JP2004223936A - Resin molded object using gradient material - Google Patents

Resin molded object using gradient material Download PDF

Info

Publication number
JP2004223936A
JP2004223936A JP2003015705A JP2003015705A JP2004223936A JP 2004223936 A JP2004223936 A JP 2004223936A JP 2003015705 A JP2003015705 A JP 2003015705A JP 2003015705 A JP2003015705 A JP 2003015705A JP 2004223936 A JP2004223936 A JP 2004223936A
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
thermoplastic resin
cured product
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015705A
Other languages
Japanese (ja)
Other versions
JP4421190B2 (en
Inventor
Kenji Mimura
研史 三村
Hiromi Ito
浩美 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003015705A priority Critical patent/JP4421190B2/en
Publication of JP2004223936A publication Critical patent/JP2004223936A/en
Application granted granted Critical
Publication of JP4421190B2 publication Critical patent/JP4421190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molded object with the advantages such as the non-necessity to change the designing of a finished product/add another manufacturing process; outstanding chemical resistance during the use of the finished product; the easiness to separate a built-in part from a resin during discarding the finished product; and the playing of a role by a resin part around the built-in part as a stress mitigating layer during the use of the finished product by forming the resin part under control so that it becomes a continuous phase of a thermoplastic resin. <P>SOLUTION: This resin molded object has the built-in part molded using the gradient material which is a cured product of a thermosetting resin composition composed of a thermosetting resin which is insoluble and non-fusible by solvent or heat and a thermoplastic resin which is soluble by a solvent or heat with a continuously changing phase structure from the part wherein the thermoplastic resin is uniformly dissolved into the thermosetting resin to the part wherein the thermoplastic resin is phase-separated from the thermosetting resin and forms a continuous phase. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂でモールドされた成形品において、樹脂部分に異なる相構造を有する樹脂モールド成形品に関するものである。
【0002】
【従来の技術】
樹脂モールド成形品は、樹脂材料で内蔵部品をモールドしたものであり、電気機器において、電気絶縁部品および構造部品として多く用いられている。この種の樹脂モールド成形品の樹脂材料としては、耐湿性、耐薬品性、寸法安定性、電気/機械/熱特性に優れたエポキシ樹脂をはじめ、フェノール樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂が用いられている。
【0003】
熱硬化性樹脂は、一度硬化すると三次元の網目状に反応が進んで強固な硬化物となり、ポリプロピレンなどの熱可塑性樹脂とは異なり、加熱しても溶融/軟化して大きく変形することはない。
【0004】
このため、熱硬化性樹脂製品の廃棄物は、そのほとんどが埋め立て処分または焼却処分に付されている。しかし、埋め立て処分では埋め立て用地の確保の困難、埋め立て後の地盤の不安定化といった問題が生じ、焼却処分では有害ガスや悪臭の発生といった問題がある。昨今の環境に対する関心が高まる中、熱硬化性樹脂製品においても有効な廃棄処理技術やリサイクル技術の確立が求められるようになった。
【0005】
熱硬化性樹脂モールド成形品に関しては、資源の有効活用の観点から廃棄時に内蔵する有価物を回収する必要がある。熱硬化性樹脂モールド成形品廃棄物の機械的な粉砕処理では、熱硬化性樹脂硬化物の機械的強度が高いために破砕が困難で、しかも樹脂と内蔵有価物を完全に分離することが難しい。また、樹脂を熱分解するためには350℃以上の高温処理が必要で、その温度で樹脂モールド成形品を処理すると内蔵有価物も酸化されるなどの問題点がある。
【0006】
従来の樹脂モールド部品は、熱硬化性樹脂と内蔵部品との界面に、熱可塑性樹脂のような外部刺激によって溶融または軟化するコーティング層を設けた構造をしている(たとえば、特許文献1参照)。しかし、この方法では、樹脂モールド成形品の製造のために、製品設計の変更や製造プロセスの追加などを必要とする。
【0007】
また、従来の樹脂モールド部品は、熱可塑性樹脂が連続相を形成した熱硬化性樹脂で内蔵部品をモールドしている(たとえば、特許文献2参照)。しかし、この方法では、製品使用時における耐薬品性が低下する。
【0008】
【特許文献1】
特開平10−308129号公報
【特許文献2】
特開2001−239549公報
【0009】
【発明が解決しようとする課題】
本発明は、前述のような問題点を解決するためになされたものであり、製品設計の変更や製造プロセスの追加などの必要がなく、また製品使用時の耐薬品性にも優れ、製品廃棄時に内蔵部品と樹脂を容易に分離することができる樹脂モールド成形品を提供することを目的とする。さらに、本発明は、内蔵部品周辺の樹脂部分が熱可塑性樹脂の連続相を形成するように制御して、製品使用時の応力緩和層としての役割も果たす樹脂モールド成形品を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、溶剤や熱などに不溶不融の熱硬化性樹脂および、溶剤や熱などに可溶な熱可塑性樹脂からなる材料であって、熱可塑性樹脂が熱硬化性樹脂に均一に溶解した部分から、熱可塑性樹脂が熱硬化性樹脂から相分離して熱可塑性樹脂が連続相を形成した部分まで、相構造が連続的に変化した傾斜材料にかかわるもので、成形時の条件を変化させることにより、製品使用時の信頼性を向上し、さらに廃棄時の分解性を容易にしたものである。
【0011】
すなわち、本発明の第1の材料は、熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物であって、部分的に成形温度を変化させることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料に関する。
【0012】
本発明の第2の材料は、熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物であって、部分的に熱硬化性樹脂の触媒量を変化させることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料に関する。
【0013】
本発明の第3の樹脂モールド成形品は、熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、成形時に金型に温度勾配を付けることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品に関する。
【0014】
本発明の第4の樹脂モールド成形品は、熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、成形時に金型と内蔵部品とに温度差を設けることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品に関する。
【0015】
本発明の第5の樹脂モールド成形品は、熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、金型表面または内蔵部品表面に熱硬化性樹脂の触媒を塗布して成形することによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品に関する。
【0016】
【発明の実施の形態】
本発明は、熱硬化性樹脂に熱可塑性樹脂を混合した熱硬化性樹脂組成物の硬化物と、該硬化物に内蔵された内蔵部品とを有する樹脂モールド成形品にかかわる。
【0017】
本発明の樹脂モールド成形品は、熱硬化性樹脂に熱可塑性樹脂を混合した熱硬化性樹脂組成物で内蔵部品をモールドすることによって製造することができる。熱可塑性樹脂を混合した熱硬化性樹脂組成物で内蔵部品をモールドする際に、部分的に成形金型温度に温度勾配を付けたり、成形金型と内蔵部品に温度差を設けたり、部分的に熱硬化性樹脂の硬化触媒濃度に変化を持たせると、熱可塑性樹脂が熱硬化性樹脂に均一に溶解した部分から、熱可塑性樹脂が熱硬化性樹脂から相分離して熱可塑性樹脂が連続相を形成した部分まで、相構造が連続的に変化した傾斜材料を製造することができる。
【0018】
図1に、本発明の樹脂モールド成形品の断面形状をあらわす概略図を示す。図1中、2は熱可塑性樹脂が熱硬化性樹脂に均一に溶解した部分、3は熱可塑性樹脂が連続相を形成した部分、4は内蔵部品を示す。
【0019】
内蔵部品周辺に熱可塑性樹脂の連続相を形成した構造を有する樹脂モールド成形品は、製品使用時には外部からの耐薬品性に優れ、内蔵部品周辺に熱可塑性樹脂の連続相があるために、硬化および熱収縮に対する応力を緩和する効果があり、製品使用時の製品信頼性の向上を図ることができる。また、内蔵部品周辺に熱可塑性樹脂の連続相があるために、廃棄時に何らかの外的刺激によって内蔵部品と熱硬化性樹脂組成物の硬化物とが容易に分離するので、内蔵有価物の回収を容易に行なうことができる。
【0020】
本発明において、樹脂モールド成形品とは、アルミニウム、銅、鋼などの金属や有価物を含有する部品(内蔵部品)を樹脂モールドしたものであり、樹脂と該樹脂に内蔵された内蔵部品を有する。樹脂モールド部品としては、とくに限定されるものではないが、たとえば、モールドモータ、モールドトランス、絶縁スペーサ、ブッシング、絶縁ロッド、半導体パッケージなどをあげることができる。
【0021】
前記熱硬化性樹脂としては、加熱すると三次元の網目状を形成する熱硬化性樹脂を使用することができる。熱硬化性樹脂としては、とくに限定されるものではないが、たとえば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、フラン樹脂、シリコーン樹脂、アリル樹脂、不飽和ポリエステル樹脂、熱硬化性ポリウレタン樹脂、熱硬化性ゴムなどをあげることができる。熱硬化性樹脂は、単一の樹脂、混合物、または、アロイのような複合材料として使用することができる。
【0022】
前記熱可塑性樹脂としては、汎用プラスチックのみならず、エンジニアリングプラスチックも使用することができる。熱可塑性樹脂としては、とくに限定されるものではないが、たとえば、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、芳香族または脂肪族ポリエステル、熱可塑性エラストマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリベンズイミダゾール、アラミド、ポリパラフェニレンベンゾビスオキサゾールなどをあげることができる。また、熱可塑性樹脂は、熱硬化性樹脂の硬化過程でラジカル重合などによって同時に形成してもよい。熱可塑性樹脂は、単一の樹脂、混合物、または、アロイのような複合材料として使用することができる。
【0023】
熱硬化性樹脂組成物としては、その硬化物中で熱硬化性樹脂が分散相を形成し、熱可塑性樹脂が連続相を形成する組成物、熱硬化性樹脂が連続相を形成し、熱可塑性樹脂が分散相を形成する組成物、熱硬化性樹脂と熱可塑性樹脂とがともに連続相を形成する組成物、熱硬化性樹脂と熱可塑性樹脂とが均一相を形成する組成物をあげることができる。
【0024】
図2、図3、図4および図5に、熱硬化性樹脂に熱可塑性樹脂を混合した熱硬化性樹脂組成物の硬化物の相構造を模式的に示す。図2は、熱可塑性樹脂5が連続相を形成し、熱硬化性樹脂6が分散相を形成した相構造、図3は、熱可塑性樹脂5が分散相を形成し、熱硬化性樹脂6が連続相を形成した相構造、図4は、熱硬化性樹脂と熱可塑性樹脂とが均一相を形成した相構造、図5は、熱可塑性樹脂5と熱硬化性樹脂6とがともに連続相を形成した共連続相構造を示す模式図である。
【0025】
本発明において、熱硬化性樹脂組成物の硬化物は、内蔵部品周辺では熱可塑性樹脂が連続相を形成し、熱硬化性樹脂が分散相を形成した相構造を有することが好ましく、また、金型側では、熱硬化性樹脂と熱可塑性樹脂とが均一相を形成した相構造を有することが好ましい。熱可塑性樹脂が連続相を形成し、熱硬化性樹脂が分散相を形成した相構造を有する内蔵部品側の熱硬化性樹脂組成物の硬化物部分の厚さが不充分な場合には、廃棄時の分解性が低くなる傾向があり、厚すぎる場合には、製品使用時の耐薬品性が低下する傾向がある。
【0026】
前記熱硬化性樹脂組成物中の熱可塑性樹脂の含有量は、たとえば、熱可塑性樹脂が連続相を形成するという点から、熱硬化性樹脂および熱可塑性樹脂の合計量の15〜75重量%とすることが好ましく、とくに廃棄時の分解処理の容易さや成形(モールド)時の熱硬化性樹脂組成物の流動性の点から、20〜50重量%とすることがより好ましい。熱可塑性樹脂の含有量が15重量%未満の場合には、量が少ないために熱可塑性樹脂が連続層を形成することができず、したがって、廃棄時の分解処理に時間がかかる傾向がある。熱可塑性樹脂の含有量が75重量%をこえると、成形時の粘度が非常に高く、作業性の低下を招く傾向がある。
【0027】
これら熱硬化性樹脂組成物の硬化物の相構造は、成形時の温度や熱硬化性樹脂の触媒量によって変化する。たとえば、熱硬化性樹脂と熱可塑性樹脂とが一旦均一に相溶し、そののち相分離する場合には、熱硬化性樹脂と熱可塑性樹脂が下限臨界共溶温度(LCST)型相図を示すときは、高温側で熱可塑性樹脂が連続相を形成し、低温側では熱硬化性樹脂と熱可塑性樹脂が均一に相溶した相構造が得られる。また、熱硬化性樹脂と熱可塑性樹脂が上限臨界共溶温度(UCST)型相図を示すときは、低温側で熱可塑性樹脂が連続相を形成し、高温側では熱硬化性樹脂と熱可塑性樹脂とが均一相を形成する。
【0028】
また、熱硬化性樹脂の触媒量が多い場合には、熱硬化性樹脂の硬化反応が速やかに進み、熱可塑性樹脂が熱硬化性樹脂から相分離する前に固化するために熱硬化性樹脂と熱可塑性樹脂の均一相を形成する。熱硬化性樹脂の触媒量が少ない場合には、熱硬化性樹脂の硬化反応が緩やかになり、熱可塑性樹脂が熱硬化性樹脂から充分に相分離して熱可塑性樹脂の連続相を形成する。このように成形時の温度勾配や熱硬化性樹脂の触媒量の変化により、熱硬化性樹脂組成物の相構造を制御することができる。
【0029】
触媒としては、熱硬化性樹脂の触媒として通常用いられる触媒を、使用することができる。具体的には、トリフェニルホスフィン、トリメチルホスフィンなどの有機リン化合物、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾールなどのイミダゾール類、ベンジルジメチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のような3級アミン類などがあげられる。これらの触媒は、単独で使用してもよいし、2種以上を組合わせて使用してもよい。
【0030】
触媒は、熱硬化性樹脂組成物中の有機成分に対して、好ましくは0.01〜30重量%、より好ましくは0.05〜20重量%配合することが好ましい。0.01重量%未満では、熱硬化性樹脂の硬化促進作用が小さい傾向があり、30重量%をこえると、極端に硬化が速くなり、成形性や保存安定性を損なう傾向にある。
【0031】
触媒量の変化により、熱硬化性樹脂組成物の硬化物の相構造を制御する方法としては、熱硬化性樹脂組成物中に触媒を配合する方法だけではなく、あらかじめ触媒を金型および内蔵部品に塗布する方法もある。この場合、金型および内蔵部品に塗布する触媒量は、熱硬化性樹脂組成物と塗布する触媒との合計量に対して、好ましくは10〜99重量%、より好ましくは20〜95重量%となるように塗布することが好ましい。塗布する量が10重量%未満では、塗布した部分と塗布していない部分の硬化速度の違いが小さい傾向があり、99重量%をこえると、塗布していない部分の熱硬化性樹脂組成物の硬化が不充分になる傾向がある。
【0032】
熱硬化性樹脂組成物がLCST型およびUCST型相図を示すときの具体的な成形温度は、用いる熱硬化性樹脂と熱可塑性樹脂の組み合わせによって大きく変動し、また、同じ組み合わせであってもそれらの配合割合、硬化速度(触媒量)などによっても変動するので、これら条件を考慮して適宜選択することができる。
【0033】
本発明の樹脂モールド成形品の廃棄時に与えられる外的刺激とは、加熱などの温度変化、無機または有機溶剤、薬品、ガス、油などによる化学処理、紫外線などによる光処理、衝撃などによる機械処理をあげることができる。
【0034】
本発明の樹脂モールド成形品は、たとえば、熱硬化性樹脂に混合する熱可塑性樹脂の種類に応じて、加熱することによって熱硬化性樹脂組成物の硬化物中の熱可塑性樹脂が溶融または軟化して、内蔵部品と熱硬化性樹脂組成物の硬化物とが容易に分離し、あるいは、内蔵部品と熱硬化性樹脂組成物の硬化物とが有機溶剤によって容易に分離する。
【0035】
なお、本発明の熱硬化性樹脂組成物は、熱硬化性樹脂および熱可塑性樹脂のみから構成されていてもよいが、さらに、充填剤、たとえば、無機物の粉末を含むことができる。充填剤を含む熱硬化性樹脂組成物の硬化物は、機械的強度ならびに耐クラック性が高い。充填剤は、たとえば、充填剤および熱可塑性樹脂を含む熱硬化性樹脂組成物全体100体積部に対して3〜95体積部、好ましくは5〜70体積部用いることができる。充填剤の含有量が3体積部未満の場合には、充填剤による機械的強度および耐クラック性の向上効果が小さくなる傾向があり、95体積部をこえると、成形時の粘度が非常に高く、作業性の低下を招く傾向にある。
【0036】
無機物の粉末としては、一般に樹脂組成物に充填剤として用いられる無機物の粉末を用いることができる。無機物の粉末としては、たとえば、溶融シリカ、結晶シリカ、カンラン石、ウォラストナイト、コージエライト、フォルステライトなどのケイ酸塩化合物、アルミナ、水和アルミナ、水酸化アルミニウム、中空ガラスビーズ、ガラス繊維、酸化マグネシウム、酸化チタン、炭酸カルシウム、炭酸マグネシウム、ドロマイト、タルク、チタン酸カリ繊維、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン、無水石こう、硫酸バリウム、チッ化ホウ素、炭化ケイ素、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウム、ホウ酸アルミニウムなどの粉末があげられる。充填剤は、それぞれ単独で、または、任意に組み合わせて用いることができる。
【0037】
熱硬化性樹脂組成物には、シラン系、チタン系、アルミニウム系などのカップリング剤、アクリル系ゴム、ブタジエン系ゴム、ニトリル系ゴム、スチレン系ゴムなどの可撓性付与剤、変性剤、着色剤、顔料、劣化防止剤、内部離型剤、界面活性剤などの配合剤を、本発明の効果を損なわない範囲で配合することができる。
【0038】
【実施例】
以下、具体的に実施例をあげて、本発明をより詳細に説明するが、本発明はこれらのみに限定されるものではない。
【0039】
以下の実施例および比較例において、熱硬化性樹脂には、エポキシ樹脂としてジャパンエポキシレジン(株)製のエピコート828(ビスフェノールA型エポキシ樹脂)を、硬化剤として日立化成工業(株)製の無水メチルハイミック酸(MHAC)を、硬化触媒としてジャパンエポキシレジン(株)製のエピキュアIBMI−12(1−イソブチル−2−メチルイミダゾール)を用いた。
【0040】
熱可塑性樹脂としては、テイジンアモコエンジニアリングプラスチック(株)製のポリエーテルスルホン(PES:レーデルA)、または宇部興産(株)製のカルボキシ末端ブタジエンアクリロニトリル(CTBN)を用いた。
【0041】
実験例1および2
表1に示す配合割合に従い、エポキシ樹脂、硬化剤およびPESをフラスコ中140℃で5時間混合したのち、得られた混合物に硬化触媒を添加して140℃で2分間混合し、素早く取り出して熱硬化性樹脂組成物を得た。
【0042】
熱硬化性樹脂組成物の上下から被着体(軟鋼平板)をそれぞれ5mmずつ埋め込み、表1に記載した成形温度で約10分間成形したのち、180℃で8時間、後硬化することによって接着試験片(樹脂モールド部品)を作成した。図8(正面図)および図9(側面図)に接着試験片の形状を示す。図8および図9中、8は熱硬化性樹脂組成物の硬化物、9は軟鋼平板を示す。
【0043】
得られた接着試験片を用いて、以下の方法で接着強度および分離性の評価を行なった結果を、表2に示した。また、得られる熱硬化性樹脂組成物の硬化物について、以下の方法で相構造および曲げ弾性率を評価した結果を、併せて表2に示した。
【0044】
▲1▼相構造評価
硬化物の表面に、金を200Åの厚みとなるように蒸着させたサンプルを用いて、電子顕微鏡(SEM)により観察する。
【0045】
▲2▼接着強度評価
得られた接着試験片を用い、オートグラフ試験機で被着体金属部分を上下に1mm/分で引っ張り、引き抜くときにかかった荷重より接着強度を求める。
【0046】
▲3▼分離性評価
得られた接着試験片を用いて、樹脂モールド成形品を廃棄する際の内蔵部品と熱硬化性樹脂組成物の硬化物との分離性の評価を行なう。すなわち、接着試験片を25℃下溶剤ジメチルホルムアミド(DMF)に浸漬し、熱硬化性樹脂組成物の硬化物部分が分解して、埋め込んだ金属被着体を回収できるまでの時間(日数)を評価する。
【0047】
▲4▼曲げ弾性率評価
3mm×10mm×85mmの形状をした試験片を用い、JIS−K6911に準じて、オートグラフ試験機により、クロスヘッドスピード1.5mm/分、スパン間距離48mmとして、三点曲げ試験により求める。
【0048】
実験例3および4
熱可塑性樹脂としてCTBNを用いたほかは、実験例1および2と同様にして熱硬化性樹脂組成物を得た。接着試験片の作製も成形温度を表1記載のように100℃あるいは180℃で10分間にしたほかは、実験例1および2と同様にして作製した。実験例1および2と同様に、接着強度、分離性、相構造および曲げ弾性率を評価した結果を表2に示した。
【0049】
実験例5および6
表1に示す配合割合に従い、熱可塑性樹脂を配合しなかったほかは、実験例1および2と同様にして接着試験片を得た。実験例1および2と同様に、接着強度、分離性、相構造および曲げ弾性率を評価した結果を表2に示した。
【0050】
【表1】

Figure 2004223936
【0051】
【表2】
Figure 2004223936
【0052】
<評価結果>
表2からわかるように、熱可塑性樹脂にPESを用いて180℃で成形した実験例1の硬化物は、図5に示すような熱硬化性樹脂と熱可塑性樹脂がともに連続相を形成する共連続相構造を形成することが示された。140℃で成形した実験例2の硬化物は、図4で示すような熱硬化性樹脂と熱可塑性樹脂が均一に相溶した均一相構造を形成することが示された。また、熱可塑性樹脂にCTBNを用いて100℃で成形した実験例3の硬化物は、図2で示すような熱可塑性樹脂の連続相中に熱硬化性樹脂の分散相が存在する硬化物を形成することが示された。180℃で成形した実験例4の硬化物は、図4で示したような均一相構造を示した。このように、熱可塑性樹脂を配合した熱硬化性樹脂組成物は、成形条件を変化することにより、硬化物の相構造をコントロールできることがわかる。なお、熱硬化性樹脂単独の実験例5および6の硬化物は、いずれも均一な硬化物である。
【0053】
表2からわかるように、処理前の接着強度は、熱硬化性樹脂単独の実験例5および6の値に比べて、熱可塑性樹脂を配合した実験例1、2、3および4の値は高い値を示す。これより、熱硬化性樹脂への熱可塑性樹脂の配合は、接着強度の向上に効果的であることがわかる。
【0054】
これらの実験例の接着試験片を化学処理した結果を表2に示した。その結果、熱可塑性樹脂が連続相を形成した相構造を示す実験例1および3の硬化物は、化学処理によって容易に速やかに樹脂部分が分解し、埋め込まれた金属被着体を回収できることがわかる。これに対して、熱可塑性樹脂が熱硬化性樹脂に均一に相溶した均一相を形成した実験例2および実験例4の硬化物は、熱硬化性樹脂単独の実験例5および6の硬化物と同等の耐薬品性を示し、樹脂部分を分解して中の金属被着体を回収するには長時間を有することがわかる。
【0055】
また、表2からわかるように、硬化物の弾性率は、相構造の違いによって変化する。熱可塑性樹脂にゴムを用いた実験例3および4において、熱可塑性樹脂(ゴム)が連続相を形成した実験例3の硬化物の曲げ弾性率は、熱可塑性樹脂(ゴム)が均一に相溶した実験例4の硬化物の値に比べて低下することが示された。このように熱可塑性樹脂にゴムを用いて熱可塑性樹脂を連続相にすると、硬化物の弾性率を大きく低下させることができ、この熱可塑性樹脂(ゴム)の連続相を内蔵部品周辺で形成させると、硬化および熱収縮に対する応力を緩和することができる。
【0056】
実施例1
熱硬化性樹脂組成物の作製方法は、実験例1および2と同様に行なった。試験片としては、四角柱の短冊形状をした試験片を成形した。成形温度は表1記載の金型/内蔵部品温度とした。
【0057】
<評価結果>
熱可塑性樹脂(PES)を配合した熱硬化性樹脂組成物を成形する際に、金型温度を140℃〜180℃と温度勾配をつけて成形した実施例1の硬化物は、図6に示すように、熱可塑性樹脂が熱硬化性樹脂に均一に相溶した部分(140℃側)から熱可塑性樹脂が連続相を形成した部分(180℃側)まで相構造が傾斜的に変化することが示された。このように熱可塑性樹脂を配合した熱硬化性樹脂組成物は、同じ硬化物中でも成形条件を変化することによって硬化物の相構造をコントロールすることができることがわかる。
【0058】
実施例2
熱硬化性樹脂組成物の作製方法は、実験例1および2と同様に行なった。試験片としては、円柱状の熱硬化性樹脂組成物の中心に円柱状の銅を埋め込んだ樹脂モールド成形品を模擬した試験片を成形した。成形温度は表1記載の金型/内蔵部品温度とした。
【0059】
実施例3
熱硬化性樹脂組成物の作製方法は、実験例3および4と同様に行なった。試験片としては、円柱状の熱硬化性樹脂組成物の中心に円柱状の銅を埋め込んだ樹脂モールド成形品を模擬した試験片を成形した。成形温度は表1記載の金型/内蔵部品温度とした。
【0060】
比較例1
熱硬化性樹脂組成物の作製方法は、実験例5〜6と同様に行なった。試験片としては、円柱状の熱硬化性樹脂組成物の中心に円柱状の銅を埋め込んだ樹脂モールド成形品を模擬した試験片を成形した。成形温度は表1記載の金型/内蔵部品温度とした。
【0061】
<評価結果>
熱可塑性樹脂(PES)を配合した熱硬化性樹脂組成物を成形する際に、実施例2では金型温度を140℃に内蔵部品温度を180℃に、また、実施例3では金型温度を180℃に内蔵部品温度を100℃にと、金型温度と内蔵部品温度に温度差をつけて成形した実施例2および3の硬化物は、図7に示すように、熱可塑性樹脂が熱硬化性樹脂に均一に相溶した部分(金型側/外側)から熱可塑性樹脂が連続相を形成した部分(内蔵部品側/内側)まで相構造が傾斜的に変化することが示された。このように、熱可塑性樹脂を配合した熱硬化性樹脂組成物は、同じ硬化物中でも金型温度と内蔵部品温度に温度差をつけることによって、硬化物の相構造をコントロールできることがわかる。なお、熱硬化性樹脂単独の比較例1の硬化物はいずれの部分でも均一な硬化物である。
【0062】
実施例4
熱硬化性樹脂組成物の作製方法は、実験例1および2と同様に行なった。試験片としては、実施例2および3で用いた円柱状の熱硬化性樹脂組成物の中心に円柱状の銅を埋め込んだ樹脂モールド成形品を模擬した試験片を用いた。表1記載の触媒量を予め金型に塗布し、試験片の成形を行った。
【0063】
<評価結果>
熱可塑性樹脂(PES)を配合した熱硬化性樹脂組成物を成形する際に、予め金型に熱硬化性樹脂の触媒を添加して成形した実施例4の硬化物は、図7に示すように、熱可塑性樹脂が熱硬化性樹脂に均一に相溶した部分(金型側/外側)から、熱可塑性樹脂が連続相を形成した部分(内蔵部品側/内側)まで、相構造が傾斜的に変化することが示された。このように、熱可塑性樹脂を配合した熱硬化性樹脂組成物は、同じ硬化物中でも熱硬化性樹脂の触媒量に差をつけること、即ち熱硬化性樹脂の硬化速度を制御することによって、硬化物の相構造をコントロールできることがわかる。
【0064】
【発明の効果】
本発明の第1および2の材料によれば、溶剤や熱などに不溶不融の熱硬化性樹脂、および溶剤や熱などに可溶な熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を、部分的に成形温度または触媒量を変化させて製造することにより、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料であるので、該材料で内蔵部品をモールドすることによって、製品使用時の耐薬品性に優れ、信頼性の高い樹脂モールド形成品を得ることができる。また、廃棄時に外的刺激によって容易に樹脂部分と内蔵部品を分離することができる樹脂モールド形成品を得ることができる。
【0065】
本発明の第3〜5の樹脂モールド形成品によれば、溶剤や熱などに不溶不融の熱硬化性樹脂、および、溶剤や熱などに可溶な熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を、成形時に金型に温度勾配を付ける方法、金型と内蔵部品とに温度差を設ける方法、金型表面または内蔵部品表面に熱硬化性樹脂の触媒を塗布する方法などによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料を用いて、内蔵部品をモールドするので、製品使用時の耐薬品性に優れ、信頼性を向上することができ、また、廃棄時に外的刺激によって容易に樹脂部分と内蔵部品を分離することができるという効果がある。
【0066】
さらに、内蔵部品周辺に熱可塑性樹脂の連続相を形成することにより、硬化および熱収縮に対する応力を緩和する効果があり、製品使用時の製品信頼性の向上を図ることができるという効果がある。
【図面の簡単な説明】
【図1】傾斜材料を用いて内蔵部品をモールドした樹脂モールド成形品の断面形状を示す概略図である。
【図2】熱硬化性樹脂組成物の硬化物中で、熱硬化性樹脂が分散相を形成し、熱可塑性樹脂が連続相を形成した相構造を示す模式図である。
【図3】熱硬化性樹脂組成物の硬化物中で、熱硬化性樹脂が連続相を形成し、熱可塑性樹脂が分散相を形成した相構造を示す模式図である。
【図4】熱硬化性樹脂組成物の硬化物中で、熱硬化性樹脂と熱可塑性樹脂とが均一相を形成した相構造を示す模式図である。
【図5】熱硬化性樹脂組成物の硬化物中で、熱硬化性樹脂と熱可塑性樹脂とがともに連続相を形成した共連続相構造を示す模式図である。
【図6】金型温度に温度勾配を付けて成形した実施例1の硬化物の相構造を示す模式図である。
【図7】金型温度と内蔵部品温度に温度差をつけて成形した実施例2および3の硬化物、さらには触媒量を変化させて成形した実施例4の硬化物の相構造を示す模式図である。
【図8】樹脂モールド成形品を模擬した接着試験片の正面図である。
【図9】樹脂モールド成形品を模擬した接着試験片の側面図である。
【符号の説明】
1 樹脂モールド部品、2 熱可塑性樹脂が熱硬化性樹脂に均一に溶解した部分、3 熱可塑性樹脂が連続相を形成した部分、4 内蔵部品、5 熱可塑性樹脂、6 熱硬化性樹脂、7 均一相、8 熱硬化性樹脂組成物の硬化物、9 軟鋼平板。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a resin molded product having a resin part having a different phase structure in a resin molded product.
[0002]
[Prior art]
BACKGROUND ART A resin molded product is a product in which a built-in component is molded with a resin material, and is often used as an electric insulating component and a structural component in electric equipment. The resin materials for this type of resin molded product include thermosetting resins such as epoxy resin, phenol resin, and unsaturated polyester resin, which are excellent in moisture resistance, chemical resistance, dimensional stability, and electrical / mechanical / thermal properties. Resin is used.
[0003]
Once cured, the thermosetting resin reacts in a three-dimensional network to form a strong cured product. Unlike thermoplastic resins such as polypropylene, it does not melt and soften even when heated, and does not significantly deform. .
[0004]
For this reason, most of the waste of thermosetting resin products is subjected to landfill or incineration. However, landfill disposal has problems such as difficulty in securing land for landfill and instability of the ground after landfill, and incineration has problems such as generation of harmful gas and odor. As interest in the environment has increased in recent years, the establishment of effective disposal and recycling technologies for thermosetting resin products has been required.
[0005]
With respect to thermosetting resin molded products, it is necessary to recover valuable materials incorporated at the time of disposal from the viewpoint of effective use of resources. In the mechanical pulverization treatment of thermosetting resin molded product waste, it is difficult to crush it because of the high mechanical strength of the cured thermosetting resin, and it is difficult to completely separate the resin and built-in valuables . Further, in order to thermally decompose the resin, a high temperature treatment of 350 ° C. or more is required, and if the resin molded article is treated at that temperature, there is a problem that the built-in valuables are oxidized.
[0006]
A conventional resin mold component has a structure in which a coating layer that is melted or softened by an external stimulus such as a thermoplastic resin is provided at an interface between a thermosetting resin and a built-in component (for example, see Patent Document 1). . However, this method requires a change in product design and an addition of a manufacturing process in order to manufacture a resin molded product.
[0007]
Further, in a conventional resin molded component, a built-in component is molded with a thermosetting resin in which a thermoplastic resin forms a continuous phase (for example, see Patent Document 2). However, in this method, chemical resistance during use of the product is reduced.
[0008]
[Patent Document 1]
JP-A-10-308129
[Patent Document 2]
JP 2001-239549 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and there is no need to change a product design or add a manufacturing process. An object of the present invention is to provide a resin molded product that can easily separate a resin from a built-in component at times. Still another object of the present invention is to provide a resin molded product that controls a resin portion around a built-in component to form a continuous phase of a thermoplastic resin and also functions as a stress relaxation layer when the product is used. And
[0010]
[Means for Solving the Problems]
The present invention is a thermosetting resin that is insoluble and insoluble in a solvent or heat, and a material made of a thermoplastic resin that is soluble in a solvent or heat, wherein the thermoplastic resin is uniformly dissolved in the thermosetting resin. From the part, to the part where the thermoplastic resin phase-separated from the thermosetting resin and the thermoplastic resin formed a continuous phase, the phase structure involved the graded material that was continuously changed, and changed the conditions during molding Thereby, the reliability at the time of use of the product is improved, and the decomposability at the time of disposal is facilitated.
[0011]
That is, the first material of the present invention is a cured product of a thermosetting resin composition composed of a thermosetting resin and a thermoplastic resin, and by partially changing the molding temperature, The present invention relates to a gradient material in which a dispersion state of a thermoplastic resin is continuously changed.
[0012]
The second material of the present invention is a cured product of a thermosetting resin composition composed of a thermosetting resin and a thermoplastic resin, and is obtained by partially changing the catalyst amount of the thermosetting resin. The present invention relates to a gradient material in which a dispersion state of a thermoplastic resin in a material is continuously changed.
[0013]
The third resin molded product of the present invention is a resin molded product having a cured product of a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin, and imparts a temperature gradient to a mold during molding. Thereby, the present invention relates to a resin molded article in which a dispersion state of a thermoplastic resin in the cured product is continuously changed.
[0014]
The fourth resin molded product of the present invention is a resin molded product having a cured product of a thermosetting resin composition composed of a thermosetting resin and a thermoplastic resin, and includes a mold and a built-in component during molding. The present invention relates to a resin molded product in which a dispersion state of a thermoplastic resin in a cured product is continuously changed by providing a temperature difference.
[0015]
The fifth resin molded article of the present invention is a resin molded article having a cured product of a thermosetting resin composition composed of a thermosetting resin and a thermoplastic resin, and has a heat applied to a mold surface or a built-in component surface. The present invention relates to a resin molded article in which a dispersion state of a thermoplastic resin in a cured product is continuously changed by applying and molding a catalyst of a curable resin.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a resin molded article having a cured product of a thermosetting resin composition obtained by mixing a thermoplastic resin with a thermosetting resin, and a built-in component built in the cured product.
[0017]
The resin molded article of the present invention can be manufactured by molding a built-in component with a thermosetting resin composition in which a thermoplastic resin is mixed with a thermosetting resin. When molding a built-in component with a thermosetting resin composition mixed with a thermoplastic resin, a temperature gradient is partially applied to the molding die temperature, or a temperature difference is provided between the molding die and the built-in component. When the concentration of the curing catalyst in the thermosetting resin is changed, the thermoplastic resin is phase-separated from the thermosetting resin from the part where the thermoplastic resin is uniformly dissolved in the thermosetting resin, and the thermoplastic resin is continuous. It is possible to manufacture a gradient material in which the phase structure changes continuously up to the portion where the phase is formed.
[0018]
FIG. 1 is a schematic diagram showing a cross-sectional shape of a resin molded article of the present invention. In FIG. 1, 2 is a portion where the thermoplastic resin is uniformly dissolved in the thermosetting resin, 3 is a portion where the thermoplastic resin forms a continuous phase, and 4 is a built-in component.
[0019]
Resin molded products that have a structure in which a continuous phase of thermoplastic resin is formed around built-in components have excellent resistance to external chemicals when the product is used, and are hardened due to the continuous phase of thermoplastic resin around built-in components. In addition, there is an effect of alleviating stress due to heat shrinkage, and it is possible to improve product reliability when the product is used. In addition, since there is a continuous phase of the thermoplastic resin around the built-in component, the built-in component and the cured product of the thermosetting resin composition are easily separated by some external stimulus at the time of disposal. It can be done easily.
[0020]
In the present invention, a resin molded product is a resin-molded component (built-in component) containing a metal or valuable material such as aluminum, copper, or steel, and has a resin and a built-in component built in the resin. . Examples of the resin molded component include, but are not limited to, a molded motor, a molded transformer, an insulating spacer, a bushing, an insulating rod, and a semiconductor package.
[0021]
As the thermosetting resin, a thermosetting resin that forms a three-dimensional network when heated can be used. The thermosetting resin is not particularly limited, for example, epoxy resin, phenol resin, melamine resin, urea resin, furan resin, silicone resin, allyl resin, unsaturated polyester resin, thermosetting polyurethane resin, Thermosetting rubber and the like can be given. Thermosetting resins can be used as a single resin, a mixture, or a composite material such as an alloy.
[0022]
As the thermoplastic resin, not only general-purpose plastics but also engineering plastics can be used. Examples of the thermoplastic resin include, but are not particularly limited to, for example, polyethylene, polypropylene, polystyrene, ABS resin, polyvinyl chloride, polyvinyl alcohol, polycarbonate, aromatic or aliphatic polyester, thermoplastic elastomer, polyethylene terephthalate, and polyethylene. Examples include butylene terephthalate, polyimide, polyamide, polyamide imide, polyether imide, polysulfone, polyether sulfone, polyphenylene sulfide, polyphenyl ether, polybenzimidazole, aramid, polyparaphenylene benzobisoxazole, and the like. In addition, the thermoplastic resin may be formed simultaneously by radical polymerization or the like during the curing process of the thermosetting resin. Thermoplastics can be used as a single resin, a mixture, or a composite material such as an alloy.
[0023]
As the thermosetting resin composition, a composition in which the thermosetting resin forms a dispersed phase in the cured product, the thermoplastic resin forms a continuous phase, and the thermosetting resin forms a continuous phase. Examples of the composition include a composition in which a resin forms a dispersed phase, a composition in which a thermosetting resin and a thermoplastic resin together form a continuous phase, and a composition in which a thermosetting resin and a thermoplastic resin form a uniform phase. it can.
[0024]
FIGS. 2, 3, 4 and 5 schematically show the phase structure of a cured product of a thermosetting resin composition obtained by mixing a thermoplastic resin with a thermosetting resin. 2 shows a phase structure in which the thermoplastic resin 5 forms a continuous phase and the thermosetting resin 6 forms a dispersed phase. FIG. 3 shows a phase structure in which the thermoplastic resin 5 forms a dispersed phase and the thermosetting resin 6 forms a dispersed phase. FIG. 4 shows a phase structure in which a thermosetting resin and a thermoplastic resin form a uniform phase, and FIG. 5 shows a phase structure in which a thermoplastic resin 5 and a thermosetting resin 6 form a continuous phase. It is a schematic diagram which shows the formed bicontinuous phase structure.
[0025]
In the present invention, the cured product of the thermosetting resin composition preferably has a phase structure in which the thermoplastic resin forms a continuous phase and the thermosetting resin forms a dispersed phase around the built-in component. On the mold side, it is preferable that the thermosetting resin and the thermoplastic resin have a phase structure in which a uniform phase is formed. If the thickness of the cured part of the thermosetting resin composition on the side of the built-in component having a phase structure in which the thermoplastic resin forms a continuous phase and the thermosetting resin forms the dispersed phase is insufficient, discard When the product is too thick, the chemical resistance during use of the product tends to decrease.
[0026]
The content of the thermoplastic resin in the thermosetting resin composition is, for example, 15 to 75% by weight of the total amount of the thermosetting resin and the thermoplastic resin from the viewpoint that the thermoplastic resin forms a continuous phase. It is more preferable to set the content to 20 to 50% by weight, particularly from the viewpoint of ease of decomposition treatment at the time of disposal and fluidity of the thermosetting resin composition at the time of molding (molding). When the content of the thermoplastic resin is less than 15% by weight, the thermoplastic resin cannot form a continuous layer due to the small amount, and therefore, the decomposition treatment at the time of disposal tends to take time. If the content of the thermoplastic resin exceeds 75% by weight, the viscosity at the time of molding is extremely high, and the workability tends to decrease.
[0027]
The phase structure of the cured product of these thermosetting resin compositions changes depending on the temperature at the time of molding and the amount of catalyst of the thermosetting resin. For example, when the thermosetting resin and the thermoplastic resin are once uniformly dissolved and then phase-separated, the thermosetting resin and the thermoplastic resin show a lower critical solution temperature (LCST) phase diagram. In some cases, a thermoplastic resin forms a continuous phase on the high temperature side, and a phase structure in which the thermosetting resin and the thermoplastic resin are homogeneously mixed on the low temperature side is obtained. When the thermosetting resin and the thermoplastic resin show the upper critical solution temperature (UCST) phase diagram, the thermoplastic resin forms a continuous phase on the low temperature side, and the thermosetting resin and the thermoplastic resin form on the high temperature side. A homogeneous phase is formed with the resin.
[0028]
In addition, when the catalyst amount of the thermosetting resin is large, the curing reaction of the thermosetting resin proceeds promptly, and the thermoplastic resin is solidified before phase separation from the thermosetting resin, so that the thermosetting resin is hardened. Form a homogeneous phase of thermoplastic resin. When the catalyst amount of the thermosetting resin is small, the curing reaction of the thermosetting resin becomes slow, and the thermoplastic resin sufficiently separates from the thermosetting resin to form a continuous phase of the thermoplastic resin. As described above, the phase structure of the thermosetting resin composition can be controlled by changing the temperature gradient during molding and the amount of the catalyst of the thermosetting resin.
[0029]
As the catalyst, a catalyst usually used as a catalyst for a thermosetting resin can be used. Specifically, organic phosphorus compounds such as triphenylphosphine and trimethylphosphine, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, benzyldimethylamine, And tertiary amines such as 8,8-diazabicyclo (5,4,0) undecene-7. These catalysts may be used alone or in combination of two or more.
[0030]
It is preferable that the catalyst is added in an amount of preferably 0.01 to 30% by weight, more preferably 0.05 to 20% by weight, based on the organic component in the thermosetting resin composition. If the amount is less than 0.01% by weight, the effect of accelerating the curing of the thermosetting resin tends to be small. If the amount exceeds 30% by weight, the curing speed is extremely increased, and the moldability and the storage stability tend to be impaired.
[0031]
As a method of controlling the phase structure of the cured product of the thermosetting resin composition by changing the amount of the catalyst, not only a method of blending the catalyst in the thermosetting resin composition, but also a method in which the catalyst is previously molded in a mold and a built-in component There is also a method of applying it to In this case, the amount of the catalyst applied to the mold and the built-in component is preferably 10 to 99% by weight, more preferably 20 to 95% by weight, based on the total amount of the thermosetting resin composition and the catalyst to be applied. It is preferable to apply it. If the amount to be applied is less than 10% by weight, there is a tendency that the difference in the curing speed between the applied part and the uncoated part tends to be small, and if it exceeds 99% by weight, the uncured part of the thermosetting resin composition Curing tends to be insufficient.
[0032]
The specific molding temperature when the thermosetting resin composition shows the LCST-type and UCST-type phase diagrams greatly varies depending on the combination of the thermosetting resin and the thermoplastic resin used, and even when the same combination is used. Varies depending on the compounding ratio, curing rate (catalyst amount), etc., and can be appropriately selected in consideration of these conditions.
[0033]
The external stimulus given at the time of disposal of the resin molded article of the present invention is a temperature change such as heating, a chemical treatment with an inorganic or organic solvent, a chemical, a gas, an oil, etc., a light treatment with an ultraviolet ray or the like, a mechanical treatment with an impact or the like. Can be given.
[0034]
The resin molded article of the present invention is, for example, depending on the type of thermoplastic resin to be mixed with the thermosetting resin, the thermoplastic resin in the cured product of the thermosetting resin composition is melted or softened by heating. Thus, the built-in component and the cured product of the thermosetting resin composition are easily separated, or the built-in component and the cured product of the thermosetting resin composition are easily separated by the organic solvent.
[0035]
The thermosetting resin composition of the present invention may be composed of only a thermosetting resin and a thermoplastic resin, but may further contain a filler, for example, an inorganic powder. A cured product of the thermosetting resin composition containing a filler has high mechanical strength and high crack resistance. The filler can be used, for example, in an amount of 3 to 95 parts by volume, preferably 5 to 70 parts by volume based on 100 parts by volume of the entire thermosetting resin composition containing the filler and the thermoplastic resin. When the content of the filler is less than 3 parts by volume, the effect of improving the mechanical strength and crack resistance by the filler tends to be small. When the content exceeds 95 parts by volume, the viscosity at the time of molding is extremely high. However, the workability tends to decrease.
[0036]
As the inorganic powder, an inorganic powder generally used as a filler in a resin composition can be used. Examples of the inorganic powder include silicate compounds such as fused silica, crystalline silica, olivine, wollastonite, cordierite, and forsterite, alumina, hydrated alumina, aluminum hydroxide, hollow glass beads, glass fiber, and oxidized powder. Magnesium, titanium oxide, calcium carbonate, magnesium carbonate, dolomite, talc, potassium titanate fiber, calcium hydroxide, magnesium hydroxide, antimony trioxide, anhydrous gypsum, barium sulfate, boron nitride, silicon carbide, aluminum fluoride, fluorine Powders of calcium fluoride, magnesium fluoride, aluminum borate and the like can be mentioned. The fillers can be used alone or in any combination.
[0037]
Thermosetting resin compositions include silane-based, titanium-based, and aluminum-based coupling agents, acrylic rubber, butadiene-based rubber, nitrile-based rubber, styrene-based rubber, and other flexibility-imparting agents, modifiers, and coloring agents. A compounding agent such as an agent, a pigment, a deterioration inhibitor, an internal release agent, and a surfactant can be compounded within a range that does not impair the effects of the present invention.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0039]
In the following Examples and Comparative Examples, as a thermosetting resin, Epicoat 828 (bisphenol A type epoxy resin) manufactured by Japan Epoxy Resin Co., Ltd. was used as an epoxy resin, and anhydrous product manufactured by Hitachi Chemical Co., Ltd. was used as a curing agent. Methylhymic acid (MHAC) was used as a curing catalyst, and Epicure IBMI-12 (1-isobutyl-2-methylimidazole) manufactured by Japan Epoxy Resin Co., Ltd. was used.
[0040]
As the thermoplastic resin, polyether sulfone (PES: Radel A) manufactured by Teijin Amoco Engineering Plastics Co., Ltd., or carboxy-terminal butadiene acrylonitrile (CTBN) manufactured by Ube Industries, Ltd. was used.
[0041]
Experimental Examples 1 and 2
After mixing the epoxy resin, curing agent and PES in a flask at 140 ° C. for 5 hours according to the mixing ratio shown in Table 1, a curing catalyst was added to the obtained mixture, and mixed at 140 ° C. for 2 minutes. A curable resin composition was obtained.
[0042]
An adhesion test is performed by embedding an adherend (mild steel flat plate) 5 mm each from above and below the thermosetting resin composition, molding at a molding temperature described in Table 1 for about 10 minutes, and post-curing at 180 ° C. for 8 hours. Pieces (resin molded parts) were prepared. FIG. 8 (front view) and FIG. 9 (side view) show the shapes of the adhesive test pieces. 8 and 9, reference numeral 8 denotes a cured product of the thermosetting resin composition, and reference numeral 9 denotes a mild steel plate.
[0043]
Table 2 shows the evaluation results of the adhesive strength and the separability by the following methods using the obtained adhesive test pieces. Table 2 also shows the results of evaluating the phase structure and flexural modulus of the obtained thermosetting resin composition cured product by the following methods.
[0044]
(1) Evaluation of phase structure
The surface of the cured product is observed by an electron microscope (SEM) using a sample in which gold is deposited to a thickness of 200 °.
[0045]
(2) Evaluation of adhesive strength
Using the obtained adhesive test piece, the metal part to be adhered is pulled up and down at 1 mm / min with an autograph tester, and the adhesive strength is determined from the load applied when the metal part is pulled out.
[0046]
(3) Evaluation of separability
Using the obtained adhesive test piece, evaluation of the separability between the built-in component and the cured product of the thermosetting resin composition when disposing the resin molded product is performed. That is, the time (days) required for the adhesive test piece to be immersed in the solvent dimethylformamide (DMF) at 25 ° C. and for the cured part of the thermosetting resin composition to be decomposed and the embedded metal adherend to be recovered can be recovered. evaluate.
[0047]
4) Flexural modulus evaluation
Using a test piece having a shape of 3 mm × 10 mm × 85 mm, a cross-point speed of 1.5 mm / min and a distance between spans of 48 mm are determined by a three-point bending test according to JIS-K6911 using an autograph tester.
[0048]
Experimental Examples 3 and 4
A thermosetting resin composition was obtained in the same manner as in Experimental Examples 1 and 2, except that CTBN was used as the thermoplastic resin. An adhesive test piece was prepared in the same manner as in Experimental Examples 1 and 2, except that the molding temperature was set at 100 ° C. or 180 ° C. for 10 minutes as shown in Table 1. Table 2 shows the results of evaluation of the adhesive strength, separability, phase structure and flexural modulus in the same manner as in Experimental Examples 1 and 2.
[0049]
Experimental Examples 5 and 6
Adhesion test pieces were obtained in the same manner as in Experimental Examples 1 and 2, except that the thermoplastic resin was not blended according to the blending ratio shown in Table 1. Table 2 shows the results of evaluation of the adhesive strength, separability, phase structure and flexural modulus in the same manner as in Experimental Examples 1 and 2.
[0050]
[Table 1]
Figure 2004223936
[0051]
[Table 2]
Figure 2004223936
[0052]
<Evaluation results>
As can be seen from Table 2, the cured product of Experimental Example 1, which was molded at 180 ° C. using PES as the thermoplastic resin, shows that both the thermosetting resin and the thermoplastic resin form a continuous phase as shown in FIG. It was shown to form a continuous phase structure. It was shown that the cured product of Experimental Example 2 molded at 140 ° C. formed a uniform phase structure in which the thermosetting resin and the thermoplastic resin were uniformly dissolved as shown in FIG. The cured product of Experimental Example 3 molded at 100 ° C. using CTBN as the thermoplastic resin is a cured product in which the dispersed phase of the thermosetting resin is present in the continuous phase of the thermoplastic resin as shown in FIG. It was shown to form. The cured product of Experimental Example 4 molded at 180 ° C. showed a uniform phase structure as shown in FIG. As described above, it can be understood that the phase structure of the cured product can be controlled by changing the molding conditions in the thermosetting resin composition containing the thermoplastic resin. Note that the cured products of Experimental Examples 5 and 6 using only the thermosetting resin are uniform cured products.
[0053]
As can be seen from Table 2, the adhesive strength before the treatment was higher in Experimental Examples 1, 2, 3 and 4 in which the thermoplastic resin was blended than in Experimental Examples 5 and 6 using the thermosetting resin alone. Indicates a value. This indicates that blending of the thermoplastic resin with the thermosetting resin is effective in improving the adhesive strength.
[0054]
Table 2 shows the results of chemically treating the adhesive test pieces of these experimental examples. As a result, the cured products of Experimental Examples 1 and 3, which show a phase structure in which a thermoplastic resin forms a continuous phase, can be easily and quickly decomposed by a chemical treatment to recover the embedded metal adherend. Understand. On the other hand, the cured products of Experimental Examples 2 and 4 in which the thermoplastic resin formed a homogeneous phase uniformly dissolved in the thermosetting resin were the cured products of Experimental Examples 5 and 6 using only the thermosetting resin. It shows that it has a long time to decompose the resin part and recover the metal adherend in the resin part.
[0055]
Further, as can be seen from Table 2, the elastic modulus of the cured product changes depending on the difference in the phase structure. In Experimental Examples 3 and 4 in which the thermoplastic resin was rubber, the flexural modulus of the cured product of Experimental Example 3 in which the thermoplastic resin (rubber) formed a continuous phase was such that the thermoplastic resin (rubber) was uniformly compatible. It was shown that the value was lower than the value of the cured product of Experimental Example 4. When the thermoplastic resin is made into a continuous phase by using rubber as the thermoplastic resin, the elasticity of the cured product can be greatly reduced, and the continuous phase of the thermoplastic resin (rubber) is formed around the built-in component. Thus, the stress for curing and heat shrinkage can be reduced.
[0056]
Example 1
The method for producing the thermosetting resin composition was the same as in Experimental Examples 1 and 2. As the test piece, a rectangular test piece having a rectangular column shape was formed. The molding temperature was the mold / built-in part temperature shown in Table 1.
[0057]
<Evaluation results>
FIG. 6 shows the cured product of Example 1 in which a mold temperature was set at 140 ° C. to 180 ° C. with a temperature gradient when a thermosetting resin composition containing a thermoplastic resin (PES) was molded. As described above, the phase structure may change from a portion where the thermoplastic resin is uniformly compatible with the thermosetting resin (140 ° C. side) to a portion where the thermoplastic resin forms a continuous phase (180 ° C. side). Indicated. It can be seen that the thermosetting resin composition containing the thermoplastic resin can control the phase structure of the cured product by changing the molding conditions even in the same cured product.
[0058]
Example 2
The method for producing the thermosetting resin composition was the same as in Experimental Examples 1 and 2. As a test piece, a test piece simulating a resin molded product in which a columnar copper was embedded in the center of a columnar thermosetting resin composition was formed. The molding temperature was the mold / built-in part temperature shown in Table 1.
[0059]
Example 3
The method for producing the thermosetting resin composition was the same as in Experimental Examples 3 and 4. As a test piece, a test piece simulating a resin molded product in which a columnar copper was embedded in the center of a columnar thermosetting resin composition was formed. The molding temperature was the mold / built-in part temperature shown in Table 1.
[0060]
Comparative Example 1
The method for producing the thermosetting resin composition was the same as in Experimental Examples 5 to 6. As a test piece, a test piece simulating a resin molded product in which a columnar copper was embedded in the center of a columnar thermosetting resin composition was formed. The molding temperature was the mold / built-in part temperature shown in Table 1.
[0061]
<Evaluation results>
When molding a thermosetting resin composition containing a thermoplastic resin (PES), in Example 2, the mold temperature was set to 140 ° C. and the temperature of the built-in parts was set to 180 ° C. In Example 3, the mold temperature was set to As shown in FIG. 7, the cured products of Examples 2 and 3 molded at 180 ° C. with the temperature of the built-in component at 100 ° C. and with a temperature difference between the mold temperature and the temperature of the built-in component were heat-cured as shown in FIG. It was shown that the phase structure was inclinedly changed from a part (the mold side / outside) that was uniformly compatible with the thermoplastic resin to a part (internal part side / inside) where the thermoplastic resin formed a continuous phase. As described above, it can be seen that the thermosetting resin composition containing the thermoplastic resin can control the phase structure of the cured product by providing a temperature difference between the mold temperature and the temperature of the built-in component even in the same cured product. The cured product of Comparative Example 1 using only the thermosetting resin is a uniform cured product in any part.
[0062]
Example 4
The method for producing the thermosetting resin composition was the same as in Experimental Examples 1 and 2. As the test piece, a test piece simulating a resin molded product in which a columnar copper was embedded in the center of the columnar thermosetting resin composition used in Examples 2 and 3 was used. The amount of the catalyst shown in Table 1 was previously applied to a mold, and a test piece was molded.
[0063]
<Evaluation results>
When a thermosetting resin composition containing a thermoplastic resin (PES) was molded, the cured product of Example 4 in which a thermosetting resin catalyst was previously added to a mold and molded was as shown in FIG. In addition, the phase structure is inclined from the part where the thermoplastic resin is uniformly compatible with the thermosetting resin (mold side / outside) to the part where the thermoplastic resin forms a continuous phase (built-in part side / inside). Was shown to change. As described above, the thermosetting resin composition containing the thermoplastic resin is cured by making the catalyst amount of the thermosetting resin different even in the same cured product, that is, by controlling the curing speed of the thermosetting resin. It can be seen that the phase structure of the object can be controlled.
[0064]
【The invention's effect】
According to the first and second materials of the present invention, a cured product of a thermosetting resin composition comprising a thermosetting resin which is insoluble and insoluble in a solvent or heat, and a thermoplastic resin which is soluble in a solvent or heat etc. Is manufactured by partially changing the molding temperature or the amount of the catalyst, so that the dispersed state of the thermoplastic resin in the cured product is continuously changed. By doing so, it is possible to obtain a highly reliable resin molded product having excellent chemical resistance during use of the product. Also, a resin molded product can be obtained in which the resin portion and the built-in component can be easily separated at the time of disposal by an external stimulus.
[0065]
According to the third to fifth resin molded products of the present invention, a thermosetting resin insoluble and insoluble in a solvent or heat, and a thermosetting resin composed of a thermoplastic resin soluble in a solvent or heat, etc. The method of applying a temperature gradient to the mold during molding, the method of providing a temperature difference between the mold and the built-in parts, the method of applying a thermosetting resin catalyst to the mold surface or the surface of the built-in parts, etc. Since the built-in parts are molded by using the gradient material in which the dispersion state of the thermoplastic resin in the cured product is continuously changed, the chemical resistance during use of the product is excellent, and the reliability can be improved. Also, there is an effect that the resin portion and the built-in component can be easily separated by an external stimulus at the time of disposal.
[0066]
Further, by forming a continuous phase of a thermoplastic resin around the built-in component, there is an effect of relaxing stress due to curing and thermal shrinkage, and there is an effect that product reliability during use of the product can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional shape of a resin molded product obtained by molding a built-in component using a gradient material.
FIG. 2 is a schematic diagram showing a phase structure in which a thermosetting resin forms a dispersed phase and a thermoplastic resin forms a continuous phase in a cured product of the thermosetting resin composition.
FIG. 3 is a schematic diagram showing a phase structure in which a thermosetting resin forms a continuous phase and a thermoplastic resin forms a dispersed phase in a cured product of the thermosetting resin composition.
FIG. 4 is a schematic view showing a phase structure in which a thermosetting resin and a thermoplastic resin form a uniform phase in a cured product of the thermosetting resin composition.
FIG. 5 is a schematic diagram showing a co-continuous phase structure in which a thermosetting resin and a thermoplastic resin together form a continuous phase in a cured product of the thermosetting resin composition.
FIG. 6 is a schematic diagram showing a phase structure of a cured product of Example 1 molded by applying a temperature gradient to a mold temperature.
FIG. 7 is a schematic diagram showing the phase structure of the cured products of Examples 2 and 3 molded by giving a temperature difference between the mold temperature and the temperature of the built-in parts, and the cured product of Example 4 molded by changing the amount of the catalyst. FIG.
FIG. 8 is a front view of an adhesive test piece simulating a resin molded product.
FIG. 9 is a side view of an adhesive test piece simulating a resin molded product.
[Explanation of symbols]
1 resin molded part, 2 part where thermoplastic resin is uniformly dissolved in thermosetting resin, 3 part where thermoplastic resin forms continuous phase, 4 built-in parts, 5 thermoplastic resin, 6 thermosetting resin, 7 uniform Phase, 8 cured product of thermosetting resin composition, 9 mild steel plate.

Claims (6)

熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物であって、部分的に成形温度を変化させることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料。A cured product of a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin, wherein the dispersion state of the thermoplastic resin in the cured product is continuously changed by partially changing a molding temperature. Graded material. 熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物であって、部分的に熱硬化性樹脂の触媒量を変化させることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた傾斜材料。A cured product of a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin, wherein a dispersed state of the thermoplastic resin in the cured product is obtained by partially changing a catalyst amount of the thermosetting resin. Graded material with continuously changed. 熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、成形時に金型に温度勾配を付けることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品。A resin molded article having a cured product of a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin, wherein a temperature gradient is applied to a mold at the time of molding, whereby the thermoplastic resin in the cured product is A resin molded product whose dispersion state is continuously changed. 熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、成形時に金型と内蔵部品とに温度差を設けることによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品。A resin molded article having a cured product of a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin, wherein a temperature difference is provided between a mold and a built-in component during molding, whereby the cured product A resin molded product in which the dispersion state of thermoplastic resin is continuously changed. 熱硬化性樹脂および熱可塑性樹脂からなる熱硬化性樹脂組成物の硬化物を有する樹脂モールド成形品であって、金型表面または内蔵部品表面に熱硬化性樹脂の触媒を塗布して成形することによって、該硬化物中の熱可塑性樹脂の分散状態を連続的に変化させた樹脂モールド成形品。A resin molded article having a cured product of a thermosetting resin composition composed of a thermosetting resin and a thermoplastic resin, which is formed by applying a thermosetting resin catalyst to a mold surface or a built-in component surface. A resin molded article in which the dispersion state of the thermoplastic resin in the cured product is continuously changed. 内蔵部品周辺の樹脂組成物の硬化物部分において、熱可塑性樹脂が連続相を形成してなる請求項4または5記載の樹脂モールド成形品。The resin molded article according to claim 4 or 5, wherein the thermoplastic resin forms a continuous phase in a cured material portion of the resin composition around the built-in component.
JP2003015705A 2003-01-24 2003-01-24 Resin molded products using gradient materials Expired - Fee Related JP4421190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015705A JP4421190B2 (en) 2003-01-24 2003-01-24 Resin molded products using gradient materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015705A JP4421190B2 (en) 2003-01-24 2003-01-24 Resin molded products using gradient materials

Publications (2)

Publication Number Publication Date
JP2004223936A true JP2004223936A (en) 2004-08-12
JP4421190B2 JP4421190B2 (en) 2010-02-24

Family

ID=32903374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015705A Expired - Fee Related JP4421190B2 (en) 2003-01-24 2003-01-24 Resin molded products using gradient materials

Country Status (1)

Country Link
JP (1) JP4421190B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081151A1 (en) * 2010-12-17 2012-06-21 パナソニック株式会社 Molded structural body and motor having same
WO2012101976A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Molded structure and motor
US20170266857A1 (en) * 2014-12-26 2017-09-21 Denso Corporation Resin molded article and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081151A1 (en) * 2010-12-17 2012-06-21 パナソニック株式会社 Molded structural body and motor having same
JPWO2012081151A1 (en) * 2010-12-17 2014-05-22 パナソニック株式会社 Mold structure and motor having the same
WO2012101976A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Molded structure and motor
JPWO2012101976A1 (en) * 2011-01-25 2014-06-30 パナソニック株式会社 Mold structure and motor
US20170266857A1 (en) * 2014-12-26 2017-09-21 Denso Corporation Resin molded article and method for manufacturing the same
US10569456B2 (en) 2014-12-26 2020-02-25 Denso Corporation Resin molded article and method for manufacturing the same

Also Published As

Publication number Publication date
JP4421190B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
KR101051873B1 (en) Cured and Laminated Products
KR101184842B1 (en) Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
TWI548514B (en) Method for manufacturing metal composite and electronic equipment housing
JP5508330B2 (en) Cured body, sheet-like molded body, laminated board and multilayer laminated board
KR101050901B1 (en) Semi-hardened body, hardened body, laminated body, manufacturing method of semi-hardened body, and manufacturing method of hardened body
CN104364312B (en) Resin combination, prepreg and plywood
Jaafar et al. Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy/silica/kenaf composite
WO2010024391A1 (en) Laminate and method for producing laminate
JP2006527278A5 (en)
JP2010100803A (en) Epoxy resin composition, sheet-like form, prepreg, cured product, laminated board, and multilayered laminated board
JP2005510422A5 (en)
JP2010053334A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded article, laminate plate, and multilayer laminate plate
KR20190129853A (en) Composition for cured resin, hardened | cured material of this composition, this composition, and manufacturing method of this hardened | cured material, and semiconductor device
JP2010229227A (en) Epoxy resin composition, sheet-like formed article, prepreg, cured product and laminate
JP4421190B2 (en) Resin molded products using gradient materials
JP2010083966A (en) Resin composition, cured body, and laminate
JPH05148343A (en) Low-thermal-expansion pressure molding resin composition
JP2758907B2 (en) Thermosetting molding method
JPS62270617A (en) Resin composition for semiconductor sealing
JPH0450256A (en) Epoxy resin composition and production thereof
JP2010229313A (en) Epoxy resin composition, sheet-formed molded article, prepreg, cured product, laminated plate and multilayer laminated plate
TW200842148A (en) Composite material produced from recycled thermosetting plastic flour and preparing method thereof
JP2007084829A (en) Molded resin part
Mat Daud et al. Epoxy layered silicates with fly ash-based geopolymer: Flexural properties
KR100648463B1 (en) Flame retardant resin composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20121211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees