JP2004223534A - Immersion nozzle - Google Patents

Immersion nozzle Download PDF

Info

Publication number
JP2004223534A
JP2004223534A JP2003012055A JP2003012055A JP2004223534A JP 2004223534 A JP2004223534 A JP 2004223534A JP 2003012055 A JP2003012055 A JP 2003012055A JP 2003012055 A JP2003012055 A JP 2003012055A JP 2004223534 A JP2004223534 A JP 2004223534A
Authority
JP
Japan
Prior art keywords
porous
nozzle
immersion nozzle
molten steel
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003012055A
Other languages
Japanese (ja)
Inventor
Mineo Uchida
峯夫 内田
Takafumi Harada
貴文 原田
Kotaro Takeda
耕太郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Refractories Co Ltd
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP2003012055A priority Critical patent/JP2004223534A/en
Publication of JP2004223534A publication Critical patent/JP2004223534A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immersion nozzle which can prevent adhesion of inclusions on the inner wall face of a molten steel flow passage of the immersion nozzle, can prevent the adhesion around an outlet in the lower part of the nozzle and near the bottom thereof as well and can effectively prevent the closure of the nozzle. <P>SOLUTION: The immersion nozzle is constituted so that a cylindrical porous section 2 composed of porous refractories having a number of vent holes communicatively connected to the front and rear on the inner wall face 11 of the nozzle constituting the molten steel flow passage 20 of a cylindrical nozzle body 2, and a gas pool 13 is formed on its rear surface, and the inert gas introduced from an introducing hole 13a for introducing inert gas is blowed through the vent holes in the porous section into the molten steel in the passage 20. The porous section 2 comprises two kinds; a lower porous member 22 and an upper porous member 21 in such a manner that the ventilation rate of the member 22 is greater than that of the member 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造に使用する浸漬ノズルの改良に関し、特にノズルの閉塞防止効果に優れる浸漬ノズルに関するものである。
【0002】
【従来の技術】
通常、鋼の連続鋳造において、タンディッシュからモールド内へ溶鋼を注入するには、タンディッシュに連接された浸漬ノズルを介して行われる。この浸漬ノズルは使用を重ねるうちに、ノズル内壁面に脱酸生成物のアルミナ等の非金属介在物が付着、堆積してノズル閉塞を起こし、安定した連続鋳造ができなくなる問題があった。
【0003】
この対策として、例えば特許文献1(特開昭62−130754号公報)、特許文献2(特開平8−57613号公報)に開示されているように、ノズル内壁面にポーラスな材質を配設し、その気孔を介して溶鋼中に不活性ガスを吹き込むことによりノズル閉塞を防止することが一般に行われている。
【0004】
【特許文献1】
特開昭62−130754号公報:特許請求の範囲1の欄
【特許文献2】
特開平8−57613号公報:請求項1の欄
【0005】
この目的に用いられる浸漬ノズルは、図3に例示するような、ノズル本体1の溶鋼流路10を構成するノズル内壁面11にポーラスな材質からなる多孔質部12を配設し、その背面には、導入孔13aから導入した不活性ガスを多孔質部12全体に供給するためのガス空間であるガスプール13を形成して、不活性ガスをこの多孔質部12の気孔を介して溶鋼流路10内の溶鋼中に吹き込むようにしたものである。
【0006】
かくして、溶鋼中に吹き込まれた不活性ガスの一部は溶鋼流路10内の溶鋼流に抗して浮上し、その浮上過程において非金属介在物を捕捉し、あるいは非金属介在物を捕捉したまま、吐出口14を経てモールド(図示せず)内に注入され、そこで浮上分離されることにより、ノズル閉塞を防止するのである。
【0007】
上記のようなガス吹き込みタイプの浸漬ノズルを使用すると、溶鋼流路の内壁面11の介在物付着は防止されるが、ノズル下部の吐出口14周辺や底部15では溶鋼のよどみが生じ、介在物が付着しやすく、この部分でノズル閉塞にいたるという問題が依然として残っていた。
【0008】
この問題に対して、特許文献3(特開平5−285613号公報)に記載の浸漬ノズルが提案されている。この浸漬ノズルは、ガス吹き込み用の多孔質部の下端部分をノズルの吐出口に対して10〜80mmの距離に近づけて配設して、吐出口周辺の介在物の付着を防止しようとするものである。ところが、この浸漬ノズルであっても、吐出口周辺の介在物の付着はある程度抑制できるものの、必ずしも満足し得る効果が得られるものではなかった。
【0009】
【特許文献3】
特開平5−285613号公報:請求項1の欄
【0010】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、浸漬ノズルの溶鋼流路の内壁面における介在物の付着を防止するとともに、ノズル下部の吐出口周辺や底部近傍における付着も防止して、ノズル閉塞を効果的に予防することができる浸漬ノズルを提供する。
【0011】
【課題を解決するための手段】
本発明者等は、前記した浸漬ノズルにおける溶鋼流路に不活性ガスを吹き込むようにしたポーラスな多孔質部からのガス吹込み量を詳細に研究した結果、多孔質部の背面には、ガスの供給圧を均等にする目的のガスプールを設けているにも関わらず、多孔質部の上部に比較して下部の吹込み量がかなり少なくなっており、所期の機能を果たしていないという知見を見出して、本発明を完成したのである。
【0012】
そして上記の問題は、不活性ガスを吹き込むための多孔質耐火物からなる多孔質部をノズル内壁面に配置した連続鋳造用浸漬ノズルであって、前記多孔質部の下部の通気率が上部に比較して大となるよう通気率の異なる多孔質部材を配置して、この多孔質部の下部における不活性ガス吹き込み量を上部に比較して大としたことを特徴とする本発明の浸漬ノズルによって、解決することができる。
【0013】
そして、本発明は、前記多孔質部が、上部から下部に向かって通気率が段階的に大となるよう通気率の異なる多孔質部材を配置したものとし、この多孔質部の下部における不活性ガスの吹込み量を上部に比較して大とした第1の形態や、さらに、これに加えるに、前記多孔質部が、上部から下部に向かって通気部材の厚さが段階的にまたは連続的に小となるよう厚さの異なる多孔質部材を配置した第2の形態に具体化できる。
【0014】
本発明の浸漬ノズルによれば、下部、すなわち不活性ガスの導入孔から離れている吐出口近傍の多孔質部の通気率を大きく設定したり、さらには多孔質部の下部の通気部材の厚さを上部に比較して小となるよう形成しているから、前記導入孔から離れているうえ、溶鋼のヘッド圧が作用する多孔質部の下部においても、不活性ガスの吹込み量が低下することなく、十分に吹き込めるので、ノズル内壁面は勿論、吐出口近傍やノズル底部いずれにおいても介在物の付着が効果的に防止され、ノズル閉塞を起こすことなく、長期に使用可能となる利点が得られる。
【0015】
【発明の実施の形態】
次に、本発明の実施形態について図1、2を参照して詳細に説明する。
(第1実施形態)
本発明の一例を図1に示す。図1は2口タイプの連続鋳造用浸漬ノズルを示しており、筒状のノズル本体1の軸心に設けられた溶鋼流路10の下端部分には2個の吐出口14が配されており、この溶鋼流路10を構成するノズル内壁面11に表裏に連通する多数の通気孔を有する多孔質耐火物からなる筒状の多孔質部2を配設し、その背面には、不活性ガスを多孔質部2全体に供給するためのガス空間であるガスプール13を形成している。このガスプール13の上部には外部から不活性ガスを導入するための導入孔13aが設けられていて、導入した不活性ガスをこの多孔質部2の通気孔を介して溶鋼流路10内の溶鋼中に吹き込むようにした基本的な構成は先のものと同様である。
【0016】
そして、この第1実施形態では、この多孔質部2の下部における不活性ガス吹込み量が、上部に比較して大となるよう、この多孔質部2を下部多孔質部材22と上部多孔質部材21の2種の多孔質部材から構成し、その下部多孔質部材22の通気率が上部多孔質部材21の通気率に比較して大となるよう選択した点にその特徴がある。
【0017】
ここで、本発明における好ましい通気率について説明すると、上部多孔質部21は、従来の浸漬ノズルに配設されている通気率を有する多孔質耐火物が適用できる。その通気率は、通常、0.1×10−4〜5.0×10−4 cm・cm/cm・cmHO・secの範囲に設定されており、本発明の上部多孔質部材21もこの範囲で設定すればよい。そして、本発明の下部多孔質部材22の通気率は、上部多孔質部21の1.1〜2.0倍の通気量が確保できるように設定すればよく、0.11×10−4 〜10×10−4cm・cm/cm・cmHO・secの範囲で、上部多孔質部21の通気率に応じて設定されるものである。
【0018】
本発明の浸漬ノズルに配設する多孔質部2に所定の通気率特性を付与する方法は特に限定されるものはなく、例えば、多孔質部を形成する耐火材料中に加熱処理により消失する材料を予め混合して筒状に成形、焼成することにより達成できる。加熱処理により消失する材料としては、ビニロン、ナイロン、ポリエステル、パルプ等の有機繊維、タール、ピッチ等の有機バインダ一などの1種または2種以上の組み合わせで使用でき、多孔質部の通気率はそれらの添加量により適宜に制御することが可能である。そして、多孔質部の外面に加熱処理により消失する材質の所定厚みの布などを巻き付けた後に、ノズル全体の成形を行い、焼成すれば、この布が消失した部分がガスプールとして形成される。
【0019】
また、上記図1の事例では、多孔質部2を通気率が大の下部多孔質部材22と通気率が小の上部多孔質部材21の2種の多孔質部材から構成しているが、本発明では、この多孔質部2が、上部から下部に向かって通気率が段階的に大となるよう通気率の異なる3種以上の多孔質部材を配置し、不活性ガス量の制御をより精密に行えるようにするのが好ましい。
【0020】
(第2実施形態)
次に、本発明の第2実施形態について、図2を参照して説明する。
この実施形態の浸漬ノズルは、多孔質部2の下部における不活性ガス吹込み量が、上部に比較して大となるよう、ノズル本体1の吐出口14近傍に配設される下部多孔質部材22は上部多孔質部材21に比べて、通気率を大とする点は第1実施形態の場合と同じであるが、さらに下部多孔質部材22の厚さを小とした部分22bを設けたものである。
【0021】
この実施形態では、背面のガスプール13からノズル内壁面11にいたる多孔質部材の厚さを変化させるものであり、この下部多孔質部材22の厚さを上部多孔質部材21の30%以上に設定することが望ましい。下部多孔質部材22の通気厚さが上部多孔質部材21の30%未満では耐火物として強度バランスが悪く耐久性が低下する、
【0022】
また、図2では、下部多孔質部材22の一部の厚さを小としているが、全体を小としてもよいのはいうまでもない。さらに、第1実施形態のように、下部多孔質部材の通気率が上部多孔質部材の通気率に比較して大となるよう段階的に形成した場合には、その段階に対応させて、上部から下部に向かって多孔質部材の厚さを段階的に小となるよう通気率と厚さの異なる多孔質部材を配置するのも好ましい。この場合、多孔質部材の厚さは上部から下部に向かって連続的に変化させてもよい。
【0023】
以上説明した各実施形態において、従来、不活性ガスの吹出し量が低下してしまっていた下方部分の多孔質部の通気抵抗が上部に較べて低く設定されるので、十分なガス吹出し量が得られる結果が得られる。かくして、浸漬ノズルのノズル内壁面における介在物の付着を防止するとともに、ノズル下部の吐出口周辺や底部近傍における付着も抑制することができ、ひいてはノズル閉塞を防止できるのである。
【0024】
なお、前記説明では、不活性ガスを吹出すための多孔質部を筒状形状のものとして例示したが、本発明では、多孔質部は一体に形成された筒状部材に限定されず、R曲面の表面を有する複数の縦長多孔質部材をノズル内壁面に並設したものを含むのである。また、下部多孔質部材の下端部は、溶鋼の吐出口の周辺、吐出口と吐出口との間の部分、いわゆる「柱」と称される部位の内壁面まで、すなわち底面15に至るまで配設することが好ましく、さらには底面15を多孔質部材で形成するのもよい。
【0025】
【実施例】
以下に、本発明の実施例および比較例をあげて、本発明を説明する。なお、試験品の仕様、結果については表1にまとめて示す。
<実施例1>
内径85mm、長さ800mmのアルミナ−グラファイト質浸漬ノズルを作製した。ノズル作製に先立ち、予めノズル内壁面構成部材を作製した。溶鋼流路を構成するノズル内壁面には、厚さ10mm、長さ200mmで通気率が2×10−4cm・cm/cm・cmHO・secの上部多孔質部、厚さ8mm、長さ100mmで通気率が3×10−4cm・cm/cm・cmHO・secの下部多孔質部、およぴその上下にノズル本体と同材質部分を配した。
【0026】
なお、下部多孔質部は、吐出口横側の「柱」部分を含め底面まで達する仕様とした。多孔質部の通気率は、耐火材料に混合するタールまたはピッチの量により調整した。続いて、多孔質部の外面にガスプールを形成するための不織布を巻き、さらにノズル形状に成形し熱処理して浸漬ノズルを作製した。
【0027】
<実施例2>
実施例2の浸漬ノズルでは、上部多孔質部と下部多孔質部の厚さを同じ10mmとした他は実施例1と同様に製作した。
【0028】
これらの浸漬ノズルを用いて、毎分1.0リットルのアルゴンガスを吹き込みながらアルミキルド鋼を鋳造し、1500トン鋳造後のノズル内壁面の状況を観察した。その結果、内壁面全体、吐出口周辺、底部ともにアルミナ付着はほとんど認められず良好な状態を維持していた。また多孔質部は上部、下部ともに異常なく、10回〜12回の耐用回数まで使用可能な状況であった。
【0029】
<比較例1>
多孔質部が上部、下部とも全て実施例1の上部多孔質部と同質、同厚さに設定した以外は、実施例1と同一とした浸漬ノズルを作製し、実施例1と同条件で使用し、ノズル内壁面の状況を観察した。このノズル内壁面の上部においては、アルミナの付着はほとんど無く良好な状況であったが、吐出口周辺および底部にはアルミナの付着がかなり認められた。
【0030】
<比較例2>
多孔質部は、実施例1の上部多孔質部のみとし、下部多孔質部に相当する部分をノズル本体材質と同一材とした以外は、実施例1と同一とした浸漬ノズルを作製し、実施例1と同条件で使用し、ノズル内壁面の状況を観察した。ノズル内壁面の上部はアルミナ付着は少なく比較的良好な状況であったが、吐出口周辺および底部はアルミナ付着が著しく閉塞寸前の状況であった。この比較例1、2では、3〜5回の耐用回数しか使用できないものであった。
【0031】
【表1】

Figure 2004223534
【0032】
【発明の効果】
本発明の浸漬ノズルは、以上説明したように構成されているので、従来、不活性ガスの吹出し量が低下してしまっていた下部多孔質部から十分な不活性ガスの吹出し量が得られるので、浸漬ノズルのノズル内壁面における介在物の付着を防止するとともに、ノズル下部の吐出口周辺や底部近傍における付着も防止することができる。
【0033】
よって、ノズル閉塞を効果的に予防することができ、浸漬ノズルの耐用寿命が向上するうえ、アルミナ等に起因する介在物性欠陥が防止できるので鋳造鋳片の品質向上効果も期待できるるという優れた効果がある。よって本発明は、従来の問題点を解消した浸漬ノズルとして、工業的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の第1実施形態を説明するための浸漬ノズルの要部断面図。
【図2】本発明の第2実施形態を説明するための浸漬ノズルの要部断面図。
【図3】従来の浸漬ノズルの要部断面図。
【符号の説明】
1 ノズル本体、10 溶鋼流路、11ノズル内壁面、13 ガスプール、13a 導入孔、14 吐出口、2 多孔質部、21 上部多孔質部材、22 下部多孔質部材。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in an immersion nozzle used for continuous casting of steel, and more particularly to an immersion nozzle having an excellent nozzle blocking prevention effect.
[0002]
[Prior art]
Usually, in continuous casting of steel, injecting molten steel from a tundish into a mold is performed through an immersion nozzle connected to the tundish. As this immersion nozzle is repeatedly used, non-metallic inclusions such as alumina, which is a deoxidation product, adhere to and deposit on the inner wall surface of the nozzle, causing the nozzle to be clogged, making it impossible to perform stable continuous casting.
[0003]
As a countermeasure, a porous material is provided on the inner wall surface of the nozzle as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. Sho 62-130754) and Patent Document 2 (Japanese Patent Application Laid-Open No. Hei 8-57613). In general, nozzle clogging is prevented by blowing an inert gas into molten steel through the pores.
[0004]
[Patent Document 1]
JP-A-62-130754: Claim 1 [Patent Document 2]
JP-A-8-57613: Claim 1
In the immersion nozzle used for this purpose, a porous portion 12 made of a porous material is disposed on the inner wall surface 11 of the nozzle constituting the molten steel flow path 10 of the nozzle body 1 as illustrated in FIG. Forms a gas pool 13 which is a gas space for supplying the inert gas introduced from the introduction hole 13 a to the entire porous portion 12, and allows the inert gas to flow through the pores of the porous portion 12. This is blown into the molten steel in the road 10.
[0006]
Thus, a part of the inert gas blown into the molten steel floats up against the flow of the molten steel in the molten steel flow path 10, and captures nonmetallic inclusions or captures nonmetallic inclusions during the floating process. As it is, it is injected into a mold (not shown) through the discharge port 14, where it is floated and separated, thereby preventing nozzle blockage.
[0007]
When the gas injection type immersion nozzle as described above is used, the adhesion of inclusions on the inner wall surface 11 of the molten steel channel is prevented, but the stagnation of the molten steel occurs around the discharge port 14 and the bottom 15 at the lower part of the nozzle. However, there still remains a problem that the nozzle is clogged at this portion.
[0008]
To solve this problem, an immersion nozzle described in Patent Document 3 (Japanese Patent Laid-Open No. 5-285613) has been proposed. In this immersion nozzle, the lower end portion of the porous portion for gas injection is disposed so as to be closer to a distance of 10 to 80 mm with respect to the discharge port of the nozzle to prevent adhesion of inclusions around the discharge port. It is. However, even with this immersion nozzle, although the adhesion of inclusions around the discharge port can be suppressed to some extent, a satisfactory effect has not always been obtained.
[0009]
[Patent Document 3]
JP-A-5-285613: Claim 1
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems, and prevents the adhesion of inclusions on the inner wall surface of the molten steel flow path of the immersion nozzle, and also prevents the adhesion near the discharge port or the bottom near the nozzle lower part. The present invention provides an immersion nozzle capable of preventing the nozzle clogging effectively.
[0011]
[Means for Solving the Problems]
The present inventors have studied in detail the amount of gas blown from the porous porous portion so as to blow the inert gas into the molten steel flow channel in the above immersion nozzle, as a result, on the back of the porous portion, gas Despite the provision of a gas pool for the purpose of equalizing the supply pressure of the gas, the amount of air blown in the lower part is considerably smaller than that in the upper part of the porous part, and it is not fulfilling the intended function Thus, the present invention was completed.
[0012]
And the above problem is a continuous casting immersion nozzle in which a porous portion made of a porous refractory for blowing an inert gas is disposed on the inner wall surface of the nozzle, and the permeability of the lower portion of the porous portion is higher. The immersion nozzle according to the present invention, wherein a porous member having a different air permeability is arranged so as to be relatively large, and the amount of inert gas blown in the lower part of the porous part is made larger than that in the upper part. Can solve it.
[0013]
In the present invention, the porous portion is provided with a porous member having different air permeability so that the air permeability gradually increases from the upper portion to the lower portion. In the first mode, in which the amount of gas blown is larger than that in the upper part, and in addition to this, the porous part has a stepwise or continuous thickness of the ventilation member from the upper part to the lower part. A second embodiment in which porous members having different thicknesses are arranged so as to be as small as possible can be realized.
[0014]
According to the immersion nozzle of the present invention, the air permeability of the lower portion, that is, the porous portion near the discharge port remote from the inlet for the inert gas is set to be large, and further, the thickness of the gas permeable member at the lower portion of the porous portion is increased. Is formed to be smaller than the upper part, so that the amount of the inert gas blown is reduced even in the lower part of the porous part where the head pressure of the molten steel is applied, apart from the introduction hole. The advantage is that it can be used for a long period of time without any clogging of the nozzle, not only on the inner wall surface of the nozzle, but also on the vicinity of the discharge port and the bottom of the nozzle. Is obtained.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to FIGS.
(1st Embodiment)
One example of the present invention is shown in FIG. FIG. 1 shows a two-port type continuous casting immersion nozzle, in which two discharge ports 14 are arranged at the lower end of a molten steel channel 10 provided at the axis of a cylindrical nozzle body 1. A cylindrical porous portion 2 made of a porous refractory having a large number of vent holes communicating front and back with a nozzle inner wall surface 11 constituting the molten steel flow path 10 is provided. Is formed as a gas space for supplying gas to the entire porous portion 2. An introduction hole 13 a for introducing an inert gas from the outside is provided at an upper portion of the gas pool 13, and the introduced inert gas is introduced into the molten steel flow path 10 through the ventilation hole of the porous portion 2. The basic configuration for blowing into molten steel is the same as that described above.
[0016]
In the first embodiment, the porous portion 2 is connected to the lower porous member 22 and the upper porous member 22 such that the amount of inert gas blown in the lower portion of the porous portion 2 is larger than that in the upper portion. It is characterized in that it is composed of two kinds of porous members of the member 21 and the lower porous member 22 is selected so that the air permeability of the lower porous member 22 is higher than the air permeability of the upper porous member 21.
[0017]
Here, a description will be given of a preferable air permeability in the present invention. For the upper porous portion 21, a porous refractory having a gas permeability provided in a conventional immersion nozzle can be applied. The air permeability is usually set in the range of 0.1 × 10 −4 to 5.0 × 10 −4 cm 3 · cm / cm 2 · cmH 2 O · sec, and the upper porous member of the present invention 21 may be set in this range. The permeability of the lower porous member 22 of the present invention may be set so as aeration amount of 1.1 to 2.0 times the upper porous portion 21 can be ensured, 0.11 × 10 -4 ~ It is set in the range of 10 × 10 −4 cm 3 .cm / cm 2 .cmH 2 O.sec according to the air permeability of the upper porous portion 21.
[0018]
There is no particular limitation on the method of imparting a predetermined permeability property to the porous portion 2 provided in the immersion nozzle of the present invention. For example, a material that disappears by heat treatment in a refractory material forming the porous portion is used. Can be achieved by previously mixing, shaping and firing into a cylindrical shape. As a material that disappears by the heat treatment, one or a combination of two or more organic fibers such as vinylon, nylon, polyester, and pulp, and an organic binder such as tar and pitch can be used. It is possible to appropriately control the amount by adding them. Then, after wrapping a cloth or the like having a predetermined thickness made of a material which disappears by the heat treatment around the outer surface of the porous portion, the entire nozzle is formed and baked, and the portion where the cloth has disappeared is formed as a gas pool.
[0019]
In the example of FIG. 1, the porous portion 2 is composed of two types of porous members, a lower porous member 22 having a large air permeability and an upper porous member 21 having a small air permeability. In the present invention, the porous portion 2 is provided with three or more types of porous members having different air permeability so that the air permeability gradually increases from the upper part to the lower part, and the control of the amount of the inert gas is more precise. It is preferable to be able to do it.
[0020]
(2nd Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
The immersion nozzle according to this embodiment has a lower porous member disposed near the discharge port 14 of the nozzle body 1 such that the amount of the inert gas blown in the lower part of the porous part 2 is larger than that in the upper part. 22 is the same as that of the first embodiment in that the air permeability is higher than that of the upper porous member 21, but a portion 22b in which the thickness of the lower porous member 22 is further reduced is provided. It is.
[0021]
In this embodiment, the thickness of the porous member from the gas pool 13 on the back surface to the inner wall surface 11 of the nozzle is changed, and the thickness of the lower porous member 22 is set to 30% or more of the upper porous member 21. It is desirable to set. If the ventilation thickness of the lower porous member 22 is less than 30% of the upper porous member 21, the strength balance is poor as a refractory and the durability is reduced.
[0022]
Further, in FIG. 2, the thickness of a part of the lower porous member 22 is made small, but it goes without saying that the whole may be made small. Furthermore, as in the first embodiment, when the air permeability of the lower porous member is formed stepwise so as to be larger than the air permeability of the upper porous member, It is also preferable to arrange porous members having different air permeability and thickness so that the thickness of the porous member gradually decreases from the bottom to the bottom. In this case, the thickness of the porous member may be continuously changed from the upper part to the lower part.
[0023]
In each of the embodiments described above, since the ventilation resistance of the porous portion in the lower portion, which has been reduced in the amount of the inert gas, is set to be lower than that in the upper portion, a sufficient amount of the gas can be obtained. Results are obtained. In this way, it is possible to prevent the inclusion of inclusions on the inner wall surface of the nozzle of the immersion nozzle, to suppress the adhesion around the discharge port at the lower part of the nozzle and the vicinity of the bottom, and to prevent the nozzle from being blocked.
[0024]
In the above description, the porous portion for blowing out the inert gas is illustrated as having a cylindrical shape. However, in the present invention, the porous portion is not limited to an integrally formed cylindrical member. This includes a plurality of vertically long porous members having a curved surface arranged side by side on the inner wall surface of the nozzle. Further, the lower end of the lower porous member is arranged around the molten steel discharge port, a portion between the discharge ports, and up to the inner wall surface of a portion called a “post”, that is, up to the bottom surface 15. Preferably, the bottom surface 15 may be formed of a porous member.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples of the present invention. Table 1 summarizes the specifications and results of the test products.
<Example 1>
An alumina-graphite immersion nozzle having an inner diameter of 85 mm and a length of 800 mm was produced. Prior to production of the nozzle, a nozzle inner wall surface component was prepared in advance. On the inner wall surface of the nozzle constituting the molten steel channel, an upper porous portion having a thickness of 10 mm, a length of 200 mm, and an air permeability of 2 × 10 −4 cm 3 .cm / cm 2 .cmH 2 O.sec, and a thickness of 8 mm A lower porous portion having a length of 100 mm and an air permeability of 3 × 10 −4 cm 3 · cm / cm 2 · cmH 2 O · sec, and the same material portion as the nozzle body were disposed above and below the lower porous portion.
[0026]
In addition, the lower porous portion was designed to reach the bottom surface including the “pillar” portion on the side of the discharge port. The air permeability of the porous portion was adjusted by the amount of tar or pitch mixed with the refractory material. Subsequently, a non-woven fabric for forming a gas pool was wound around the outer surface of the porous portion, further formed into a nozzle shape, and heat-treated to prepare an immersion nozzle.
[0027]
<Example 2>
The immersion nozzle of Example 2 was manufactured in the same manner as Example 1 except that the upper porous portion and the lower porous portion had the same thickness of 10 mm.
[0028]
Using these immersion nozzles, aluminum killed steel was cast while blowing argon gas at a rate of 1.0 liter per minute, and the state of the inner wall surface of the nozzle after 1500 ton casting was observed. As a result, almost no alumina adhered to the entire inner wall surface, the periphery of the discharge port, and the bottom portion, and a favorable state was maintained. In addition, the porous portion was in a state where it could be used up to 10 to 12 times without any abnormality in both the upper and lower portions.
[0029]
<Comparative Example 1>
An immersion nozzle identical to that of Example 1 was produced except that the upper and lower portions of the porous portion were all the same and the same thickness as the upper porous portion of Example 1, and used under the same conditions as Example 1. Then, the state of the inner wall surface of the nozzle was observed. At the upper portion of the inner wall surface of the nozzle, there was almost no adhesion of alumina, and the condition was favorable. However, adhesion of alumina was considerably observed around the discharge port and at the bottom.
[0030]
<Comparative Example 2>
The immersion nozzle was manufactured in the same manner as in Example 1 except that the porous portion was only the upper porous portion of Example 1, and the portion corresponding to the lower porous portion was made of the same material as the material of the nozzle body. Using the same conditions as in Example 1, the condition of the inner wall surface of the nozzle was observed. Although the upper part of the inner wall surface of the nozzle was relatively good with little alumina adhesion, the periphery of the discharge port and the bottom part were very close to the alumina adhesion and were on the verge of closing. In Comparative Examples 1 and 2, only the service life of 3 to 5 times could be used.
[0031]
[Table 1]
Figure 2004223534
[0032]
【The invention's effect】
Since the immersion nozzle of the present invention is configured as described above, a sufficient amount of the inert gas can be blown out from the lower porous portion where the blowout amount of the inert gas has been reduced. In addition, it is possible to prevent adhesion of inclusions on the inner wall surface of the nozzle of the immersion nozzle, and also to prevent adhesion around the discharge port and the bottom near the nozzle.
[0033]
Therefore, it is possible to effectively prevent nozzle blockage, improve the service life of the immersion nozzle, and prevent the inclusion defect caused by alumina or the like. effective. Therefore, the present invention has extremely high industrial value as an immersion nozzle which has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a sectional view of an essential part of an immersion nozzle for explaining a first embodiment of the present invention.
FIG. 2 is an essential part cross-sectional view of an immersion nozzle for describing a second embodiment of the present invention.
FIG. 3 is a sectional view of a main part of a conventional immersion nozzle.
[Explanation of symbols]
1 Nozzle body, 10 molten steel flow path, 11 nozzle inner wall surface, 13 gas pool, 13a introduction hole, 14 discharge port, 2 porous portion, 21 upper porous member, 22 lower porous member.

Claims (4)

不活性ガスを吹き込むための多孔質耐火物からなる多孔質部をノズル内壁面に配置した連続鋳造用浸漬ノズルであって、前記多孔質部の下部の通気率が上部に比較して大となるよう通気率の異なる多孔質部材を配置して、この多孔質部の下部における不活性ガス吹き込み量を上部に比較して大としたことを特徴とする浸漬ノズル。A continuous casting immersion nozzle in which a porous portion made of a porous refractory for blowing an inert gas is disposed on the inner wall surface of the nozzle, wherein the permeability of the lower portion of the porous portion is larger than that of the upper portion. An immersion nozzle characterized by arranging porous members having different air permeability so that the amount of inert gas blown in the lower part of the porous part is larger than that in the upper part. 前記多孔質部が、上部から下部に向かって通気率が段階的に大となるよう通気率の異なる多孔質部材を配置したものである請求項1に記載の浸漬ノズル。2. The immersion nozzle according to claim 1, wherein the porous portion is configured by arranging porous members having different air permeability so that the air permeability gradually increases from the upper portion to the lower portion. 3. 前記多孔質部の下部における通気部材の厚さを上部に比較して小となるよう形成した請求項1または2に記載の浸漬ノズル。The immersion nozzle according to claim 1, wherein a thickness of the ventilation member at a lower portion of the porous portion is smaller than that at an upper portion. 前記多孔質部が、上部から下部に向かって通気部材の厚さが段階的にまたは連続的に小となるよう厚さの異なる多孔質部材を配置した請求項3に記載の浸漬ノズル。4. The immersion nozzle according to claim 3, wherein the porous portion is provided with porous members having different thicknesses so that the thickness of the ventilation member decreases stepwise or continuously from the upper part to the lower part. 5.
JP2003012055A 2003-01-21 2003-01-21 Immersion nozzle Withdrawn JP2004223534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012055A JP2004223534A (en) 2003-01-21 2003-01-21 Immersion nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012055A JP2004223534A (en) 2003-01-21 2003-01-21 Immersion nozzle

Publications (1)

Publication Number Publication Date
JP2004223534A true JP2004223534A (en) 2004-08-12

Family

ID=32900783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012055A Withdrawn JP2004223534A (en) 2003-01-21 2003-01-21 Immersion nozzle

Country Status (1)

Country Link
JP (1) JP2004223534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111618289A (en) * 2020-05-19 2020-09-04 浙江自立高温科技股份有限公司 Upper nozzle and tundish
JP6997397B2 (en) 2020-04-28 2022-01-17 品川リフラクトリーズ株式会社 Refractory for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997397B2 (en) 2020-04-28 2022-01-17 品川リフラクトリーズ株式会社 Refractory for continuous casting
CN111618289A (en) * 2020-05-19 2020-09-04 浙江自立高温科技股份有限公司 Upper nozzle and tundish

Similar Documents

Publication Publication Date Title
CN107321945B (en) A kind of method of purging upper nozzle for continuous casting tundish brick cup Argon removal of inclusions
CN203265622U (en) Apparatus blowing air into metallurgy container and same
JP2004223534A (en) Immersion nozzle
JPH09308950A (en) Long nozzle for continuous casting
CN102428335B (en) Metallurgical Melt And Treatment Assembly
CN212704345U (en) Anti-leakage upper nozzle and tundish
KR20080064428A (en) Stopper for continuous casting
JP4277999B2 (en) Tundish upper nozzle
JPS62130754A (en) Gas blowing type immersion nozzle
JP6630157B2 (en) Immersion nozzle
JP2014133241A (en) Long nozzle for continuous casting
CN207629199U (en) A kind of four hole mouths of a river for improving continuous casting blooms cleanliness factor
JP4246348B2 (en) Gas seal structure of molten metal injection nozzle
CN213257089U (en) Multifunctional continuous casting tundish upper nozzle
KR20080058746A (en) Nozzle for cast of molten steel
RU2309183C2 (en) Method of blowing molten metal in ladle and device for blowing the metal with gas
KR101969105B1 (en) Nozzle
KR20140119322A (en) Molten steel injection apparatus
JP5459851B2 (en) Long nozzle
JPS6313233Y2 (en)
JPH02151353A (en) Submerged nozzle for continuous casting
JPH10296407A (en) Nozzle for continuous casting
JPS6340292Y2 (en)
KR100478819B1 (en) A gasket for collector nozzle
JPS63255313A (en) Apparatus for emptying metallurgical container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404