ca-containing hydrated cured product in the method of the present invention.
FIG. 3 is an explanatory view showing another embodiment of the manufacturing method of the present invention in a state in which a processing container is longitudinally sectioned.
FIG. 4 is an explanatory view showing another embodiment of the manufacturing method of the present invention.
FIG. 5 is an explanatory view showing another embodiment of the manufacturing method of the present invention in a state where a processing container is longitudinally sectioned.
FIG. 6 is an explanatory view showing another embodiment of the manufacturing method of the present invention.
FIG. 7 is an explanatory view showing another embodiment of the manufacturing method of the present invention in a state in which a processing container is longitudinally sectioned.
[Explanation of symbols]
DESCRIPTION OF
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010467A JP4337350B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing environmentally conscious Ca-containing hydrated cured product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010467A JP4337350B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing environmentally conscious Ca-containing hydrated cured product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004224578A true JP2004224578A (en) | 2004-08-12 |
JP4337350B2 JP4337350B2 (en) | 2009-09-30 |
Family
ID=32899649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003010467A Expired - Lifetime JP4337350B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing environmentally conscious Ca-containing hydrated cured product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4337350B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015869A (en) * | 2005-07-05 | 2007-01-25 | Takenaka Komuten Co Ltd | Method of amplifying concrete strength of concrete structure |
JP2008174422A (en) * | 2007-01-19 | 2008-07-31 | Chugoku Electric Power Co Inc:The | Sulfuric acid-resistant concrete, concrete structure built with the sulfuric acid-resistant concrete, and method for production of the sulfuric acid-resistant concrete |
JP2012254905A (en) * | 2011-06-09 | 2012-12-27 | Kajima Corp | Self-collapsing concrete, and method for manufacturing the same |
CN115038564A (en) * | 2019-12-10 | 2022-09-09 | 碳化混凝土公司 | System and method for curing precast concrete products |
-
2003
- 2003-01-20 JP JP2003010467A patent/JP4337350B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015869A (en) * | 2005-07-05 | 2007-01-25 | Takenaka Komuten Co Ltd | Method of amplifying concrete strength of concrete structure |
JP2008174422A (en) * | 2007-01-19 | 2008-07-31 | Chugoku Electric Power Co Inc:The | Sulfuric acid-resistant concrete, concrete structure built with the sulfuric acid-resistant concrete, and method for production of the sulfuric acid-resistant concrete |
JP2012254905A (en) * | 2011-06-09 | 2012-12-27 | Kajima Corp | Self-collapsing concrete, and method for manufacturing the same |
CN115038564A (en) * | 2019-12-10 | 2022-09-09 | 碳化混凝土公司 | System and method for curing precast concrete products |
Also Published As
Publication number | Publication date |
---|---|
JP4337350B2 (en) | 2009-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4403095B2 (en) | Water environment conservation materials and methods of use | |
JP2004149333A (en) | Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure | |
KR101438380B1 (en) | Concrete block for purifying water | |
JP2000157094A (en) | Stone material for sinking and disposing in water and its production | |
JP2007136452A (en) | Slag material, method of producing the same, material for improving environment using the slag material, environmental improvement method and structural engineering material | |
JP4337350B2 (en) | Method for producing environmentally conscious Ca-containing hydrated cured product | |
CN117536190A (en) | Coral sand foundation reinforcing method and application | |
JP2005154163A (en) | Porous molded product which is obtained through cement hydration and hardening and contains ceramic charcoal and its manufacturing method | |
JP3729160B2 (en) | Environmental improvement method and environmental improvement materials for underwater or beach | |
JP5569682B2 (en) | Fish reef / alga reef block using coal ash as raw material and method for forming fish reef / alga reef | |
KR100728696B1 (en) | Permeable concrete carrier having micropore for deposition of microorganism | |
JP2009002155A (en) | Structure arranged on revetment and revetment structure | |
CN107087489B (en) | Concrete vegetation water purification base material and preparation method thereof | |
JP5168027B2 (en) | Repair method for steel revetment structures | |
JP5346157B2 (en) | Dissolved silicate replenishment block | |
KR100903204B1 (en) | Permeability tetrapod, harbor facility for the manufacturing method | |
JP2004000104A (en) | Method for improving underwater or environmental water shore | |
JP7501805B1 (en) | Method for fixing carbon dioxide and creating a seaweed bed using a concrete seaweed bed growth reef substrate | |
JP2003238224A (en) | Wet porous concrete | |
JP4185569B2 (en) | Method for constructing seagrass beds and method for breeding seaweeds on the seabed | |
CN110127839A (en) | Jungle biological grid and its method for purifying water and application based on a kind of pervious concrete and lightweight concrete | |
CN103288215B (en) | Anti-seepage constructed wetland system | |
JP4225220B2 (en) | Box structure, revetment structure installed on the revetment | |
JP2773067B2 (en) | Porous molded body for growing aquatic organisms and artificial reef comprising the molded body | |
CN117326693B (en) | Distributed domestic sewage treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4337350 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |