JP2004223318A - Method for manufacturing catalyst for producing acrylic acid - Google Patents
Method for manufacturing catalyst for producing acrylic acid Download PDFInfo
- Publication number
- JP2004223318A JP2004223318A JP2003010981A JP2003010981A JP2004223318A JP 2004223318 A JP2004223318 A JP 2004223318A JP 2003010981 A JP2003010981 A JP 2003010981A JP 2003010981 A JP2003010981 A JP 2003010981A JP 2004223318 A JP2004223318 A JP 2004223318A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- metal oxide
- acrylic acid
- aryl
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】
【発明が属する技術分野】
本発明は、プロパンを気相接触酸化させてアクリル酸を製造する反応に用いられる金属酸化物触媒の製造方法に関する。
【0002】
【従来技術】
アクリル酸は、従来、触媒の存在下にプロピレンと酸素とを接触反応させてアクロレインを製造した後、これを酸素と接触反応させる二段階酸化法を使用して製造されている。
これに対して近年、二段酸化という不経済性を解消したいという理由から、プロパンを原料とし一段階でアクリル酸を製造する方法が検討されており、かかる一段気相酸化反応に有効な触媒に関する提案が多数なされている。代表的には、[V、P、Te]系、〔Mo、Te、V、Nb〕系および〔Mo、Sb、V、Nb〕系等の複合金属酸化物からなる触媒が挙げられる。しかしながら、上記の触媒では、目的とするアクリル酸の収率が不十分であったり、触媒自体の寿命が短いという問題があった。
【0003】
最近では、上記の金属酸化物触媒を改良するための提案が幾つか特許出願されている。特許文献1においては、70℃以上の水性媒体中でモリブデン化合物、バナジウム化合物及びアンチモン化合物を反応させて得られる反応水溶液に、さらにニオブ化合物を混合した後、得られる混合物を蒸発乾固し、さらに高温で焼成するという触媒の製造方法が提案されている。
特許文献2および特許文献3には、上記特許文献1における水性媒体中で各金属化合物の加熱処理に際して、反応液に分子状酸素を含むガスを吹き込むことにより、得られる触媒のアクリル酸収率がさらに向上するとの記載があり、さらに文献3では、上記反応記とニオブ化合物を混合させるときに、硝酸または硝酸塩を共存させることも提案されている。
【0004】
また、特許文献4には、〔Mo、Sb、V、Nb〕系の複合金属酸化物に、さらにNa、K、Rb、Cs、PおよびAsからなる群から選ばれた金属を含む化合物を担持させ、しかる後焼成することからなるアクリル酸製造用触媒の製法が開示されており、特許文献5には、〔Mo、Te、V、Nb〕系の複合金属酸化物に、タングステン、モリブデン、クロム、ジルコニウム、チタン、ニオブ、タンタル、バナジウム、硼素、ビスマス、テルル、パラジウム、コバルト、ニッケル、鉄、リン、ケイ素、希土類元素、アルカリ金属、アルカリ土類金属からなる群より選ばれる金属元素を含む溶液を含浸させるさせることにより、それらの金属元素を前記複合金属酸化物に担持させるという改良法が開示されている。
しかしながら、上記特許文献等に記載の触媒でも、プロパンの一段酸化におけるアクリル酸収率は、なお実用的に十分なレベルには達しておらず、さらに一酸化炭素及び二酸化炭素の副生量も多いという問題があった。
【0005】
【特許文献1】
特開平10−137585号公報(特許請求の範囲)
【特許文献2】
特開平10−230164号公報(特許請求の範囲)
【特許文献3】
特開2000−254496号公報(特許請求の範囲)
【特許文献4】
特開平10−120617号公報(特許請求の範囲)
【特許文献5】
特開平10−28862号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
このような状況に鑑み、本発明においては、プロパンの一段気相酸化反応によるアクリル酸の製造に適用する触媒であって、高選択率および高収率でアクリル酸を製造し得る触媒の提供を目的とした。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、Mo、VおよびSbを必須の構成成分とする金属酸化物粒子であって、400℃以上の温度で焼成されてなる金属酸化物粒子の表面に、有機リン化合物を担持させた後、該有機リン化合物をリン酸化物に変換させることを特徴とするアクリル酸製造用触媒の製造方法である。
以下、本発明についてさらに詳しく説明する。
【0008】
【発明の実施の形態】
本発明において有機リン化合物を担持させる金属酸化物粒子(以下、被担持体ということがある)は、上記のとおり、Mo、VおよびSbを必須の構成成分とする金属酸化物粒子であるが、より好ましくは、Mo、V、SbおよびA(AはNbまたはTaである。)を必須成分とし、さらに所望によりX(XはW、Ti、Zr、Re、Si、Al、Fe、Ni、Co、Sn、Tl、Cu、Ce、希土類元素、アルカリ金属元素、アルカリ土類金属元素からなる群から選ばれる金属元素である。)を含む複数の金属からなる金属酸化物粒子である。
具体例としては、以下の組成式で表される金属酸化物の粒子がある。
組成式: MoVi Sbj Ak Xl Oy (1 )
(式中、AはNbまたはTaであり、またXはW、Ti、Zr、Re、Si、Al、Fe、Ni、Co、Sn、Tl、Cu、Ce、希土類元素、アルカリ金属元素、アルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素である。また、i およびjは各々0.01〜1.5で、かつj/i=0.3〜1.0であり、k は0.001〜3.0、lは0〜3.0であり、yは他の元素の酸化状態によって決定される。)
かかる金属酸化物の粒子の製造方法には限定はない。代表的な製造方法としては、前記特許文献1〜5等に開示されている方法等が挙げられ、特に好ましい製造方法としては、特許文献3で提案されている方法が挙げられる。
【0009】
上記金属酸化物の製造に使用されるMo原料としては、パラモリブデン酸アンモニウム、酸化モリブデン、またはモリブデン酸等が好ましい。Sb原料としては三酸化アンチモン、または酢酸アンチモン等が好ましい。V原料としてはメタバナジン酸アンモニウム、または五酸化バナジウム等が好ましい。Nb原料としては蓚酸二オブ、蓚酸二オブアンモニウム、二オブ酸、または五酸化二オブ等が好ましい。
上記の化合物を湿式または乾式で十分均一に混合して得られる混合物を空気中で400℃以上好ましくは450〜650℃で2〜10時間程度焼成するか、または空気中で250〜350℃で1〜10時間焼成した後、さらに不活性ガス中で450〜650℃で1〜10時間程度焼成することにより、本発明において被担持体とする金属酸化物が得られる。金属酸化物は、概略5〜15m2/gのBET比表面積を有するような粒子であることが好ましく、形状としては、球状、円柱、直方体または不定形状のいずれでもよい。
【0010】
本発明においては、前記のとおり、上記〔Mo、V、Sb、A〕系被担持体と同様に、これにさらに金属Xを加えた〔Mo、V、Sb、A、X〕系被担持体も好ましく使用される。〔Mo、V、Sb、A、X〕系被担持体は、〔Mo、V、Sb、A〕系金属酸化物に、例えば炭酸リチウム、炭酸カリウム、炭酸水素カリウム、硝酸タリウム等を水溶液にして担持する方法によって製造されたものを使用することが好ましい。
【0011】
本発明において好ましい有機リン化合物は、オルトリン酸アルキルエステル、オルトリン酸アリールエステル、亜リン酸アルキルエステル、亜リン酸アリールエステル、アルキルホスフィン、アリールホスフィン、アルキルホスフィンオキシドおよびアリールホスフィンオキシドからなる群から選ばれる少なくとも一種以上の有機リン化合物である。さらに、有機リン化合物に含まれる上記アルキル基は、直鎖であっても分岐していてもシクロアルキルであってもよく、また各アリール基は複数の置換基を有していてもよいし、置換基を有していなくてもよい。
上記有機リン化合物を被担持体に担持させた後、本発明においては、該有機リン化合物を酸化させる。かかる酸化は、例えば有機リン化合物を担持した金属酸化物(以下前駆体ということがある)を空気中で350〜400℃程度の温度で1〜数時間焼成することにより行うことができる。この焼成中に有機リン化合物が揮散し難い点で、高い沸点を有する有機リン化合物がより好ましく、特に好ましくはジフェニルホスファートおよびトリフェニルホスフィンである。
【0012】
有機リン化合物の好ましい担持量は、被担持体である金属酸化物粒子中のMoに対するリン原子の原子比で0.0005〜0.3であり、さらに好ましくは0.001〜0.1である。有機リン化合物の被担持体への実質的な固定化は、常温での有機リン化合物担持工程ではなく、その後の焼成により行われる。よって、リン原子のMo原子に対する原子比を0.3以上に有機リン化合物の担持量を増やしても、該焼成工程において有機リン化合物が揮散してしまい、触媒性能に寄与しない。
好ましい担持方法として、有機リン化合物を水または有機溶媒に溶解した溶液に、上記の被担持体を添加した後、室温、大気開放系で放置し、前記溶媒を揮発させる。用いる溶媒としては、水でも可能であるが、有機溶媒のほうが好ましく、有機溶媒の使用により本発明の効果は増大する。すなわち、有機リン化合物の担持を有機溶媒を用いて行うことにより、得られる触媒の形状保持の効果および併用されることがある後記シリカ、アルミナ等の担体からの触媒の剥離抑制の効果が発現する。有機溶媒としては、金属酸化物からの除去が容易な点で、ヘキサン、ベンゼン、エーテル、四塩化炭素、酢酸エチル等の低沸点有機溶媒が好ましい。
上記方法等によって有機リン化合物が担持された被担持体すなわち前駆体を、含酸素ガスの流通下に、350〜400℃程度の温度で1〜数時間焼成することにより、本発明が目的とする触媒が得られる。
【0013】
このように製造された複合金属酸化物触媒は、所望により粉砕して概略5〜15m2/gのBET比表面積を有するような粒子に加工してもよい。粉砕方法としては、水またはエタノール等の有機溶媒を用いる湿式粉砕が好ましい。
また、本発明の製法により得られた複合金属酸化物触媒は、無担体の状態でも使用できるが、適当な粒度を有するシリカ、アルミナ、シリカアルミナ、シリコンカーバイド、セラミックスボールやステンレス鋼等の担体に担持させた状態、あるいは希釈させた状態でも使用することができる。
プロパンの気相酸化反応において、本発明で得られる複合金属酸化物を触媒として使用することにより、副生成物たる一酸化炭素および二酸化炭素の生成量が低減し、アクリル酸が高選択率、高収率で製造できる。
【0014】
以下、本発明を実施例を挙げてさらに具体的に説明する。なお、以下の実施例、比較例において得られた触媒の前駆体は、その1.5g(約0.95 ml )を8 mmφの石英製反応管に充填し、空気を17.9 ml /min の流量で流通させながら、温度360 〜370 ℃で1 時間保持することにより触媒に変換した。その後、中心温度を380 〜400 ℃に設定した触媒層中に、プロパンを流量1.5 ml/min 、空気を流量17.9 ml /min 、水蒸気を流量21.0 ml /min で通気させることにより、アクリル酸の合成を行った(SV2540 h−1、プロパン:酸素:水蒸気=1.0 :2.5 :14.0 のモル比)。出口の気液混合物をガスクロマトグラフィーにより分析し、下記の計算式をもってプロパン転化率(% )、アクリル酸選択率(% )およびアクリル酸収率(% )を各々計算した。
プロパン転化率(% )=(供給プロパンのモル数−未反応プロパンのモル数)÷供給プロパンのモル数×100
アクリル酸選択率(% )=生成アクリル酸のモル数÷(供給プロパンのモル数−未反応プロパンのモル数)×100
アクリル酸収率(% )=プロパン転化率×アクリル酸選択率÷100
【0015】
〔参考例1〕
○[Mo、Sb、V、Nb]系複合金属酸化物の製造
前記した特許文献3の実施例3に記載の方法を参考にして、標記金属酸化物を製造した。
すなわち、300ml のガラス製フラスコに蒸留水130ml を仕込んでおき、その中にメタバナジン酸アンモニウム6.15 gを加え、攪拌下に加熱溶解させた後、三酸化アンチモン5.87g およびパラモリブデン酸アンモニウム30.9g を加えた。その後、窒素ガスを通気しながら、攪拌下に8 時間加熱還流させた。加熱攪拌を継続させながら、濃度1.54質量% の過酸化水素水40g を5 時間かけて滴下した後、室温にまで冷却し、そこに蓚酸8.82g とニオブ酸2.33g を75mlの蒸留水に溶解した溶液を加えた。
その後、窒素ガス雰囲気下で30分攪拌した後、硝酸アンモニウム6.0gを添加し、さらにその後5 分間攪拌を継続した。
このようにして得られた青色コロイド分散液状の水性混合液を加熱濃縮し、最終的に120 ℃のオーブン内に3 時間投入し、乾固物を得た。
得られた乾固物を空気中300 ℃で5 時間の焼成を行った後、空気遮断下600 ℃で2 時間の焼成を行った。得られた黒色粉体を乳鉢で5 分間粉砕後に打錠成形し、さらに16〜30メッシュの粒径に粉砕することにより、[Mo、V 、Sb、Nb]系の複合金属酸化物を得た。この酸化物の原子比は、製造時の原料仕込み比で、Mo/V /Sb/Nb=1.0 /0.3 /0.23/0.08である。
【0016】
【実施例1】
有機リン化合物としてリン酸ジフェニル(Diphenyl Phosphate)0.0071 g、溶媒としてベンゼン2.5 g を50 ml ビーカーに添加し、均一に溶解した。その後、参考例1で得た金属酸化物1.51 gをビーカー内に添加し、軽く振動させた。その後、室温、大気開放系でビーカーを72時間放置することにより溶媒を揮発させることにより、有機リン化合物を前記金属酸化物に担持した。得られた有機リン担持金属酸化物のうち1.5 g を石英製反応管に充填し、空気を17.9 ml /min の流量で流通させながら、温度360 〜370 ℃で1 時間保持することにより、本発明の目的とする金属酸化物触媒に転換した後、同反応管内でアクリル酸合成反応を行った。
上記反応によるアクリル酸の選択率および収率等は、表1に記載のとおりである。
【0017】
【実施例2】
有機リン化合物としてトリフェニルホスフィン(Triphenyl Phosphine )0.0075 g、溶媒としてヘキサン2.5 g を用いたこと以外は、実施例1と同様の操作により触媒を製造し、それをアクリル酸合成反応に用いた。その結果は、以下の実施例3〜および比較例1〜の触媒を用いるアクリル酸合成反応の結果と併せて、表1に記載のとおりである。
【0018】
【比較例1】
参考例1で得た金属酸化物をそのままアクリル酸合成反応の触媒として用いた。
【0019】
〔参考例2〕
○[Mo、Sb、V、Nb、K]系複合金属酸化物の製造
参考例1で得た金属酸化物5.0 g を、少量のイオン交換水の存在下で18時間のボールミル粉砕に供した。その後、炭酸水素カリウム0.036 g 、ヘキシルアミン0.036 g 、イオン交換水2.0 g を混合した溶液を添加し、さらに6 時間のボールミル粉砕に供した。得られた黒色スラリーを140 ℃のオーブン内に3 時間投入して乾燥を行った後、打錠成形し、さらに16〜30メッシュの粒径に粉砕することにより、5種金属含有の複合金属酸化物を得た。
【0020】
【実施例3】
有機リン化合物としてリン酸ジフェニル0.0107 g、溶媒として水6.0 g を50 ml ビーカーに添加し、均一に溶解した。その後、参考例2で得た複合金属酸化物1.51 gをビーカー内に添加し、軽く振動させた。その後、90℃に加温したオーブン内にビーカーを48時間放置した後、さらに120 ℃に加温したオーブン内に3 時間放置することで水を揮発させた。以下、実施例1と同様にして触媒を得た。
【0021】
【実施例4】
有機リン化合物としてリン酸ジフェニル0.0107 g、溶媒としてベンゼン2.5 g を50 ml ビーカーに添加し、均一に溶解した。その後、参考例2で得た複合金属酸化物1.51 gをビーカー内に添加し、軽く振動させた。その後、室温、大気開放系でビーカーを72時間放置することにより溶媒を揮発させた。以下、実施例1と同様にして触媒を得た。
【0022】
【実施例5】
有機リン化合物としてリン酸ジn−ブチル0.0090g 、溶媒としてへキサン1.5 g および酢酸エチル1.5 g の混合溶媒を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0023】
【実施例6】
有機リン化合物としてリン酸トリフェニル0.0139 g、溶媒としてベンゼン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0024】
【実施例7】
有機リン化合物としてリン酸トリクレジル(Tricresyl Phosphate )0.0157 g、溶媒としてベンゼン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0025】
【実施例8】
有機リン化合物として亜リン酸トリフェニル(Triphenyl Phosphite )0.0133g、溶媒としてベンゼン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0026】
【実施例9】
有機リン化合物としてトリフェニルホスフィン(Triphenylphosphine)0.0112g、溶媒としてヘキサン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0027】
【実施例10】
有機リン化合物としてトリn−ブチルホスフィン0.0086 g、溶媒としてヘキサン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0028】
【実施例11】
有機リン化合物としてトリフェニルホスフィンオキシド(TriphenylphosphineOxide)0.0119 g、溶媒としてヘキサン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0029】
【実施例12】
有機リン化合物としてトリn−オクチルホスフィンオキシド0.0165 g、溶媒としてヘキサン2.5 g を用いたこと以外は、実施例4と同様の操作で触媒を得た。
【0030】
【比較例2】
参考例2で得た複合金属酸化物をそのまま触媒として使用した。
【0031】
【比較例3】
正リン酸0.0084g および水6.0 g を50 ml ビーカー中で、均一に混合、溶解した。その後、参考例2で得た複合酸化物3.02g をビーカー内に添加し、軽く振動させた。その後、窒素ガス流通下で6 時間放置することで大部分の水を除去した後、さらに120 ℃のオーブン内に3 時間放置することにより触媒前駆体を得た。以下、前記の各例と同様な方法により前駆体から触媒を得た。
【0032】
【比較例4】
リン化合物としてリン酸水素二アンモニウム0.0056 g、溶媒として水6.0 g を用いたこと以外は、比較例3と同様の操作で触媒を得た。
【0033】
【表1】
【0034】
【発明の効果】
表1から明らかなように、本発明のアクリル酸製造用触媒の製造方法により製造した[Mo、V 、Sb、Nb、P ]系触媒(実施例1、2)は、従来の[Mo、V 、Sb、Nb]系触媒(比較例1)よりも、一酸化炭素および二酸化炭素への選択率が低減しており、より高いアクリル酸選択率および収率を与える。同様に、本発明の方法で製造した[Mo、V 、Sb、Nb、K 、P ]系触媒(実施例3、4、5、6、7、8、9、10、11、12)は、従来の[Mo、V 、Sb、Nb、K ]系触媒(比較例2)よりも、高いアクリル酸選択率および収率を与える。また、比較例3および比較例4のように、無機リン化合物を担持した場合には、本発明の効果は発現しない。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a metal oxide catalyst used in a reaction for producing acrylic acid by subjecting propane to gas phase catalytic oxidation.
[0002]
[Prior art]
Acrylic acid has been conventionally produced using a two-step oxidation method in which propylene and oxygen are contact-reacted in the presence of a catalyst to produce acrolein, which is then contacted with oxygen.
On the other hand, in recent years, for the purpose of eliminating the uneconomical effect of two-stage oxidation, a method for producing acrylic acid in one step using propane as a raw material has been studied. Many proposals have been made. Typically, a catalyst comprising a composite metal oxide such as [V, P, Te], [Mo, Te, V, Nb], and [Mo, Sb, V, Nb] is used. However, the above-mentioned catalyst has problems that the yield of the target acrylic acid is insufficient and the life of the catalyst itself is short.
[0003]
Recently, several proposals for improving the above-mentioned metal oxide catalyst have been filed in patent applications. In Patent Document 1, a molybdenum compound, a reaction aqueous solution obtained by reacting a vanadium compound and an antimony compound in an aqueous medium at 70 ° C. or higher, and further mixing a niobium compound, the resulting mixture is evaporated to dryness, There has been proposed a method for producing a catalyst which involves firing at a high temperature.
Patent Literature 2 and Patent Literature 3 show that the acrylic acid yield of a catalyst obtained by blowing a gas containing molecular oxygen into a reaction solution during heat treatment of each metal compound in the aqueous medium described in Patent Literature 1 is described. There is a statement that it is further improved, and Reference 3 proposes that nitric acid or a nitrate coexist when mixing the above reaction description and the niobium compound.
[0004]
Patent Document 4 discloses that a compound containing a metal selected from the group consisting of Na, K, Rb, Cs, P and As is further supported on a [Mo, Sb, V, Nb] -based composite metal oxide. Patent Document 5 discloses a method for producing an acrylic acid-producing catalyst which is calcined and then calcined. Patent Document 5 discloses a method for adding [Mo, Te, V, Nb] -based composite metal oxides to tungsten, molybdenum, and chromium. , A solution containing a metal element selected from the group consisting of titanium, zirconium, titanium, niobium, tantalum, vanadium, boron, bismuth, tellurium, palladium, cobalt, nickel, iron, phosphorus, silicon, rare earth elements, alkali metals and alkaline earth metals An improved method has been disclosed in which these metal elements are supported on the composite metal oxide by impregnation.
However, even with the catalysts described in the above patent documents, the acrylic acid yield in the single-stage oxidation of propane has not yet reached a practically sufficient level, and the amounts of carbon monoxide and carbon dioxide are also large. There was a problem.
[0005]
[Patent Document 1]
JP-A-10-137585 (Claims)
[Patent Document 2]
JP-A-10-230164 (Claims)
[Patent Document 3]
JP 2000-254496A (Claims)
[Patent Document 4]
JP-A-10-120617 (Claims)
[Patent Document 5]
JP-A-10-28862 (Claims)
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a catalyst applied to the production of acrylic acid by a one-stage gas phase oxidation reaction of propane, which can produce acrylic acid with high selectivity and high yield. The purpose was.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention.
That is, the present invention relates to a metal oxide particle containing Mo, V and Sb as essential components, wherein an organophosphorus compound is supported on the surface of the metal oxide particle fired at a temperature of 400 ° C. or more. And then converting the organic phosphorus compound to a phosphorus oxide.
Hereinafter, the present invention will be described in more detail.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the metal oxide particles supporting the organic phosphorus compound (hereinafter, sometimes referred to as a supported body) are metal oxide particles containing Mo, V, and Sb as essential components as described above. More preferably, Mo, V, Sb and A (A is Nb or Ta) are essential components, and X (X is W, Ti, Zr, Re, Si, Al, Fe, Ni, Co) , Sn, Tl, Cu, Ce, a rare earth element, an alkali metal element, and an alkaline earth metal element).
Specific examples include metal oxide particles represented by the following composition formula.
Formula: MoV i Sb j A k X l O y (1)
(Where A is Nb or Ta, and X is W, Ti, Zr, Re, Si, Al, Fe, Ni, Co, Sn, Tl, Cu, Ce, rare earth element, alkali metal element, alkaline earth element) At least one element selected from the group consisting of metal-like elements, i and j are each 0.01 to 1.5, j / i = 0.3 to 1.0, and k is 0.001 to 3.0, l is 0 to 3.0, and y is determined by the oxidation state of another element.)
The method for producing such metal oxide particles is not limited. Representative production methods include the methods disclosed in Patent Documents 1 to 5 and the like, and particularly preferable production methods include the method proposed in Patent Document 3.
[0009]
As the Mo raw material used for the production of the metal oxide, ammonium paramolybdate, molybdenum oxide, molybdic acid, or the like is preferable. As the Sb raw material, antimony trioxide, antimony acetate, or the like is preferable. V raw material is preferably ammonium metavanadate, vanadium pentoxide, or the like. As the Nb raw material, diobium oxalate, diobmonium oxalate, diobic acid, diobium pentoxide, or the like is preferable.
A mixture obtained by mixing the above compounds in a wet or dry manner sufficiently uniformly is calcined in air at 400 ° C. or higher, preferably at 450 to 650 ° C. for about 2 to 10 hours, or in air at 250 to 350 ° C. for 1 hour. After calcination for 10 to 10 hours, and further calcination in an inert gas at 450 to 650 ° C. for about 1 to 10 hours, the metal oxide to be supported in the present invention is obtained. The metal oxide is preferably a particle having a BET specific surface area of about 5 to 15 m 2 / g, and may have any shape of a sphere, a cylinder, a rectangular solid, or an irregular shape.
[0010]
In the present invention, as described above, the [Mo, V, Sb, A, X] -based supported body obtained by further adding a metal X to the [Mo, V, Sb, A] -based supported body as described above. Are also preferably used. The [Mo, V, Sb, A, X] -based supported body is obtained by converting [Mo, V, Sb, A] -based metal oxide into an aqueous solution of, for example, lithium carbonate, potassium carbonate, potassium hydrogen carbonate, thallium nitrate, or the like. It is preferable to use those produced by the method of carrying.
[0011]
Preferred organic phosphorus compounds in the present invention are selected from the group consisting of alkyl orthophosphates, aryl orthophosphates, alkyl phosphites, aryl phosphites, alkyl phosphines, aryl phosphines, alkyl phosphine oxides and aryl phosphine oxides. At least one or more organic phosphorus compounds. Furthermore, the alkyl group contained in the organic phosphorus compound may be linear or branched or cycloalkyl, and each aryl group may have a plurality of substituents, It may not have a substituent.
After the organic phosphorus compound is supported on the carrier, the organic phosphorus compound is oxidized in the present invention. Such oxidation can be performed, for example, by firing a metal oxide (hereinafter, sometimes referred to as a precursor) supporting an organic phosphorus compound in air at a temperature of about 350 to 400 ° C. for one to several hours. An organic phosphorus compound having a high boiling point is more preferable because it is difficult for the organic phosphorus compound to volatilize during this firing, and diphenyl phosphate and triphenyl phosphine are particularly preferable.
[0012]
The preferred amount of the organic phosphorus compound to be supported is 0.0005 to 0.3, more preferably 0.001 to 0.1, in terms of the atomic ratio of phosphorus atoms to Mo in the metal oxide particles to be supported. . The substantial immobilization of the organophosphorus compound on the carrier is performed not by the step of carrying the organophosphorus compound at room temperature but by firing. Therefore, even if the supporting amount of the organic phosphorus compound is increased so that the atomic ratio of the phosphorus atom to the Mo atom is 0.3 or more, the organic phosphorus compound is volatilized in the firing step and does not contribute to the catalytic performance.
As a preferred supporting method, the above-mentioned supported body is added to a solution of an organic phosphorus compound dissolved in water or an organic solvent, and then left at room temperature in an open-to-air system to volatilize the solvent. As a solvent to be used, water can be used, but an organic solvent is preferable, and the effect of the present invention is increased by using an organic solvent. That is, by carrying out the support of the organic phosphorus compound using an organic solvent, the effect of maintaining the shape of the obtained catalyst and the effect of suppressing the separation of the catalyst from a carrier such as silica or alumina which may be used later are exhibited. . As the organic solvent, a low-boiling organic solvent such as hexane, benzene, ether, carbon tetrachloride, and ethyl acetate is preferable because it can be easily removed from the metal oxide.
The object of the present invention is to sinter the support, that is, the precursor on which the organophosphorus compound is supported by the above method or the like at a temperature of about 350 to 400 ° C. for 1 to several hours under a flow of oxygen-containing gas. A catalyst is obtained.
[0013]
The composite metal oxide catalyst thus produced may be pulverized and processed into particles having a BET specific surface area of about 5 to 15 m 2 / g, if desired. As a grinding method, wet grinding using an organic solvent such as water or ethanol is preferable.
Further, the composite metal oxide catalyst obtained by the production method of the present invention can be used in a carrier-free state, but it can be used for a carrier such as silica, alumina, silica-alumina, silicon carbide, ceramic balls or stainless steel having an appropriate particle size. It can also be used in a supported state or a diluted state.
In the gas phase oxidation reaction of propane, by using the composite metal oxide obtained in the present invention as a catalyst, the amount of carbon monoxide and carbon dioxide produced as by-products is reduced, and acrylic acid has high selectivity and high selectivity. Can be produced in yield.
[0014]
Hereinafter, the present invention will be described more specifically with reference to examples. The catalyst precursor obtained in the following Examples and Comparative Examples was filled with 1.5 g (about 0.95 ml) of the precursor in an 8 mmφ quartz reaction tube, and air was introduced at 17.9 ml / min. The catalyst was converted to a catalyst by maintaining at a temperature of 360 to 370 ° C. for 1 hour while flowing at a flow rate of. Thereafter, propane is flowed at a flow rate of 1.5 ml / min, air is flowed at a flow rate of 17.9 ml / min, and steam is flowed at a flow rate of 21.0 ml / min through the catalyst layer whose center temperature is set to 380 to 400 ° C. Was performed to synthesize acrylic acid (SV2540 h −1 , propane: oxygen: steam = 1.0: 2.5: 14.0 molar ratio). The gas-liquid mixture at the outlet was analyzed by gas chromatography, and the propane conversion (%), acrylic acid selectivity (%) and acrylic acid yield (%) were calculated by the following formulas.
Propane conversion (%) = (moles of supplied propane−moles of unreacted propane) ÷ moles of supplied propane × 100
Acrylic acid selectivity (%) = number of moles of formed acrylic acid / (number of moles of propane supplied-number of moles of unreacted propane) x 100
Acrylic acid yield (%) = propane conversion × acrylic acid selectivity ÷ 100
[0015]
[Reference Example 1]
Production of [Mo, Sb, V, Nb] -based composite metal oxide The title metal oxide was produced with reference to the method described in Example 3 of Patent Document 3 described above.
That is, 130 ml of distilled water was charged into a 300 ml glass flask, 6.15 g of ammonium metavanadate was added thereto, and the mixture was heated and dissolved under stirring, and then 5.87 g of antimony trioxide and 30 ml of ammonium paramolybdate were added. 0.9 g was added. Thereafter, the mixture was heated and refluxed for 8 hours with stirring while passing nitrogen gas. While continuing heating and stirring, 40 g of a hydrogen peroxide solution having a concentration of 1.54% by mass was added dropwise over 5 hours, and then cooled to room temperature. Then, 8.82 g of oxalic acid and 2.33 g of niobic acid were distilled in 75 ml of distilled water. A solution dissolved in water was added.
Then, after stirring under a nitrogen gas atmosphere for 30 minutes, 6.0 g of ammonium nitrate was added, and further stirring was continued for 5 minutes.
The aqueous mixture of the blue colloid-dispersed liquid thus obtained was concentrated by heating, and finally put into an oven at 120 ° C. for 3 hours to obtain a dried product.
The obtained dried product was calcined in air at 300 ° C. for 5 hours, and then calcined at 600 ° C. for 2 hours while shutting off air. The obtained black powder was pulverized in a mortar for 5 minutes and then tableted, and further pulverized to a particle size of 16 to 30 mesh to obtain a [Mo, V, Sb, Nb] -based composite metal oxide. . The atomic ratio of this oxide is Mo / V / Sb / Nb = 1.0 / 0.3 / 0.23 / 0.08 as the raw material charge ratio at the time of production.
[0016]
Embodiment 1
0.0071 g of diphenyl phosphate as an organic phosphorus compound and 2.5 g of benzene as a solvent were added to a 50 ml beaker and uniformly dissolved. Thereafter, 1.51 g of the metal oxide obtained in Reference Example 1 was added into a beaker and lightly vibrated. Then, the organic phosphorus compound was supported on the metal oxide by evaporating the solvent by leaving the beaker for 72 hours in a system open to the atmosphere at room temperature. Filling a quartz reaction tube with 1.5 g of the obtained organophosphorus-supported metal oxide, and keeping it at a temperature of 360 to 370 ° C. for 1 hour while flowing air at a flow rate of 17.9 ml / min. After the conversion into the metal oxide catalyst intended by the present invention, an acrylic acid synthesis reaction was performed in the same reaction tube.
The selectivity and yield of acrylic acid by the above reaction are as shown in Table 1.
[0017]
Embodiment 2
A catalyst was produced in the same manner as in Example 1 except that 0.0075 g of triphenylphosphine (Triphenylphosphine) was used as the organic phosphorus compound and 2.5 g of hexane was used as the solvent, and the catalyst was used for the acrylic acid synthesis reaction. Using. The results are as shown in Table 1, together with the results of the acrylic acid synthesis reaction using the catalysts of Examples 3 to and Comparative Examples 1 below.
[0018]
[Comparative Example 1]
The metal oxide obtained in Reference Example 1 was directly used as a catalyst for an acrylic acid synthesis reaction.
[0019]
[Reference Example 2]
Production of [Mo, Sb, V, Nb, K] Complex Metal Oxide 5.0 g of the metal oxide obtained in Reference Example 1 was subjected to ball mill pulverization for 18 hours in the presence of a small amount of ion-exchanged water. did. Thereafter, a mixed solution of 0.036 g of potassium hydrogen carbonate, 0.036 g of hexylamine, and 2.0 g of ion-exchanged water was added, and the mixture was further subjected to ball milling for 6 hours. The obtained black slurry was put into an oven at 140 ° C. for 3 hours, dried, tablet-molded, and further crushed to a particle size of 16 to 30 mesh to oxidize the composite metal containing five kinds of metals. I got something.
[0020]
Embodiment 3
0.0107 g of diphenyl phosphate as an organic phosphorus compound and 6.0 g of water as a solvent were added to a 50 ml beaker and uniformly dissolved. Thereafter, 1.51 g of the composite metal oxide obtained in Reference Example 2 was added into a beaker, and slightly vibrated. Thereafter, the beaker was left in an oven heated to 90 ° C. for 48 hours, and then left in an oven heated to 120 ° C. for 3 hours to volatilize water. Thereafter, a catalyst was obtained in the same manner as in Example 1.
[0021]
Embodiment 4
0.0107 g of diphenyl phosphate as an organic phosphorus compound and 2.5 g of benzene as a solvent were added to a 50 ml beaker and uniformly dissolved. Thereafter, 1.51 g of the composite metal oxide obtained in Reference Example 2 was added into a beaker, and slightly vibrated. Thereafter, the solvent was volatilized by leaving the beaker for 72 hours at room temperature in an atmosphere open system. Thereafter, a catalyst was obtained in the same manner as in Example 1.
[0022]
Embodiment 5
A catalyst was obtained in the same manner as in Example 4, except that a mixed solvent of 0.0090 g of di-n-butyl phosphate as an organic phosphorus compound and 1.5 g of hexane and 1.5 g of ethyl acetate was used as a solvent. Was.
[0023]
Embodiment 6
A catalyst was obtained in the same manner as in Example 4, except that 0.0139 g of triphenyl phosphate was used as the organic phosphorus compound and 2.5 g of benzene was used as the solvent.
[0024]
Embodiment 7
A catalyst was obtained in the same manner as in Example 4 except that 0.0157 g of tricresyl phosphate (Tricresyl phosphate) was used as the organic phosphorus compound and 2.5 g of benzene was used as the solvent.
[0025]
Embodiment 8
A catalyst was obtained in the same manner as in Example 4, except that 0.0133 g of triphenyl phosphite (Triphenyl phosphite) was used as the organic phosphorus compound and 2.5 g of benzene was used as the solvent.
[0026]
Embodiment 9
A catalyst was obtained in the same manner as in Example 4, except that 0.0112 g of triphenylphosphine was used as the organic phosphorus compound and 2.5 g of hexane was used as the solvent.
[0027]
Embodiment 10
A catalyst was obtained in the same manner as in Example 4, except that 0.0086 g of tri-n-butylphosphine was used as the organic phosphorus compound and 2.5 g of hexane was used as the solvent.
[0028]
Embodiment 11
A catalyst was obtained in the same manner as in Example 4, except that 0.0119 g of triphenylphosphine oxide (Triphenylphosphine oxide) was used as the organic phosphorus compound and 2.5 g of hexane was used as the solvent.
[0029]
Embodiment 12
A catalyst was obtained in the same manner as in Example 4, except that 0.0165 g of tri-n-octylphosphine oxide was used as the organic phosphorus compound, and 2.5 g of hexane was used as the solvent.
[0030]
[Comparative Example 2]
The composite metal oxide obtained in Reference Example 2 was directly used as a catalyst.
[0031]
[Comparative Example 3]
0.0084 g of orthophosphoric acid and 6.0 g of water were uniformly mixed and dissolved in a 50 ml beaker. Thereafter, 3.02 g of the composite oxide obtained in Reference Example 2 was added into a beaker, and the mixture was slightly vibrated. Thereafter, most of the water was removed by allowing the mixture to stand for 6 hours in a nitrogen gas flow, and then left in an oven at 120 ° C. for 3 hours to obtain a catalyst precursor. Hereinafter, a catalyst was obtained from the precursor in the same manner as in each of the above examples.
[0032]
[Comparative Example 4]
A catalyst was obtained in the same manner as in Comparative Example 3, except that 0.0056 g of diammonium hydrogen phosphate was used as the phosphorus compound and 6.0 g of water was used as the solvent.
[0033]
[Table 1]
[0034]
【The invention's effect】
As is clear from Table 1, the [Mo, V, Sb, Nb, P] -based catalysts (Examples 1 and 2) produced by the method for producing a catalyst for producing acrylic acid of the present invention correspond to the conventional [Mo, V , Sb, Nb] -based catalyst (Comparative Example 1), the selectivity to carbon monoxide and carbon dioxide is reduced, and higher acrylic acid selectivity and yield are provided. Similarly, [Mo, V, Sb, Nb, K, P] -based catalysts (Examples 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) produced by the method of the present invention are as follows: Higher acrylic acid selectivity and yield than conventional [Mo, V 2, Sb, Nb, K 2] based catalysts (Comparative Example 2). Further, when an inorganic phosphorus compound is supported as in Comparative Examples 3 and 4, the effect of the present invention is not exhibited.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010981A JP4127061B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing a catalyst for acrylic acid production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010981A JP4127061B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing a catalyst for acrylic acid production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004223318A true JP2004223318A (en) | 2004-08-12 |
JP4127061B2 JP4127061B2 (en) | 2008-07-30 |
Family
ID=32900019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003010981A Expired - Fee Related JP4127061B2 (en) | 2003-01-20 | 2003-01-20 | Method for producing a catalyst for acrylic acid production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4127061B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018066158A1 (en) * | 2016-10-05 | 2018-04-12 | 東亞合成株式会社 | Metal oxide catalyst and method for producing same |
-
2003
- 2003-01-20 JP JP2003010981A patent/JP4127061B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018066158A1 (en) * | 2016-10-05 | 2018-04-12 | 東亞合成株式会社 | Metal oxide catalyst and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4127061B2 (en) | 2008-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5031946B2 (en) | Method for catalytic gas phase oxidation of propene to acrolein | |
JP5483818B2 (en) | Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile | |
TWI267402B (en) | Catalyst for partial oxidation and preparation method thereof | |
JP5919870B2 (en) | Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst | |
JPH06509018A (en) | Method for converting a vanadium/phosphorus mixed oxide catalyst precursor into an active catalyst for producing maleic anhydride | |
JP5192495B2 (en) | Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use | |
JP5011176B2 (en) | Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile | |
JP4247565B2 (en) | Catalyst for producing acrylic acid and method for producing acrylic acid using the same | |
JPH0523596A (en) | Preparation of catalyst forproducing metacrolein and methacrylic acid | |
WO2001028986A1 (en) | Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same | |
JPS5826329B2 (en) | Seizouhou | |
JP5793345B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP3342794B2 (en) | Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid | |
JP3959836B2 (en) | Method for producing a catalyst for acrylic acid production | |
JP2004008834A (en) | Method for producing catalyst for use in manufacturing methacrylic acid | |
JP4200744B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP4503315B2 (en) | Method for producing iron / antimony / tellurium-containing metal oxide catalyst | |
JP4127061B2 (en) | Method for producing a catalyst for acrylic acid production | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JPS6033539B2 (en) | Oxidation catalyst and its preparation method | |
JP2002306970A (en) | Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid | |
JP3267019B2 (en) | Process for producing unsaturated aldehydes and unsaturated carboxylic acids | |
JP4218471B2 (en) | Method for producing metal oxide catalyst | |
JP3750234B2 (en) | Method for producing acrylic acid production catalyst | |
JP2004141823A (en) | Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080422 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080505 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |