JP2004222507A - Method for producing oligosaccharide sugar alcohol - Google Patents

Method for producing oligosaccharide sugar alcohol Download PDF

Info

Publication number
JP2004222507A
JP2004222507A JP2003010448A JP2003010448A JP2004222507A JP 2004222507 A JP2004222507 A JP 2004222507A JP 2003010448 A JP2003010448 A JP 2003010448A JP 2003010448 A JP2003010448 A JP 2003010448A JP 2004222507 A JP2004222507 A JP 2004222507A
Authority
JP
Japan
Prior art keywords
sugar alcohol
glucose
clostridium
phosphate
oligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003010448A
Other languages
Japanese (ja)
Inventor
Masayuki Suzuki
雅之 鈴木
Hajime Taniguchi
肇 谷口
Kiyoshi Hayashi
清 林
Motomitsu Kitaoka
本光 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Nikken Chemical and Synthetic Industry Co Ltd
Original Assignee
National Food Research Institute
Nikken Chemical and Synthetic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute, Nikken Chemical and Synthetic Industry Co Ltd filed Critical National Food Research Institute
Priority to JP2003010448A priority Critical patent/JP2004222507A/en
Publication of JP2004222507A publication Critical patent/JP2004222507A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce an oligosaccharide sugar alcohol having one molecule of glucose in the molecule. <P>SOLUTION: A method for producing the oligosaccharide sugar alcohol comprises making cellobiose phosphorylase act on a sugar alcohol and α-glucose-1-phosphate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
少糖類糖アルコ−ルの製造法に関し、詳しくは糖アルコ−ルおよびα−グルコ−ス−1−リン酸に、セロビオ−スホスホリラ−ゼを作用させることを特徴とする少糖類糖アルコ−ルの製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
少糖類糖アルコ−ルの合成に用いられる酵素として、グルコシダ−ゼ、ガラクトシダ−ゼ、アミラ−ゼ、シクロデキストリングルカノトランスフェラ−ゼまたはフラクトシルトランスフェラ−ゼなどが知られている。一般的に、これら加水分解が触媒する縮合反応や糖転移酵素が触媒する転移反応を利用して糖類を合成する場合、反応生成糖の結合部位および/または重合度が均一ではなく、従って、純度の高い生成物を得にくいという問題点がある。
【0003】
この問題を解決する一法として、転移酵素の一種であるスクロ−スホスホリラ−ゼを利用してグルコ−ス−1−リン酸またはスクロ−スと、糖アルコ−ルとから、グルコ−スと糖アルコ−ルが結合した糖化合物、詳しくはα−D−グルコピラノシル−キシリト−ル、α−D−グルコピラノシル−アラビト−ル、α−D−グルコピラノシル−リビトールを効率良く高純度に製造する方法が知られている(例えば、特許文献1参照。)。しかし、この方法ではβ−グリコシド結合を有する二糖類糖アルコ−ルを製造することはできなかった。
【0004】
セロビオ−スホスホリラ−ゼは、セロビオ−ス分子中のβ−1,4−グルコシド結合の加リン酸分解を触媒する酵素であり、グルコ−スとα−グルコ−ス−1−リン酸を生成する(例えば、非特許文献1参照。)。このセロビオ−スホスホリラ−ゼが触媒する反応は可逆的であり、グルコシル基受容体の基質特異性の低さを利用し、α−グルコ−ス−1−リン酸と種々の糖類から、多用なヘテロオリゴ糖が合成されている(例えば、特許文献2、特許文献3、非特許文献2および非特許文献3参照。)。しかし、当該酵素が糖アルコ−ルをグルコシル基受容体とすることは知られていない。
【0005】
【特許文献1】
特開平05−091891号公報
【特許文献2】
特公平05−33035号公報
【特許文献3】
特開2001−204489号公報
【非特許文献1】
ティ−.・ササキ(T. Sasaki)、他、「ザジャ−ナルオブバイオケミストリ−(The Journal of Biochemistry)」、1992年、209、p.803−807
【0006】
【非特許文献2】
エ−.・パ−シ−(A. Percy)、他、「カルボハイドレ−トリサ−チ(Carbohydrate Research)」、1998年、第305巻、p.543−548
【非特許文献3】
エ−.・パ−シ−(A. Percy)、他、「カルボハイドレ−トリサ−チ(Carbohydrate Research)」、1998年、第308巻、p.423−429
【0007】
【課題を解決するための手段】
そこで、本発明者らは糖アルコ−ルおよびα−グルコ−ス−1−リン酸にセロビオ−スホスホリラ−ゼを作用させ、得られた少糖類糖アルコ−ルの構造を精査し、この知見に基づいて本発明を完成した。
【0008】
【発明の実施の形態】
以下に、本発明について具体例を挙げて更に詳細に説明する。本発明は、グルコ−ス一分子がβ−グリコシド結合している少糖類糖アルコ−ルの製造方法に関する。
また、本発明は前記方法にて製造された、少糖類糖アルコ−ルを含有する組成物に関する。
【0009】
本発明で用いるセロビオ−スホスホリラ−ゼは、セルビブリオ・ギルバス(Cellvibrio gilvus) 、クロストリディウム・サ−モセラム(Clostridium thermocellum)、クロストリディウム・ステロコラリウム(Clostridium sterocorarium) 、サ−モトガ・ネアポリタナ(Thermotoga neapolitana)、サ−モトガ・マリティマ(Thermotoga maritima)、ルミノコッカス・フラボファシエンス(Ruminococcas flavofaciens)、フォメス・アノス(Fomes annos)、セルロモナス(Cellulomonas)属、エルウィニア(Erwinia) 属などの微生物起源の酵素が利用可能である。特に、セルビブリオ・ギルバス、サ−モトガ・マリティマ、クロストリディウム・サ−モセラム起源の当該酵素に関する情報量は豊富であり、また、取り扱いが容易であるため好ましい。本発明で用いるセロビオ−スホスホリラ−ゼの形態は特に限定されるものではなく、精製酵素の他に、粗酵素、酵素含有菌体、固定化酵素、遺伝子組み換え酵素などいかなる形態のものでも用いることができる。セロビオ−スホスホリラ−ゼの使用量は特に限定されるものではないが、好ましくは反応液1mLあたり0.0001単位以上1000単位以下であり、より好ましくは反応液1mLあたり0.001単位以上100単位以下である。なお、セロビオ−スホスホリラ−ゼ1単位とは、30℃、pH7.0においてセロビオ−ス、オルトリン酸塩から毎分1μmolのα−グルコ−ス−1−リン酸を生成する酵素量と定義する。
【0010】
本発明において原料として使用されるα−グルコ−ス−1−リン酸および糖アルコ−ルは、その起源に制限はなく、天然に存在するものであっても、化学的に合成されたものであってもよい。反応系におけるα−グルコ−ス−1−リン酸の濃度については、特に限定はないが、通常下限は1mM、好ましくは10mMである。
【0011】
もう一方の原料である糖アルコ−ルについても特に制限はないが、好ましくは単糖類糖アルコール、さらに好ましくはDL−スレイト−ル、 L−アラビト−ル、キシリト−ル、イノシト−ルおよびグルシトールなどを用いる。これらの濃度についても、特に限定はないが、本来の受容体基質であるグルコ−スに比し、高濃度に設定することが可能である。
【0012】
本発明においては、原料として用いる糖アルコ−ルにそれぞれグルコシル基が結合した少糖類糖アルコ−ルが製造される。糖アルコ−ルとして、例えばDL−スレイト−ル、 L−アラビト−ル、キシリト−ル、リビトール、イノシト−ルおよびグルシトールを用いた場合には、それぞれβ1−グルコシル→1−スレイト−ル、β1−グルコシル→4−アラビト−ル、β1−グルコシル→2or4−キシリト−ル、β1−グルコシル→ 2or4−リビトール、β1−グルコシル→1−イノシト−ルおよびβ1−グルコシル→4−グルシトール(セロビトール)が製造される。
【0013】
酵素反応は任意の形態で行うことができるが、通常は純水あるいは緩衝液、例えばトリス−塩酸緩衝液、リン酸緩衝液、3−(N−モノホリノ)プロパンスルホン酸(MOPS)緩衝液等の水溶液中で実施する。糖アルコール、α−グルコ−ス−1−リン酸および酵素は、いかなる方法で反応液に添加しても差し支えないが、通常は酵素以外のものを溶解した反応液に酵素を加えることにより、反応を開始する。当該反応液を上記酵素が失活しない程度の温度範囲に維持し、反応を行う。反応温度は、著しく酵素活性が低下しない限り特に限定されないが、通常0℃以上100℃以下、好ましくは10℃以上90℃以下である。また、反応液のpHについても酵素が失活しない範囲内であればよく、通常pH3〜10、好ましくはpH5〜9の範囲で行う。
【0014】
反応時間についても特に限定されないが、目的とする少糖類糖アルコ−ルの収率が最大になったところで終了すればよく、通常は1分〜数百時間の範囲で糖アルコール、α−グルコ−ス−1−リン酸の濃度および酵素濃度を考慮して適宜決定すればよい。酵素反応終了後、必要に応じて生成した少糖類糖アルコ−ルを既知の方法により分離することができる。
【0015】
【実施例】
本発明を実施例により詳しく説明するが、本発明はこれらにより限定されるものではない。
【0016】
実施例1〜3に共通の反応条件は以下のとおりである。
50mM MOPS緩衝液(pH7.0)中に、最終濃度が20mMのα−グルコ−ス−1−リン酸、各種糖アルコ−ル水溶液(エリスリト−ル、DL−スレイト−ル、D−アラビト−ル、L−アラビト−ル、キシリト−ル、リビトール、イノシト−ル、グルシト−ル、マンニト−ル、セロビト−ル、マルチト−ルおよびラクチト−ルは最終濃度100mMに調製、ガラクチト−ルは飽和水溶液)、精製セロビオ−スホスホリラ−ゼ標品(セルビブリオ・ギルバスもしくはサ−モトガ・マリティマもしくはクロストリディウム・サ−モセラム起源)および安定化剤として終濃度2.0mg/mLの牛血清アルブミンを添加し、48時間反応させた。反応終了後、反応液を適宜希釈し、モリブデン−青法にて遊離リン酸量を測定した。これを生成少糖類糖アルコ−ル量とした。
【0017】
(実施例1)
0.098 単位 /mLのセロビオ−スホスホリラ−ゼ(セルビブリオ・ギルバス起源)を用い、37℃にて反応させた。
【0018】
(実施例2)
0.050単位/mLのセロビオ−スホスホリラ−ゼ(サ−モトガ・マリティマ起源)を用い、60℃にて反応させた。
【0019】
(実施例3)
0.181単位/mLのセロビオ−スホスホリラ−ゼ(クロストリディウム・サ−モセラム起源)を用い、60℃にて反応させた。
【0020】
実施例1〜3で得られた結果を図1に示す。
【0021】
【図1】

Figure 2004222507
【0022】
(実施例4)
実施例2で、当該酵素をDL−スレイト−ル、L−アラビト−ル、キシリト−ル、リビトール、イノシト−ルおよびグルシトールへ作用させた際に反応液中に生成した二糖類糖アルコ−ルの構造を調べるため、これらの反応液を脱塩・脱タンパク質後、凍結乾燥させたものを、13C−NMR分析へ供した。得られた結果を表1に示す。得られたこれらの二糖類糖アルコ−ルは、化1に示されるように単糖類糖アルコ−ルにグルコ−ス一分子がβ−グリコシド結合している構造を有することが判明した。実施例2の他の生成物、実施例1および3で得られた他の生成物の構造は未解析であるが、化1に示されるような構造に類するものと推測される。
【0023】
【表1】
Figure 2004222507
【0024】
【化1】
Figure 2004222507
【0025】
【発明の効果】
本発明によれば、これまで製造が困難であったβ−グリコシド結合を有する少糖類糖アルコ−ルを簡便に製造することが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
More specifically, the present invention relates to a method for producing oligosaccharide sugar alcohols, which comprises reacting cellobiose phosphorylase with sugar alcohol and α-glucose-1-phosphate. It relates to a manufacturing method.
[0002]
Problems to be solved by the prior art and the invention
Known enzymes used for the synthesis of oligosaccharide sugar alcohol include glucosidase, galactosidase, amylase, cyclodextrin glucanotransferase and fructosyltransferase. In general, when a saccharide is synthesized by using a condensation reaction catalyzed by the hydrolysis or a transfer reaction catalyzed by a glycosyltransferase, the binding site and / or the degree of polymerization of the reaction product sugar is not uniform, and therefore, the purity is low. However, there is a problem that it is difficult to obtain a product having a high water content.
[0003]
One solution to this problem is to use glucose-phosphorylase, a type of transferase, to make glucose and sugar from glucose-1-phosphate or sugar and sugar alcohol. There is known a method for efficiently producing a sugar compound to which an alcohol is bound, more specifically, α-D-glucopyranosyl-xylitol, α-D-glucopyranosyl-arabitol, and α-D-glucopyranosyl-ribitol with high purity. (For example, see Patent Document 1). However, this method could not produce a disaccharide sugar alcohol having a β-glycoside bond.
[0004]
Cellobiose phosphorylase is an enzyme that catalyzes the phosphorolysis of β-1,4-glucoside bonds in cellobiose molecules, and produces glucose and α-glucose-1-phosphate. (For example, see Non-Patent Document 1.) The reaction catalyzed by cellobiose phosphorylase is reversible, and by utilizing the low substrate specificity of the glucosyl group receptor, a variety of hetero-oligosaccharides can be synthesized from α-glucose-1-phosphate and various saccharides. Sugars have been synthesized (for example, see Patent Literature 2, Patent Literature 3, Non-Patent Literature 2, and Non-Patent Literature 3). However, it is not known that the enzyme uses sugar alcohol as a glucosyl group acceptor.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 05/091891 [Patent Document 2]
Japanese Patent Publication No. Hei 05-33035 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2001-204489 [Non-Patent Document 1]
Tee. Sasaki (T. Sasaki), et al., "The Journal of Biochemistry", 1992, 209, p. 803-807
[0006]
[Non-patent document 2]
D. A. Percy, et al., "Carbohydrate Research", 1998, Vol. 305, p. 543-548
[Non-Patent Document 3]
D. A. Percy, et al., "Carbohydrate Research", 1998, Vol. 308, p. 423-429
[0007]
[Means for Solving the Problems]
Then, the present inventors made cellobiose phosphorylase act on sugar alcohol and α-glucose-1-phosphate, examined the structure of the obtained oligosaccharide sugar alcohol, and obtained Based on this, the present invention has been completed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to specific examples. The present invention relates to a method for producing an oligosaccharide sugar alcohol in which one glucose molecule has a β-glycosidic bond.
The present invention also relates to a composition containing the oligosaccharide sugar alcohol produced by the above method.
[0009]
Suhosuhorira - - cellobiose used in the present invention Ze, the cell Vibrio Girubasu (Cellvibrio gilvus), Clostridium Sa - Moseramu (Clostridium thermocellum), Clostridium & sterol kola potassium (Clostridium sterocorarium), Sa - Motoga & neapolitana (Thermotoga neapolitana), Sa - Motoga maritima (Thermotoga maritima), lumino Staphylococcus-flavonol tumefaciens (Ruminococcas flavofaciens), Fomesu-Anosu (Fomes annos), Cellulomonas (Cellulomonas) genus, microbial origin, such as Erwinia (Erwinia) genus Use of enzymes It is possible. In particular, the amount of information on the enzyme originating from Cervibrio gilbas, Thermotoga maritima, and Clostridium thermosera is abundant, and handling is easy, which is preferable. The form of cellobiose phosphorylase used in the present invention is not particularly limited, and in addition to the purified enzyme, any form such as a crude enzyme, an enzyme-containing cell, an immobilized enzyme, and a recombinant enzyme can be used. it can. The amount of cellobiose phosphorylase used is not particularly limited, but is preferably 0.0001 to 1000 units per 1 mL of the reaction solution, and more preferably 0.001 to 100 units per 1 mL of the reaction solution. It is. One unit of cellobiose phosphorylase is defined as an amount of an enzyme that produces 1 μmol of α-glucose-1-phosphate from cellobiose and orthophosphate at 30 ° C. and pH 7.0 per minute.
[0010]
The α-glucose-1-phosphate and sugar alcohol used as raw materials in the present invention are not limited in their origin, and may be naturally occurring or chemically synthesized. There may be. The concentration of α-glucose-1-phosphate in the reaction system is not particularly limited, but the lower limit is usually 1 mM, preferably 10 mM.
[0011]
The other raw material, sugar alcohol, is not particularly limited, but is preferably a monosaccharide sugar alcohol, more preferably DL-threitol, L-arabitol, xylitol, inositol, and glucitol. Is used. There is no particular limitation on the concentration, but it can be set to a higher concentration than glucose, which is the original receptor substrate.
[0012]
In the present invention, oligosaccharide sugar alcohols in which glucosyl groups are bonded to sugar alcohols used as raw materials are produced. When DL-threitol, L-arabitol, xylitol, xylitol, ribitol, inositol and glucitol are used as the sugar alcohol, for example, β1-glucosyl → 1-threitol, β1- Glucosyl → 4-arabitol, β1-glucosyl → 2or4-xylitol, β1-glucosyl → 2or4-ribitol, β1-glucosyl → 1-inositol, and β1-glucosyl → 4-glucitol (serobitol) are produced. .
[0013]
The enzymatic reaction can be carried out in any form, but usually, pure water or a buffer such as a tris-hydrochloride buffer, a phosphate buffer, a 3- (N-monophorino) propanesulfonic acid (MOPS) buffer or the like is used. Performed in aqueous solution. The sugar alcohol, α-glucose-1-phosphate and the enzyme may be added to the reaction solution by any method, but usually, the reaction is carried out by adding the enzyme to a reaction solution in which a substance other than the enzyme is dissolved. To start. The reaction is performed while maintaining the reaction solution in a temperature range that does not inactivate the enzyme. The reaction temperature is not particularly limited as long as the enzyme activity is not significantly reduced, but is usually 0 ° C to 100 ° C, preferably 10 ° C to 90 ° C. Also, the pH of the reaction solution may be within a range that does not inactivate the enzyme, and is usually in the range of pH 3 to 10, preferably in the range of pH 5 to 9.
[0014]
The reaction time is also not particularly limited, but may be terminated when the yield of the objective oligosaccharide sugar alcohol is maximized, and is usually from 1 minute to several hundred hours in the range of 1 minute to several hundred hours. The concentration may be appropriately determined in consideration of the concentration of su-1-phosphate and the enzyme concentration. After completion of the enzymatic reaction, the produced oligosaccharide sugar alcohol can be separated by a known method, if necessary.
[0015]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0016]
The reaction conditions common to Examples 1 to 3 are as follows.
Α-glucose-1-phosphate having a final concentration of 20 mM in a 50 mM MOPS buffer (pH 7.0), various sugar alcohol aqueous solutions (erythritol, DL-sitol, D-arabitol) , L-arabitol, xylitol, ribitol, inositol, glucitol, mannitol, celloitol, multitol and lactitol were prepared to a final concentration of 100 mM, and galactitol was a saturated aqueous solution. And purified cellobiose phosphorylase standard (derived from Cervibrio gilvas or Thermotoga maritima or Clostridium thermosera) and bovine serum albumin at a final concentration of 2.0 mg / mL as a stabilizer. For 48 hours. After completion of the reaction, the reaction solution was appropriately diluted, and the amount of free phosphoric acid was measured by a molybdenum-blue method. This was defined as the amount of the produced oligosaccharide sugar alcohol.
[0017]
(Example 1)
The reaction was carried out at 37 ° C. using 0.098 units / mL of cellobiose phosphorylase (derived from Cervibrio gilvas).
[0018]
(Example 2)
The reaction was carried out at 60 ° C. using 0.050 unit / mL of cellobiose phosphorylase (from Thermotoga maritima).
[0019]
(Example 3)
The reaction was carried out at 60 ° C. using 0.181 units / mL of cellobiose phosphorylase (from Clostridium thermocellum).
[0020]
FIG. 1 shows the results obtained in Examples 1 to 3.
[0021]
FIG.
Figure 2004222507
[0022]
(Example 4)
In Example 2, the disaccharide sugar alcohol formed in the reaction solution when the enzyme was allowed to act on DL-threitol, L-arabitol, xylitol, ribitol, inositol and glucitol In order to examine the structure, these reaction solutions were desalted, deproteinized, and lyophilized, and subjected to 13 C-NMR analysis. Table 1 shows the obtained results. These disaccharide sugar alcohols thus obtained were found to have a structure in which one molecule of glucose was linked to a monosaccharide sugar alcohol by β-glycoside, as shown in Chemical formula 1. The structures of the other products of Example 2 and the other products obtained in Examples 1 and 3 have not been analyzed, but are presumed to be similar to the structures shown in Chemical formula 1.
[0023]
[Table 1]
Figure 2004222507
[0024]
Embedded image
Figure 2004222507
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it became possible to manufacture easily the oligosaccharide saccharide | sugar alcohol which has (beta) -glycosidic bond which was difficult to manufacture until now.

Claims (5)

糖アルコ−ルおよびα−グルコ−ス−1−リン酸にセロビオ−スホスホリラ−ゼを作用させ、グルコ−ス一分子がβ−グリコシド結合している少糖類糖アルコ−ルを生成させることを特徴とする少糖類糖アルコ−ルの製造方法。Celloose phosphorylase is allowed to act on sugar alcohol and α-glucose-1-phosphate to produce oligosaccharide sugar alcohol in which one glucose molecule is β-glycosidically linked. A method for producing oligosaccharide sugar alcohol. 糖アルコ−ルがエリスリト−ル、DL−スレイト−ル、D−アラビト−ル、L−アラビト−ル、キシリト−ル、リビトール、イノシト−ル、ガラクチト−ル、グルシト−ル、マンニト−ル、セロビト−ル、マルチト−ルおよびラクチト−ルなどから選ばれたものである請求項1に記載の方法。When the sugar alcohol is erythritol, DL-threitol, D-arabitol, L-arabitol, xylitol, ribitol, inositol, galactitol, glucitol, mannitol, cellobit 2. The method according to claim 1, wherein the method is selected from the group consisting of: 糖アルコ−ルおよび/またはα−グルコ−ス−1−リン酸が、反応系に連続的にまたは断続的に追加される請求項1および請求項2に記載の方法。The method according to claim 1 or 2, wherein the sugar alcohol and / or α-glucose-1-phosphate is added to the reaction system continuously or intermittently. セロビオ−スホスホリラ−ゼの起源がセルビブリオ・ギルバス(Cellvibrio gilvus) 、クロストリディウム・サ−モセラム(Clostridium thermocellum)、クロストリディウム・ステロコラリウム(Clostridium sterocorarium) 、サ−モトガ・ネアポリタナ(Thermotoga neapolitana)、サ−モトガ・マリティマ(Thermotoga maritima)、ルミノコッカス・フラボファシエンス(Ruminococcas flavofaciens)、フォメス・アノス(Fomes annos)、セルロモナス(Cellulomonas)属およびエルウィニア(Erwinia) 属の微生物の中から選ばれたものである請求項1〜請求項3に記載の方法。Cellobiose - Suhosuhorira - the origin of the zero cell Vibrio Girubasu (Cellvibrio gilvus), Clostridium Sa - Moseramu (Clostridium thermocellum), Clostridium-sterol Kola potassium (Clostridium sterocorarium), Sa - Motoga neapolitana (Thermotoga neapolitana), Sa - Motoga maritima (Thermotoga maritima), lumino Staphylococcus-flavonol tumefaciens (Ruminococcas flavofaciens), Fomesu-Anosu (Fomes annos), is selected from the group consisting of Cellulomonas (Cellulomonas) genus and Erwinia (Erwinia) microorganisms of the genus Is The method according to claim 1. 請求項1〜請求項4に記載の方法にて製造された、少糖類糖アルコ−ルを含有する組成物。A composition containing the oligosaccharide sugar alcohol produced by the method according to claim 1.
JP2003010448A 2003-01-17 2003-01-17 Method for producing oligosaccharide sugar alcohol Pending JP2004222507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010448A JP2004222507A (en) 2003-01-17 2003-01-17 Method for producing oligosaccharide sugar alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010448A JP2004222507A (en) 2003-01-17 2003-01-17 Method for producing oligosaccharide sugar alcohol

Publications (1)

Publication Number Publication Date
JP2004222507A true JP2004222507A (en) 2004-08-12

Family

ID=32899641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010448A Pending JP2004222507A (en) 2003-01-17 2003-01-17 Method for producing oligosaccharide sugar alcohol

Country Status (1)

Country Link
JP (1) JP2004222507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526290A (en) * 2010-05-21 2013-06-24 ウニフェルシテイト ヘント Method for producing glycoside by biocatalyst
WO2023105086A1 (en) 2021-12-10 2023-06-15 Gudiminchi Rama Krishna Use of glycosylated sugar alcohols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526290A (en) * 2010-05-21 2013-06-24 ウニフェルシテイト ヘント Method for producing glycoside by biocatalyst
WO2023105086A1 (en) 2021-12-10 2023-06-15 Gudiminchi Rama Krishna Use of glycosylated sugar alcohols

Similar Documents

Publication Publication Date Title
Williams et al. Glycosynthases: mutant glycosidases for glycoside synthesis
US20220127653A1 (en) Enzymatic production of mannose
KR20210096104A (en) Enzymatic production of hexoses
Okuyama Function and structure studies of GH family 31 and 97 α-glycosidases
TWI471418B (en) Cellobiose 2-epimeraze, its preparation and uses
Kim et al. Characterization of novel thermophilic alpha-glucosidase from Bifidobacterium longum
US8486664B2 (en) Enzymatic production of an ethylenically unsaturated glycoside using polysaccharides
Park et al. TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities
JP5930319B2 (en) Process for producing glycosides of acrylate derivatives using saccharides and glycosidases
JP2886249B2 (en) Galactosyl-maltooligosaccharide derivative, method for producing the same and method for measuring α-amylase activity
JP2004222507A (en) Method for producing oligosaccharide sugar alcohol
JP5933542B2 (en) Process for producing glycosides of acrylate derivatives using polysaccharides and glycosidases or glycosyltransferases
US8580538B2 (en) Enzymatic production of an ethylenically unsaturated glycoside
KR100735819B1 (en) Enzymatic preparation of highly purified maltooligosaccharide
KR100387286B1 (en) Method for production of isomaltooligosaccharides
Park et al. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae β-glycosidase
JP5319270B2 (en) Method for converting glucose to α-1,4-glucan
JP3064031B2 (en) New oligosaccharides and their production
KURIKI et al. Production of isomalto/branched-oligosaccharide syrup by using immobilized neopullulanase and preliminary evaluation of the syrup as a food additive
JP2754358B2 (en) Production method of glycosphingolipid
JP5714241B2 (en) α-Glucosidase, production method and use thereof
JP2527345B2 (en) Method for producing oligosaccharide or glycoside containing a-galactosyl group using a-galactosylfructoside as a starting material
JP3146361B1 (en) Method for producing hetero-oligosaccharide
JP2004222506A (en) METHOD FOR PRODUCING CELLOBIOSE FROM alpha-GLUCAN
Kitagawa et al. Discovery of a novel glucanohydrolase, 4-α-isomaltooligosylglucose 4-glucanohydrolase, that can be used for efficient production of isomaltose

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514