JP2004223181A - Sterilization method of textile goods - Google Patents

Sterilization method of textile goods Download PDF

Info

Publication number
JP2004223181A
JP2004223181A JP2003018076A JP2003018076A JP2004223181A JP 2004223181 A JP2004223181 A JP 2004223181A JP 2003018076 A JP2003018076 A JP 2003018076A JP 2003018076 A JP2003018076 A JP 2003018076A JP 2004223181 A JP2004223181 A JP 2004223181A
Authority
JP
Japan
Prior art keywords
sterilization
odor
rays
textile
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018076A
Other languages
Japanese (ja)
Inventor
Kenji Iwane
健二 岩根
Kenji Shima
健治 島
Takashi Kawai
隆 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003018076A priority Critical patent/JP2004223181A/en
Publication of JP2004223181A publication Critical patent/JP2004223181A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilization method of textile goods in which sterilization can be performed while easily and surely suppressing occurrence of abnormal smell with radiation of radioactive rays. <P>SOLUTION: In the sterilization method of the textile goods for sterilizing the textile goods mainly composed of cellulose fibers by irradiating the textile goods with radioactive rays, a moisture quantity in the cellulose fibers of the textile goods is 11-70% and the textile goods are irradiated with radioactive rays in the absorption dose of 3 to 20kGy. It is preferable that the radioactive rays are γ rays and that cellulose fibers are rayon. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セルロース系繊維を主体とする繊維製品、特に、化粧用シート等の繊維製品に放射線を照射して殺菌する繊維製品の殺菌方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
γ線、X線、電子線等の放射線を利用した殺菌方法は、殺菌が確実に行えるとともに、吸収線量等によって殺菌管理が容易に行えるほか、残留物が生じない等の利点を有しており、広い範囲で行われている。
【0003】
しかしながら、このような放射線を利用した殺菌方法は、殺菌対象となる物品の材質によっては、放射線の照射後に着色や着臭を生じたり、強度が低下してしまう等その物性に変化を生じる場合があった。例えば、レーヨン等のセルロース系繊維からなる繊維製品に放射線を照射して殺菌を行うと、不織布から異臭が発生し、製品の品質が変化してしまう問題があった。
【0004】
このような問題の解決手法として、放射線照射によって物性が変質し難い繊維に変更することが考えられる。この方法は、G値が高いセルロース繊維には、有効な手段と考えられるが、コスト高にならざるを得ないほか、セルロース系繊維特有の風合いや機能が得られなくなる。また、下記特許文献1に記載の技術のように、繊維に臭いの発生を抑える成分を添加する方法等も考えられるが、この方法もコスト高にならざるを得ない。
【0005】
放射線を利用したプラスチック製品を含む物品の殺菌方法として、無酸素又は低酸素雰囲気において、物品に放射線を照射し、臭気の原因となる低分子有機化合物の生成を抑制するようにした技術が提案されている(例えば、下記特許文献2参照)。この技術は、無酸素又は低酸素雰囲気でγ線を照射することで、該低分子有機化合物の生成に作用する酸素ラジカルの発生を抑え、臭気の発生を抑えたものである。
【0006】
しかしながら、この方法では、非通気性の容器内に物品を密封し、且つ酸素濃度を0.5%以下としなければならないため、より簡便に行える殺菌方法が望まれていた。
【0007】
【特許文献1】
特開平7−157922号公報
【特許文献2】
特開平8−89561号公報
【0008】
従って、本発明の目的は、放射線の照射に伴う異臭の発生を簡単且つ確実に抑えて殺菌を行うことができる繊維製品の殺菌方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、セルロース系繊維を主体とする繊維製品に放射線を照射して殺菌する際に、繊維製品に含まれる水分量に着目し、本発明を完成するに至った。セルロース繊維を含む不織布に所定量以上の水分を含ませ、γ線を照射すると、照射時に極微量の気体が発生した。発生した気体を収集してガスクロマト質量分析を行うと、ヘキサン等のアルキル類、エタノール等のアルコール類、アセトン等のケトン類、ホルムアルデヒド等のアルデヒド類、吉草酸等のカルボキシ類を含む10種類以上の低分子化合物の混合物であることが認められた。これら気体の発生は、γ線照射によって発生したOHラジカルに起因するものと考えられるが、その気体量は不織布に含ませる水分量に比例して増加する傾向が認められた。しかも、発生する気体の総量は含ませる水分量に応じて増加するにもかかわらず、臭いは逆に低く抑えられることが判った。また、この臭いの抑制効果は、0.5%を超える高い酸素雰囲気でも認められた。斯かる知見は、前記特許文献2の技術による、酸素ラジカルの発生を抑えた臭い抑制の考えからは全く想到し得ないものであった。
【0010】
本発明は、前記知見に基づきなされたものであり、セルロース系繊維を主体とする繊維製品に放射線を照射して殺菌する繊維製品の殺菌方法において、
前記繊維製品における前記セルロース系繊維の水分量を11〜70%とし、該繊維製品に放射線を吸収線量で3〜20kGy照射することを特徴とする繊維製品の殺菌方法を提供するものである。
【0011】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基いて説明する。
【0012】
本実施形態の繊維製品の殺菌方法では、セルロース系繊維を主体とする繊維製品にγ線を照射して殺菌する際に、前記繊維製品における前記セルロース系繊維を所定の水分量を有するものとし、該繊維製品にγ線を所定の吸収線量で照射する。
【0013】
本実施形態では、先ず、前記繊維製品における前記セルロース系繊維が所定の水分量となるように水分を含ませる。
前記セルロース系繊維の水分量(重量%)は11〜70%、好ましくは12〜50%とする。セルロース系繊維の水分量が11%未満であると、臭い低減効果が不十分となる。水分量は高いほど臭いの低減効果があるが、水分量が70%を超えると、発生するガスの総量が増え、その分臭い成分も多くなって臭いが強くなる。本明細書において、セルロース系繊維の水分量は、日本工業規格の一般織物試験方法(JIS L1096−1990)により測定される値である。
【0014】
前記繊維製品における前記セルロース系繊維に水分を含ませる手法は、特に制限されないが、浸漬、スプレー塗布、恒温恒湿環境下での保存吸着等の方法を、殺菌処理を施す繊維製品の形態に応じて適宜選択することができる。
【0015】
本実施形態の繊維製品の殺菌方法では、より高い臭い低減効果を得る上では、殺菌処理を行う繊維製品にアルコール類が含まれていない状態でγ線を照射することが好ましい。殺菌処理を施す繊維製品にアルコール類が含まれていると、γ線の照射に伴って発生するOHラジカルの作用が滅殺されてしまい、前記範囲の水分を繊維製品に含ませていても、所望の臭い低減効果が得られなくなる。
【0016】
前記セルロース系繊維としては、レーヨン、コットン、パルプ、テンセル、キュプラ等が挙げられる。該セルロース系繊維は、一種でもよく又は二種以上が併用されていてもよい。
【0017】
前記繊維製品には、前記セルロース系繊維に加えて、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維、ポリプロピレン、ポリエチレン、アクリル等の他の繊維が含まれていてもよい。該他の繊維は、一種でもよく又は二種以上が併用されていてもよい。
【0018】
殺菌対象となる前記繊維製品の形態や用途は、特に制限されるものではない。前記繊維製品の形態は、例えば、種々の製法で製造された不織布又は織布の何れの形態であってもよい。また、これら不織布若しくは織布をそれぞれ単独で又は組み合わせて積層したり、貼り合わせてあってもよく、さらに、カットシート、巻形状等の形態であってもよい。該繊維製品には、例えば、化粧用、医療用、清掃用等の各種シートとして用いられるものが挙げられる。
【0019】
次に、前記繊維製品に、γ線を吸収線量で3〜20kGy、好ましくは3〜15kGy、より好ましくは3〜10kGy照射する。繊維製品に照射するγ線の吸収線量が3kGy未満であると殺菌効果が不十分となり、繊維製品に照射するγ線の吸収線量が20kGyを超えると臭いが品質に重要な製品では臭い抑制効果が不十分となる。
【0020】
本実施形態では、γ線を照射する際の前記繊維製品の雰囲気は、操作性、経済性等の点から空気中であることが特に好ましいが、窒素ガスや不活性ガス雰囲気や低酸素雰囲気下であってもよい。
【0021】
本実施形態の繊維製品の殺菌方法では、繊維製品におけるセルロース系繊維を所定の水分量とし、且つγ線を所定の吸収線量で照射するだけで、簡単且つ確実に、γ線の照射に伴う異臭の発生を抑え、しかも低コストで繊維製品の殺菌を行うことができる。
【0022】
本発明の繊維製品の殺菌方法は、照射する放射線に特に制限はない。例えば、γ線に換えて、X線、電子線等の他の放射線を用いることができる。
【0023】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
【0024】
〔実施例1〕
レーヨン不織布(レーヨン100%、坪量45g/m、幅20.5cm、長さ110cm)に、以下のようにして表1に示す所定の水分量を含ませた後、以下のようにγ線を所定の吸収線量照射して殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の発生の有無を以下のように評価した。それらの結果を表1及び表2に併せて示した。
【0025】
<水分量の調整>
前記レーヨン不織布を所定の温度及び湿度に調節した密閉した恒温恒湿室内に約二時間放置して表1に示す水分量のレーヨン繊維を含む不織布を得た。
【0026】
<γ線の照射>
所定の水分量のレーヨン不織布をアルミ蒸着フィルム製の袋内(空気雰囲気)に密封し、γ線照射装置(Nordion社製、線源:コバルト60)を使用して該不織布に表1に示す所定の吸収線量のγ線を照射して殺菌を行った。
【0027】
〔官能試験による異臭の強さ評価〕
殺菌後のレーヨン不織布の異臭を官能試験によって下記の3段階で評価した。
◎:微かな異臭(十分な実用範囲)
○:弱い異臭(実用範囲)
×:強い異臭(実用不可)
【0028】
〔ガスクロマトグラフ質量分析による異臭の発生量評価〕
前記密閉系内の異臭の成分を、GC−MS(ガスクロマトグラフ質量分析計)で求めるとともに、表2に示すように、得られた各成分のうち、特に異臭と感じられる−CHO及び−COOHを極性基とする成分について、ガスクロマト分析の質量強度(質量計カウント数)に、当該各成分に対応する嗅覚閾値(永田等、三点比較式臭袋法による臭気物質の閾値測定結果、第29回大気汚染学会講演要旨集、528、1988)の嗅覚閾値最小値(吉草酸)を100として嗅覚閾値の割合から規格化した規格化定数(重み)を乗じて臭い強度を求め、その総和で臭いの強さを評価した。ここで規格化定数は、以下の式で表される。
規格化定数=(吉草酸の嗅覚閾値/個々の物質の嗅覚閾値)×100
【0029】
〔殺菌性〕
レーヨン不織布に栄養細胞の菌(大腸菌、緑膿菌、黄色ブドウ球菌を混ぜたもの)と胞子細胞の菌(バチルス菌)が10個/ml以上含まれたそれぞれの菌液を1ml接種した後、γ線殺菌を行い、殺菌後のレーヨン不織布を滅菌済み生理食塩水に浸漬して菌を回収した。そして、回収した生理食塩水中の生菌の有無をメンブランフィルター法によって測定し、以下のように3段階で評価した。
○:胞子細胞、栄養細胞ともに未検出
△:胞子細胞検出、栄養細胞未検出
×:胞子細胞、栄養細胞ともに検出
【0030】
〔実施例2〕
γ線の吸収線量とレーヨン不織布の水分量を表1に示すように変更した以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0031】
〔実施例3〕
実施例1のレーヨン不織布に換えて、レーヨン不織布(レーヨン50wt%、PET50wt%、坪量55g/m、幅15cm、長さ120cm)を用いた以外は、実施例2と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に併せて示した。
【0032】
〔実施例4〕
γ線の吸収線量とレーヨン不織布の水分量を表1に示すように変更した以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0033】
〔実施例5〕
γ線の吸収線量を表1に示すように変更した以外は、実施例4と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0034】
〔実施例6〕
γ線の吸収線量とレーヨン不織布の水分量を表1に示すように変更した以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0035】
〔実施例7〕
雰囲気を窒素雰囲気とした以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さを実施例1と同様にして評価した。それらの結果を表1及び表2に示した。
【0036】
〔比較例1〕
レーヨン不織布中の水分量を表1に示すように変更した以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さを実施例1と同様にして評価した。それらの結果を表1及び表2に併せて示した。
【0037】
〔比較例2〕
γ線の吸収線量とレーヨン不織布の水分量を表1に示すように変更した以外は、比較例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0038】
〔比較例3〕
レーヨン不織布中の水分量を表1に示すように変更した以外は、実施例3と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0039】
〔比較例4〕
γ線の吸収線量を表1に示すように変更した以外は、実施例4と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0040】
〔比較例5〕
レーヨン不織布の水分量を表1に示すように変更した以外は、実施例5と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0041】
〔比較例6〕
レーヨン不織布の水分量を表1に示すように変更した以外は、実施例1と同様にして殺菌を行った。そして、殺菌性及び殺菌に伴う異臭の強さ(GC−MSによる評価を除く。)を実施例1と同様にして評価した。それらの結果を表1に示した。
【0042】
【表1】

Figure 2004223181
【0043】
【表2】
Figure 2004223181
【0044】
表1に示すように、実施例の方法で殺菌したレーヨン不織布は、殺菌に伴う異臭の発生が少なく、殺菌性も良好であることが確認された。これに対し、比較例の方法で殺菌した不織布は、殺菌に伴って異臭発生量が多くなっていることが確認された。また、表2に示すように、水分を含ませた実施例1で、臭い強度の強いアルデヒド類やカルボキシル類が低く抑えられ、比較例1に比べて臭い強度は約五分の一となり、表1の官能試験による臭いの評価の結果と質量分析器による分析結果が一致していることが確認された。これらの結果は、窒素雰囲気で行った実施例7でも略同様であった。
【0045】
【発明の効果】
本発明の繊維製品の殺菌方法によれば、放射線の照射に伴う異臭の発生を簡単且つ確実に抑えて殺菌を行うことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for sterilizing a fiber product mainly composed of cellulosic fibers, in particular, a fiber product such as a cosmetic sheet, which is irradiated with radiation to sterilize it.
[0002]
Problems to be solved by the prior art and the invention
Sterilization methods using radiation such as γ-rays, X-rays, and electron beams have the advantage that sterilization can be performed reliably, sterilization can be easily controlled by absorbed dose, etc., and no residue is generated. Has been done in a wide range.
[0003]
However, such a sterilization method using radiation, depending on the material of the article to be sterilized, may cause coloration or odor after irradiation, or change in physical properties such as a decrease in strength. there were. For example, when a fiber product made of cellulosic fiber such as rayon is irradiated with radiation and sterilized, there is a problem that an unpleasant odor is generated from the nonwoven fabric and the quality of the product is changed.
[0004]
As a solution to such a problem, it is conceivable to change the fiber to a fiber whose physical properties are hardly deteriorated by irradiation. This method is considered to be an effective means for cellulose fibers having a high G value. However, this method is unavoidable in that the cost is increased and the feeling and function unique to the cellulose fibers cannot be obtained. Further, a method of adding a component that suppresses the generation of odor to the fiber is also conceivable as in the technique described in Patent Document 1 below, but this method also has to increase the cost.
[0005]
As a method of disinfecting articles including plastic products using radiation, a technique has been proposed in which an article is irradiated with radiation in an oxygen-free or low-oxygen atmosphere to suppress generation of low-molecular organic compounds that cause odor. (For example, see Patent Document 2 below). This technique suppresses the generation of oxygen radicals that act on the generation of the low-molecular organic compound by irradiating gamma rays in an oxygen-free or low-oxygen atmosphere, thereby suppressing the generation of odor.
[0006]
However, in this method, since the article must be sealed in a non-breathable container and the oxygen concentration must be 0.5% or less, a sterilization method that can be performed more easily has been desired.
[0007]
[Patent Document 1]
JP-A-7-157922 [Patent Document 2]
JP-A-8-89561
Accordingly, an object of the present invention is to provide a method for sterilizing textile products, which can easily and surely suppress the generation of offensive odor due to radiation irradiation and sterilize.
[0009]
[Means for Solving the Problems]
The present inventors have focused on the amount of water contained in a fiber product when irradiating a fiber product mainly composed of cellulosic fibers with radiation to sterilize it, and have completed the present invention. When a non-woven fabric containing cellulose fibers was exposed to a predetermined amount or more of moisture and irradiated with γ-rays, a very small amount of gas was generated during the irradiation. The gas generated is collected and subjected to gas chromatography mass spectrometry. As a result, 10 or more types including alkyls such as hexane, alcohols such as ethanol, ketones such as acetone, aldehydes such as formaldehyde, and carboxyls such as valeric acid are obtained. Of low molecular weight compounds. The generation of these gases is considered to be caused by OH radicals generated by γ-ray irradiation, but the amount of the gas tended to increase in proportion to the amount of water contained in the nonwoven fabric. Moreover, it has been found that the odor can be suppressed to a low level despite the fact that the total amount of generated gas increases in accordance with the amount of water contained. Further, the effect of suppressing the odor was observed even in a high oxygen atmosphere exceeding 0.5%. Such a finding could not be conceived at all from the idea of suppressing odor by suppressing the generation of oxygen radicals by the technique of Patent Document 2.
[0010]
The present invention has been made based on the above-described findings, and in a method of sterilizing textile products, which irradiates a textile product mainly composed of cellulosic fibers with radiation to sterilize the textile product,
An object of the present invention is to provide a method for sterilizing textile products, wherein the moisture content of the cellulosic fibers in the textile product is 11 to 70%, and the textile product is irradiated with radiation at an absorbed dose of 3 to 20 kGy.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments.
[0012]
In the sterilization method of the fiber product of the present embodiment, when sterilizing by irradiating γ-rays to a fiber product mainly composed of cellulosic fiber, the cellulose fiber in the fiber product shall have a predetermined moisture content, The fiber product is irradiated with gamma rays at a predetermined absorbed dose.
[0013]
In the present embodiment, first, water is contained so that the cellulosic fibers in the fiber product have a predetermined water content.
The water content (% by weight) of the cellulosic fiber is 11 to 70%, preferably 12 to 50%. If the water content of the cellulosic fiber is less than 11%, the effect of reducing odor becomes insufficient. The higher the water content is, the more effective the odor is. However, if the water content exceeds 70%, the total amount of generated gas is increased, and the odor component is increased by that amount to increase the odor. In the present specification, the water content of the cellulosic fiber is a value measured by a general textile test method (JIS L1096-1990) of Japanese Industrial Standards.
[0014]
The method of adding moisture to the cellulosic fibers in the fiber product is not particularly limited, but methods such as immersion, spray coating, and preservation and adsorption under a constant temperature and humidity environment may be selected according to the form of the fiber product to be sterilized. Can be selected appropriately.
[0015]
In the textile product sterilization method of the present embodiment, in order to obtain a higher odor reduction effect, it is preferable to irradiate γ-rays in a state where the textile product to be sterilized contains no alcohol. If alcohol is contained in the textile product to be subjected to the sterilization treatment, the action of OH radicals generated with the irradiation of γ-rays is destroyed, and even if the moisture in the above range is contained in the textile product, The desired odor reduction effect cannot be obtained.
[0016]
Examples of the cellulosic fibers include rayon, cotton, pulp, Tencel, cupra and the like. The cellulosic fibers may be used alone or in combination of two or more.
[0017]
The fiber product may contain, in addition to the cellulosic fiber, other fibers such as polyester fiber such as polyethylene terephthalate and polybutylene terephthalate, polypropylene, polyethylene, and acrylic. The other fibers may be used alone or in combination of two or more.
[0018]
The form and use of the fiber product to be sterilized are not particularly limited. The form of the fiber product may be, for example, any form of a nonwoven fabric or a woven fabric manufactured by various manufacturing methods. In addition, these nonwoven fabrics or woven fabrics may be laminated or bonded alone or in combination, and may be in the form of a cut sheet, a roll, or the like. Examples of the textile include those used as various sheets for cosmetics, medical treatment, cleaning, and the like.
[0019]
Next, the fiber product is irradiated with gamma rays at an absorbed dose of 3 to 20 kGy, preferably 3 to 15 kGy, more preferably 3 to 10 kGy. If the absorbed dose of γ-rays irradiating textiles is less than 3 kGy, the sterilization effect will be insufficient, and if the absorbed dose of γ-rays irradiating textiles exceeds 20 kGy, the odor control effect will be reduced for products whose odor is important for quality. Will be insufficient.
[0020]
In the present embodiment, the atmosphere of the textile at the time of γ-ray irradiation is particularly preferably in air from the viewpoint of operability, economy, etc., but under a nitrogen gas, an inert gas atmosphere, or a low oxygen atmosphere. It may be.
[0021]
In the method for sterilizing fiber products of the present embodiment, the cellulosic fibers in the fiber products are made to have a predetermined moisture content, and only by irradiating γ-rays with a predetermined absorption dose, the odor associated with the γ-ray irradiation can be easily and reliably obtained. And the sterilization of textiles can be performed at low cost.
[0022]
In the method for sterilizing textile products of the present invention, there is no particular limitation on the irradiation radiation. For example, other radiation such as X-rays and electron beams can be used instead of γ-rays.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0024]
[Example 1]
A rayon non-woven fabric (100% rayon, basis weight 45 g / m 2 , width 20.5 cm, length 110 cm) is made to contain a predetermined amount of water shown in Table 1 as follows, and then γ-rays as shown below. Was irradiated with a predetermined absorption dose to sterilize it. Then, the bactericidal property and the presence or absence of generation of an unpleasant odor accompanying the bactericidal evaluation were evaluated as follows. The results are shown in Tables 1 and 2.
[0025]
<Adjustment of water content>
The rayon nonwoven fabric was allowed to stand for about 2 hours in a sealed constant temperature and humidity room adjusted to a predetermined temperature and humidity to obtain a nonwoven fabric containing rayon fibers having a moisture content shown in Table 1.
[0026]
<Γ-ray irradiation>
A rayon non-woven fabric having a predetermined moisture content is sealed in an aluminum-deposited film bag (air atmosphere), and the non-woven fabric is coated on the non-woven fabric using a γ-ray irradiator (Nordion, source: cobalt 60) as shown in Table 1. Was sterilized by irradiating with the absorbed dose of γ-ray.
[0027]
[Evaluation of intensity of off-flavor by sensory test]
An unpleasant odor of the sterilized rayon nonwoven fabric was evaluated by a sensory test in the following three stages.
◎: Slight off-flavor (sufficient practical range)
○: Weak off-flavor (practical range)
×: Strong off-flavor (not practical)
[0028]
[Evaluation of off-flavor generation by gas chromatography / mass spectrometry]
The off-flavor components in the closed system were determined by GC-MS (Gas Chromatography Mass Spectrometer), and as shown in Table 2, among the obtained components, -CHO and -COOH, which felt particularly off-flavors, were analyzed. Regarding the component as a polar group, the mass intensity (mass meter count number) of the gas chromatographic analysis shows the olfactory threshold value corresponding to each component (Nagata et al. Abstracts of Annual Meeting of the Japan Society for Air Pollution, 528, 1988) multiplying the minimum value of olfactory threshold (valeric acid) as 100 by a standardized constant (weight) standardized from the ratio of the olfactory threshold to obtain the odor intensity Was evaluated for strength. Here, the normalization constant is represented by the following equation.
Normalization constant = (olfactory threshold of valeric acid / olfactory threshold of individual substance) × 100
[0029]
(Bactericidal)
After inoculating 1 ml of each bacterial solution containing at least 10 6 cells / ml of vegetative cells (a mixture of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and spore cells (bacillus bacillus) into a rayon nonwoven fabric Γ-ray sterilization, and the sterilized rayon nonwoven fabric was immersed in sterilized saline to collect the bacteria. Then, the presence or absence of viable bacteria in the collected physiological saline was measured by a membrane filter method, and evaluated in three steps as follows.
:: spore cells and vegetative cells not detected △: spore cells detected, vegetative cells not detected ×: spore cells and vegetative cells detected [0030]
[Example 2]
Sterilization was performed in the same manner as in Example 1 except that the absorbed dose of γ-rays and the water content of the rayon nonwoven fabric were changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0031]
[Example 3]
Sterilization was performed in the same manner as in Example 2 except that the rayon nonwoven fabric (rayon 50 wt%, PET 50 wt%, basis weight 55 g / m 2 , width 15 cm, length 120 cm) was used instead of the rayon nonwoven fabric of Example 1. Was. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0032]
[Example 4]
Sterilization was performed in the same manner as in Example 1 except that the absorbed dose of γ-rays and the water content of the rayon nonwoven fabric were changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0033]
[Example 5]
Sterilization was performed in the same manner as in Example 4 except that the absorbed dose of γ-ray was changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0034]
[Example 6]
Sterilization was carried out in the same manner as in Example 1 except that the absorbed dose of γ-rays and the water content of the rayon nonwoven fabric were changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0035]
[Example 7]
Sterilization was performed in the same manner as in Example 1 except that the atmosphere was changed to a nitrogen atmosphere. Then, the sterilizing property and the intensity of the off-odor accompanying the sterilizing were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[0036]
[Comparative Example 1]
Sterilization was carried out in the same manner as in Example 1 except that the amount of water in the rayon nonwoven fabric was changed as shown in Table 1. Then, the sterilizing property and the intensity of the off-odor accompanying the sterilizing were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[0037]
[Comparative Example 2]
Sterilization was carried out in the same manner as in Comparative Example 1, except that the absorbed dose of γ-rays and the water content of the rayon nonwoven fabric were changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0038]
[Comparative Example 3]
Sterilization was performed in the same manner as in Example 3 except that the amount of water in the rayon nonwoven fabric was changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0039]
[Comparative Example 4]
Sterilization was performed in the same manner as in Example 4 except that the absorbed dose of γ-ray was changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0040]
[Comparative Example 5]
Sterilization was performed in the same manner as in Example 5 except that the water content of the rayon nonwoven fabric was changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0041]
[Comparative Example 6]
Sterilization was performed in the same manner as in Example 1 except that the water content of the rayon nonwoven fabric was changed as shown in Table 1. Then, the sterilization and the strength of the off-flavor accompanying sterilization (excluding the evaluation by GC-MS) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0042]
[Table 1]
Figure 2004223181
[0043]
[Table 2]
Figure 2004223181
[0044]
As shown in Table 1, it was confirmed that the rayon nonwoven fabric sterilized by the method of the example had little generation of an unpleasant odor due to the sterilization and had good sterilization properties. On the other hand, it was confirmed that the non-woven fabric sterilized by the method of the comparative example increased the amount of off-flavor accompanying sterilization. Further, as shown in Table 2, in Example 1 containing water, aldehydes and carboxyls having a strong odor intensity were suppressed to be low, and the odor intensity was about one-fifth as compared with Comparative Example 1. It was confirmed that the result of evaluation of odor by the sensory test 1 and the result of analysis by the mass spectrometer were consistent. These results were substantially the same in Example 7 performed in a nitrogen atmosphere.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the sterilization method of the textile product of this invention, generation | occurrence | production of an unpleasant odor accompanying irradiation of radiation can be sterilized easily and reliably.

Claims (3)

セルロース系繊維を主体とする繊維製品に放射線を照射して殺菌する繊維製品の殺菌方法において、
前記繊維製品における前記セルロース系繊維の水分量を11〜70%とし、該繊維製品に放射線を吸収線量で3〜20kGy照射することを特徴とする繊維製品の殺菌方法。
In a sterilization method of textile products that sterilize by irradiating radiation to textile products mainly composed of cellulosic fibers,
A method for sterilizing a textile product, wherein the moisture content of the cellulosic fiber in the textile product is 11 to 70%, and the textile product is irradiated with radiation at an absorbed dose of 3 to 20 kGy.
前記放射線がγ線である請求項1記載の繊維製品の殺菌方法。The method for sterilizing textile products according to claim 1, wherein the radiation is gamma rays. 前記セルロース系繊維がレーヨンである請求項1又は2記載の繊維製品の殺菌方法。3. The method according to claim 1, wherein the cellulosic fiber is rayon.
JP2003018076A 2003-01-27 2003-01-27 Sterilization method of textile goods Pending JP2004223181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018076A JP2004223181A (en) 2003-01-27 2003-01-27 Sterilization method of textile goods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018076A JP2004223181A (en) 2003-01-27 2003-01-27 Sterilization method of textile goods

Publications (1)

Publication Number Publication Date
JP2004223181A true JP2004223181A (en) 2004-08-12

Family

ID=32905043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018076A Pending JP2004223181A (en) 2003-01-27 2003-01-27 Sterilization method of textile goods

Country Status (1)

Country Link
JP (1) JP2004223181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582882A (en) * 2011-01-18 2012-07-18 紫罗兰家纺科技股份有限公司 Comprehensive sterilization and nutrient adding production line for home textiles and clothing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582882A (en) * 2011-01-18 2012-07-18 紫罗兰家纺科技股份有限公司 Comprehensive sterilization and nutrient adding production line for home textiles and clothing

Similar Documents

Publication Publication Date Title
CA2138892C (en) Radiochemical sterilization
US8192764B2 (en) Silver-containing antimicrobial articles and methods of manufacture
AU2005334259B2 (en) Room decontamination with hydrogen peroxide vapor
JP6130869B2 (en) Tissue paper
EP2566524A1 (en) Plasma-generated gas sterilization method
WO2000025940A1 (en) Light-activated antimicrobial and antiviral materials
Mrázová et al. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization
US5738861A (en) Method and composition for disinfection of a contaminated environment
Epelle et al. Application of ultraviolet-c radiation and gaseous ozone for microbial inactivation on different materials
KR101172928B1 (en) Deodorant composition for textiles or fabric products
US10293064B1 (en) Systems and methods for tissue sterilization
FI74584C (en) VAETSKESTERILISERINGSKOMPOSITION.
EP1174029A1 (en) Bactericidal organic polymeric material
WO2012098772A1 (en) Disinfection method, disinfection device, and disinfecting agent utilizing light
JP2004223181A (en) Sterilization method of textile goods
KR100593037B1 (en) Deodorant composition for textiles or fabric
KR101731441B1 (en) Method controlling of postharvest disease of citrus fruit by combining ionizing radiantion and sodium dichloroisocyanurate and citrus fruit produced by the method
Mehrizi et al. Effect of Chitosan, Aluminum Oxide and Silver Nanoparticles on Antibacterial, Deodorizing and Moisture Absorption Properties of Nonwoven Polyester Fabrics for Use in Medical Textiles.
KR20080087499A (en) Fabric softener composition having sterilizing and deodorizing effects
Kramer et al. Plasma application for hygienic purposes in medicine, industry, and biotechnology: Update 2017
KR100735741B1 (en) A packaging method using charcoal to eliminate the off-odor of irradiated foods
Ranjan et al. Sterilization technique
Leow-Dyke et al. The efficacy and sterilisation of human decellularised dermal allografts with combinations of cupric ions and hydrogen peroxide
Alshammari et al. Sterilization of paper during crisis
DE102007040742A1 (en) Air purifier, useful for neutralizing bad smells, preferably for air purification in refrigerators, and for controlling bad smells e.g. in textiles and vacuum cleaners, comprises a silver zeolite with a nanoparticulate metallic silver