JP2004222456A - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP2004222456A
JP2004222456A JP2003008793A JP2003008793A JP2004222456A JP 2004222456 A JP2004222456 A JP 2004222456A JP 2003008793 A JP2003008793 A JP 2003008793A JP 2003008793 A JP2003008793 A JP 2003008793A JP 2004222456 A JP2004222456 A JP 2004222456A
Authority
JP
Japan
Prior art keywords
power
load
commercial
operation mode
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003008793A
Other languages
Japanese (ja)
Other versions
JP3786922B2 (en
Inventor
Masahiro Tominaga
昌弘 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electric Co Ltd
Original Assignee
Seiko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electric Co Ltd filed Critical Seiko Electric Co Ltd
Priority to JP2003008793A priority Critical patent/JP3786922B2/en
Publication of JP2004222456A publication Critical patent/JP2004222456A/en
Application granted granted Critical
Publication of JP3786922B2 publication Critical patent/JP3786922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage system wherein nighttime power can be effectively utilized and use of daytime power can be suppressed even if the power demand from a load exceeds the output capacity. <P>SOLUTION: The power storage system comprises: a two-way power converter 2 which functions as a converter when charging a storage battery 30 and as an inverter when discharging; a power selecting means 1 which is provided between a commercial power source 10, the two-way power converter 2 and the load 20, and selects power by switches MS1, MS2, and MS3; and a controlling means 4 which controls the switches. The switches MS1, MS2, and MS3 are controlled according to the modes: nighttime operation mode for nighttime electricity rate applied time period in which mode the storage battery 30 is charged and the load 20 is powered by the commercial power source 10; in the daytime discharge operation mode in which the load 20 is supplied with power only from the storage battery 20, and systematic supplementing operation mode in which the load 20 is supplied with power concurrently from the commercial power source 10 and the storage battery 30 according to the power consumption of the load 20. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電力会社の時間帯別契約メニューを利用し、夜間電力を蓄電し、夜間電力の供給時間帯以外の時間帯に放電することによって、電気料金の削減および負荷平準化を図る電力貯蔵システムに関する。
【0002】
【従来の技術】
電力会社においては、デイタイムや特定の時期の時間帯に消費されるピーク電力に対応できるように、原子力、水力、火力発電等による発電能力を設定し、電力需要量を予測しながら給電を制御している。電力の需要は、都市部においてはますます増加傾向にあり、ピーク電力の増加は、新たな発電設備の建設などの負担の増加につながっている。一方、夜間は、工場やオフィス等の電力利用が少なくなるため、電力の利用率が低下する。このようなデイタイムと夜間の電力需要量の大きな格差を平準化することを目的とした夜間電力利用促進割引制度が実施されている。夜間電力は、昼間電力に比べ安価で、化石燃料の使用割合が低いため二酸化炭素排出量が少なく、地球環境保全にも好都合である。
【0003】
夜間電力の利用技術としては、電力そのものを貯蔵する方法と、給湯設備や氷蓄熱のような熱エネルギーに変換して貯蔵する方法、あるいは揚水発電のように、位置のエネルギーとして貯蔵する方法等が考えられている。この中で、電力を貯蔵する方法の代表的なものは、夜間電力を蓄電池に貯蔵しておき、電力負荷の大きなデイタイムに蓄電池からの電力を消費する電力貯蔵システムである。この電力貯蔵システムによれば、需用者にとっての電力使用料金の低減効果があると共に、電力系統のボトムアップ、デイタイムのピーク電力抑制による平準化が可能になる。
【0004】
しかし、蓄電池の容量以上にデイタイムの電力消費が大きいことが当然起きる。
このような、蓄電容量以上の電力供給を負荷に行う場合の対策としては、例えば特開2000−308282号公報(特許文献1)や特開2000−295784号公報(特許文献2)に開示されているように系統切替手段を設け、負荷が蓄電池の容量を超えると、負荷への電力供給を蓄電池から商用電力に切り替えるものがある。
【0005】
他の対策としては、例えば特開2001−008385号公報(特許文献3)に開示されているように、一日の蓄電池放電パターンを予め数種類記憶しておいて、使用者がそのパターンを適宜選択することにより、蓄電池に充電される夜間電力を有効に、無駄なく使用するようにした電力貯蔵システムがある。
【0006】
また、特開平10−201129号公報(特許文献4)や特開平10−201130号公報(特許文献5)には、蓄電池への昼間の充電に太陽電池を用いることが開示されている。
【0007】
【特許文献1】特開2000−308282号公報
【特許文献2】特開2000−295784号公報
【特許文献3】特開2001−008385号公報
【特許文献4】特開平10−201129号公報
【特許文献5】特開平10−201130号公報
【0008】
【発明が解決しようとする課題】
以上のように、特許文献1〜5において提案された電力貯蔵システムにおいては、負荷に接続した蓄電池の蓄電電力が低下した場合、負荷の電力要求に応じられなくなるため、商用電力等に切り替えて負荷に電力を供給している。しかしながら、割安な夜間電気料金帯で蓄電した電力を有効に使い切らない事態が発生すると共にデイタイムの電気料金の電力を使用することとなり、電力貯蔵システムの目的が充分に達成されていなかった。
【0009】
そこで本発明は、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することのできる電力貯蔵システムを提供することを目的とする。
【0010】
【課題を解決するための手段】
前記課題を解決するため、本発明の電力貯蔵システムは、商用電力を直流電力に変換する整流手段と、整流された直流電力を貯蔵する蓄電手段と、前記蓄電手段に蓄電された直流電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する電力変換手段と、前記商用電力と前記電力変換手段により変換された交流電力を複数のスイッチを切り替えて選択的に負荷に供給する電力選択手段と、前記電力選択手段の複数のスイッチの制御を行う制御手段とを有し、前記制御手段は、夜間料金適用時間帯は前記商用電力から前記整流手段を介して前記蓄電手段に電力を供給するとともに前記負荷に電力を供給する夜間運転モードと、前記夜間料金適用時間帯以外の時間帯においては、前記負荷の消費電力が所定の値未満のときは前記蓄電手段からのみの前記負荷への電力供給を行う放電運転モードと、前記負荷の消費電力が前記所定の値以上のときは前記商用電力と前記蓄電手段からの前記負荷への電力供給を並行して行う系統補充運転モードの各モードに応じて前記複数のスイッチを制御するものである。
【0011】
本発明においては、夜間料金適用時間帯以外の蓄電手段からの放電を行うときに、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することができる。
【0012】
前記整流手段および前記電力変換手段を、両者の機能を備えた双方向電力変換器とすることにより、蓄電手段に対する充電動作時はコンバータとして動作するように、また、蓄電手段から負荷へ電力を放電動作時はインバータとして動作するように制御される。
【0013】
前記電力選択手段は、第1入力端子側が第1のスイッチを介して商用電力に接続され、第2入力端子側が第2のスイッチを介して前記電力変換手段に接続され、前記第1入力端子と前記第2の入力端子間の所定の中間タップが前記負荷に接続され、前記第1入力端子と前記第2の入力端子間に第3のスイッチが接続された単巻変成器とすることにより、複雑な電力調整回路を組み合わせることなく、2つの交流電源からの電力をバランスして負荷に並列供給することができる。
【0014】
また、前記蓄電手段の出力部と商用電力との接続点の商用電力側に停電検出手段と商用電源を遮断する遮断器を設けることにより、商用電源の給電中は蓄電手段の出力と商用電源で電流バランスしながら、所定の負荷に給電し、商用電源の停電を検出したら直ちに前記遮断器を開路するとともに蓄電手段の出力制御を自立運転可能とし、自立運転開始後に所定の負荷の全負荷電流を前記蓄電手段で給電するように制御することができる。これにより、蓄電手段で自立運転をした場合に起こる商用系統への逆潮流を防止することができる。
【0015】
【発明の実施の形態】
以下、本発明の電力貯蔵システムの実施の形態を、図1から図12を用いて説明する。
【0016】
図1は、本発明に係る電力貯蔵システムの実施の形態の構成を示すブロック図(単線図)である。同図において、本実施の形態の電力貯蔵システムは、商用電源10と蓄電手段3を構成する蓄電池30から負荷20への電力供給を切り替える電力選択手段1と、商用電源10からの交流電力を蓄電池30への充電のための直流電力に変換するコンバータと蓄電池30に蓄電された直流電力を交流電力に変換するインバータの両方の機能を有する双方向電力変換器2と、蓄電池30からなる蓄電手段3と、電力選択手段1と双方向電力変換器2を制御する制御手段4を備えている。さらに、商用電源の停電発生時にはその停電を検出し、本システムから商用電源側へ電力の逆潮流を防止する開閉手段を設けている。
【0017】
電力選択手段1は、3つの切替スイッチMS1,MS2,MS3と単巻変成器(バランストランスとも言われる)11とを備えている。
【0018】
双方向電力変換器2の主変換部は、スイッチング素子12より構成され、蓄電池30に対する充電動作時はコンバータとして動作するように、また、蓄電池30から負荷20へ電力を放電動作で供給する時はインバータとして動作するように、スイッチング制御部13により制御される。このようにスイッチング素子12を制御することによって、双方向電力変換器2の交流電流波形を基準正弦波に一致させるように制御し、充電および放電ができる双方向電力変換を可能にする。
【0019】
具体的には、次のようなスイッチング制御を行う。
(1)スイッチ素子12に入り切り指令を与えてスイッチング動作を行い入力電圧をパルス状にする。
(2)このパルスが任意区間において正弦波になるように制御を行う。
(3)この正弦波は充電時には充電電流を正弦波にし、放電時には出力電圧を正弦波にする。
(4)この制御により双方向電力変換器2において双方向の電力変換を可能にする。
【0020】
また、スイッチング制御時のパルス幅を大きくすると電流、電圧は大きくなり、パルス幅を小さくすると電流、電圧は小さくなる。蓄電手段3には、任意の電流で定電流充電を行う。充電電気量に近くなるとパルス幅を小さくして充電電流を小さくし、充電電気量完了まで充電を行う。放電動作時はパルス幅を変化させてインバータ出力電圧を変化させて蓄電手段3の放電を制御することができる。
【0021】
(1)スイッチ素子12に入り切り指令を与えてスイッチング動作を行い入力電圧をパルス状にする。
(2)任意の区間(本構成では100μS)においてオン・オフ動作を行う。素子がオン状態では電流を増加し、オフ状態では電流が減少する事を利用して任意区間における電流値を決定する。この電流値は任意区間のオン状態のパルス幅を広げると大きくなり、反対に狭めると小さくなる。これを利用して任意の区間全体(ここでは8mS)において電流値が正弦波になるようにパルス幅の制御を行う。
(3)この正弦波を充電時にはコンデンサCで平滑して直流電流として畜電池に充電を行う。放電時には商用周波数と同じ周波数にして負荷へ供給を行う。さらに、商用からの系統補充運転を行う場合は商用周波数と同期を合せてインバータ出力を行う。
(4)これらの制御により双方向電力変換器2において双方向の電力変換を可能にする。
【0022】
双方向電力変換器2には、リアクトルLと平滑コンデンサCが設けられており、蓄電池30への充電電流を平滑する。また、電力選択手段1と双方向電力変換器2との間には、蓄電池30への充電時には降圧し、蓄電池30からの放電時には昇圧するトランス15が設けられている。
【0023】
蓄電手段3には、蓄電池30の温度を検出する温度センサ14が設けられている。
【0024】
制御手段4は、本実施の形態ではCPUにより構成され、商用電源の電圧と電流、出力の電圧と電流および蓄電池の電圧と、内部タイマーの時刻情報に基づいて電力選択手段1の各スイッチを制御し、また双方向電力変換器2のインバータ機能およびコンバータ機能を制御する。
【0025】
単巻変成器11の動作原理を図2に示す。単巻変成器11の入力1側の巻数をn1、入力2側の巻数をn2とすると、出力側に流れる入力1側からの電流I1と入力2側からの電流I2との関係は、等アンペアターンの法則により、
I1*n1=I2*n2
で表される。出力が単巻変成器11の中間タップである場合はn1=n2となるためI1=I2となる。この原理を利用して商用電源10と蓄電池30からの系統補充運転を行う。
【0026】
なお、中間引出し端子の巻線比をn1:n2(n1≠n2)にすると、単巻変成器11を用いることでn2/n1倍のインバータ出力が可能となる。巻線比はスライダック、タップ切替およびその他の切替手段を用いることができる。
このように蓄電池出力が低下した場合でも巻線比を変えて商用電力を補充することにより、蓄電池の放電限界までいかようにも負荷に電力を供給できる。
【0027】
次に、本実施の形態における動作について、図3〜図7のフローチャートおよび図8〜図12の系統接続図を用いて説明する。
【0028】
1.定常運転
図3に示すステップ100において、放電開始時間帯、すなわち夜間料金時間帯以外の時間帯かどうかを判断する。これは、制御装置4のCPU内部のタイマー(図示せず)を用いて計時を行うことで可能である。放電開始時間帯であれば、ステップ110において、放電開始条件を満たしているかどうかを判断する。
放電開始条件は、本例では蓄電池電力残量、蓄電池温度、放電時間帯である。
【0029】
条件が成立しているときは、ステップ120で負荷電力が設定値(本例では3kVA)以上かどうかを判定する。設定値未満であれば、ステップ130で電力選択手段1のスイッチMS2とMS3を投入し、蓄電池30からのみの“電池”自立運転モードとする(図10)。負荷電力が設定値以上であれば、ステップ140で電力選択手段1のスイッチMS1,MS2,MS3を全て投入し、“電池”自立運転に対し商用電力を供給する系統補充運転モードとする(図11)。運転モードが決まると、ステップ150の放電運転出力制御を行う。
【0030】
ステップ160では、蓄電池残量、蓄電池温度、放電時間帯などの放電運転継続条件を監視する。不成立になると、ステップ170で放電運転停止および放電量記録処理を行う。これには、ステップ180の放電量監視処理を常時行っておく。ステップ190では、電力選択手段1のスイッチMS2を開き、スイッチMS1とMS3を閉じることにより電力分配切替を商用運転とする(図8)。
【0031】
2.非定常運転
図4に示すステップ200において、停電が発生すると、ステップ210で現在の運転状況を判定する。充電モードであれば、ステップ220で充電運転時非定常処理を行う。放電モード(系統補充運転モードも含む)であれば、ステップ230で放電運転時非定常処理を行う。商用運転モードであれば、ステップ240で商用運転時非定常処理を行う。ステップ250では、放電深度を判断する。
放電深度が超過であれば、ステップ260で均等充電要求フラグをセットする。
【0032】
すなわち、
(1)非定常運転において、蓄電池より負荷へ電力供給することで蓄電容量が減り、放電深度まで達するとステップ260動作。この間、商用は停電中。
(2)商用電力が停電から復帰した場合、本システムは非定常運転から定常運転(商用運転)へ移行する。この時フラグがセットされている場合、充電時間帯に充電を行う。
ステップ270では、停電発生記録を行う。(図12)
【0033】
3.充電制御(1)
図5に示すステップ300において、充電時間帯かどうかを判定する。充電時間帯であれば、ステップ310で充電の要否を判定し、充電要であればステップ310で電力選択手段1のスイッチMS1,MS2,MS3を投入して双方向電力変換器2を介して商用電源からの充電を行う(図9)。
【0034】
4.電池温度監視
図6のステップ400において、充電開始時の温度を記録する。ステップ410において、温度センサ14で計測した電池温度現在値と充電開始時の温度とを比較する。
ステップ420では充電終了かどうかを判断し、充電未終了の場合は、6℃以上の温度上昇があったかどうかを判定し、温度上昇があれば、ステップ440で充電停止フラグをセットし、充電を停止する。
【0035】
5.充電制御(2)
図7のステップ500において、電池電圧検出、電池温度検出処理を行う。ステップ510で充電諸量をセットする。
ここで、充電諸量とは、充電運転を行う場合、充電電気量に達するまでに段階的に充電電流値を減らして充電を行うときの電流値設定のことをいう。
次いで、ステップ520で低電流充電を行う。ステップ530では充電電気量に到達したかどうかを判定し、到達したら、ステップ540で電池電圧判定処理を行う。
【0036】
【発明の効果】
以上のように、本発明によれば、夜間料金適用時間帯以外の時間帯において、負荷の消費電力が前記所定の値以上のときは前記商用電力と前記蓄電手段からの前記負荷への電力供給を並行して行う機能を備えたことにより、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することができる。
【0037】
整流手段および電力変換手段を、両者の機能を備えた双方向電力変換器とすることにより、蓄電手段に対する充電動作時はコンバータとして動作するように、また、蓄電手段から負荷へ電力を放電動作時はインバータとして動作するように制御される。
【0038】
電力選択手段を、3つのスイッチと単巻変成器で構成することにより、複雑な電力調整回路を組み合わせることなく、2つの交流電源からの電力をバランスして負荷に並列供給することができる。
【0039】
商用電力との間に商用電源を遮断する開閉器を設け、前記開閉器の商用電力側に停電検出手段を設けることにより、商用電力側で停電が発生した場合、開閉器をオープンすることで、蓄電手段で自立運転をした場合に起こる商用系統への逆潮流を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る電力貯蔵システムの実施の形態の構成を示すブロック図(単線図)である。
【図2】本発明の実施の形態における単巻変成器の動作を示す説明図である。
【図3】本発明の実施の形態における制御手段の動作を示すフローチャートである。
【図4】本発明の実施の形態における制御手段の動作を示すフローチャートである。
【図5】本発明の実施の形態における制御手段の動作を示すフローチャートである。
【図6】本発明の実施の形態における制御手段の動作を示すフローチャートである。
【図7】本発明の実施の形態における制御手段の動作を示すフローチャートである。
【図8】本発明の実施の形態における各運転モードの説明図である。
【図9】本発明の実施の形態における各運転モードの説明図である。
【図10】本発明の実施の形態における各運転モードの説明図である。
【図11】本発明の実施の形態における各運転モードの説明図である。
【図12】本発明の実施の形態における各運転モードの説明図である。
【符号の説明】
1 電力選択手段
2 双方向電力変換器
3 蓄電手段
4 制御手段
10 商用電源
11 単巻変成器
12 スイッチング素子
13 スイッチング制御部
14 温度センサ
15 トランス
20 負荷
30 蓄電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a power company's hourly contract menu to store nighttime electric power and discharge it during a time period other than the nighttime electric power supply time period, thereby reducing electric bills and leveling load. About the system.
[0002]
[Prior art]
Electricity companies set the power generation capacity by nuclear power, hydropower, thermal power generation, etc., so that they can respond to the peak power consumed during daytime and specific time periods, and control the power supply while forecasting the power demand are doing. The demand for power is increasing in urban areas, and the increase in peak power has led to an increase in the burden of constructing new power generation facilities. On the other hand, during nighttime, the power usage rate of the factory or office is reduced, so that the power usage rate is reduced. A nighttime power use promotion discount system has been implemented for the purpose of leveling out such a large difference between daytime and nighttime power demand. Nighttime power is cheaper than daytime power, and has a low proportion of fossil fuels, so it emits less carbon dioxide, which is convenient for global environmental protection.
[0003]
There are two types of nighttime power utilization technologies: a method of storing the power itself, a method of converting it to heat energy such as hot water supply equipment and ice heat storage, and a method of storing it as positional energy, such as pumped storage power generation. It is considered. Among them, a typical method of storing power is a power storage system that stores nighttime power in a storage battery and consumes power from the storage battery during daytime when the power load is large. According to this power storage system, there is an effect of reducing the power usage fee for the consumer, and it is possible to level up the power system from the bottom up and by suppressing the peak power during the daytime.
[0004]
However, it naturally happens that the power consumption during the daytime is greater than the capacity of the storage battery.
As a countermeasure for such a case in which a power supply equal to or larger than the storage capacity is performed to a load, for example, Japanese Patent Application Laid-Open No. 2000-308282 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-295784 (Patent Document 2) disclose. In some cases, a system switching means is provided to switch the power supply to the load from the storage battery to the commercial power when the load exceeds the capacity of the storage battery.
[0005]
As another countermeasure, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-008385 (Patent Document 3), several types of storage battery discharge patterns per day are stored in advance, and the user appropriately selects the pattern. Therefore, there is an electric power storage system in which nighttime electric power charged in a storage battery is used effectively and without waste.
[0006]
Further, Japanese Patent Application Laid-Open Nos. Hei 10-201129 (Patent Document 4) and Hei 10-201130 (Patent Document 5) disclose the use of a solar cell for daytime charging of a storage battery.
[0007]
[Patent Document 1] JP-A-2000-308282 [Patent Document 2] JP-A-2000-295784 [Patent Document 3] JP-A-2001-008385 [Patent Document 4] JP-A 10-201129 [Patent] Document 5: JP-A-10-201130
[Problems to be solved by the invention]
As described above, in the power storage systems proposed in Patent Documents 1 to 5, when the storage power of the storage battery connected to the load decreases, the power storage system cannot respond to the power request of the load. Power. However, a situation occurs in which the power stored in the cheap nighttime electricity rate band is not effectively used up, and the power of the daytime electricity rate is used, so that the purpose of the power storage system has not been sufficiently achieved.
[0009]
Therefore, the present invention is to reduce the effective use of nighttime power and the suppression of daytime power by effectively using up the power stored in the power storage means even when the load requests a power larger than the output capacity. It is an object of the present invention to provide a power storage system which can be used.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a power storage system of the present invention includes a rectifier that converts commercial power into DC power, a power storage unit that stores rectified DC power, and a DC power stored in the power storage unit. Power conversion means for converting AC power substantially equal to the voltage and frequency of the commercial power, and power selection means for selectively supplying the AC power converted by the commercial power and the power conversion means to a load by switching a plurality of switches And control means for controlling a plurality of switches of the power selection means, wherein the control means supplies power from the commercial power to the power storage means via the rectification means during a nightly charge application time zone. In addition, in the night operation mode for supplying power to the load, and in a time zone other than the night rate application time zone, when the power consumption of the load is less than a predetermined value, the storage is performed. A discharge operation mode for supplying power to the load only from the means, and when the power consumption of the load is equal to or more than the predetermined value, the commercial power and the power supply to the load from the power storage unit are performed in parallel. The plurality of switches are controlled in accordance with each of the system replenishment operation modes to be performed.
[0011]
In the present invention, when discharging from the power storage means other than the nightly charge application time zone, even when a load requires a power greater than the output capacity, by effectively using up the power stored in the power storage means, Effective use of nighttime power and use of daytime power can be suppressed.
[0012]
The rectifier and the power converter are bidirectional power converters having both functions, so that they operate as a converter when charging the power storage unit, and discharge power from the power storage unit to a load. During operation, it is controlled to operate as an inverter.
[0013]
The power selection means has a first input terminal connected to commercial power via a first switch, a second input terminal connected to the power conversion means via a second switch, and a first input terminal connected to the first input terminal. A predetermined intermediate tap between the second input terminals is connected to the load, and an autotransformer in which a third switch is connected between the first input terminal and the second input terminal, The power from the two AC power supplies can be balanced and supplied to the load in parallel without using a complicated power adjustment circuit.
[0014]
Further, by providing a power failure detection means and a circuit breaker for shutting off the commercial power supply on the commercial power side of a connection point between the output section of the power storage means and the commercial power, the output of the power storage means and the commercial power supply during power supply of the commercial power supply are provided. While the current is being balanced, power is supplied to a predetermined load, and upon detecting a power failure of the commercial power supply, the circuit breaker is opened immediately and the output control of the power storage means is allowed to operate independently, and after the self-sustaining operation starts, the full load current of the predetermined load is reduced. The power can be controlled to be supplied by the power storage means. As a result, it is possible to prevent reverse power flow to the commercial power system that occurs when the power storage unit performs the self-sustaining operation.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a power storage system of the present invention will be described with reference to FIGS.
[0016]
FIG. 1 is a block diagram (single line diagram) showing a configuration of an embodiment of a power storage system according to the present invention. In FIG. 1, a power storage system according to the present embodiment includes a power source selecting unit 1 for switching power supply from a commercial power source 10 and a storage battery 30 constituting a power storage unit 3 to a load 20, and an AC power source from the commercial power source 10 Bidirectional power converter 2 having both functions of a converter for converting DC power for charging battery 30 and an inverter for converting DC power stored in storage battery 30 to AC power, and power storage means 3 including storage battery 30 And a control means 4 for controlling the power selection means 1 and the bidirectional power converter 2. Further, when a power failure occurs in the commercial power supply, an opening / closing means for detecting the power failure and preventing reverse power flow from the present system to the commercial power supply side is provided.
[0017]
The power selection means 1 includes three changeover switches MS1, MS2, MS3 and an autotransformer (also called a balance transformer) 11.
[0018]
The main conversion unit of the bidirectional power converter 2 is configured by the switching element 12 so as to operate as a converter when charging the storage battery 30 and to supply power from the storage battery 30 to the load 20 by discharging. It is controlled by the switching control unit 13 to operate as an inverter. By controlling the switching element 12 in this way, the alternating current waveform of the bidirectional power converter 2 is controlled so as to match the reference sine wave, thereby enabling bidirectional power conversion in which charging and discharging can be performed.
[0019]
Specifically, the following switching control is performed.
(1) The switching voltage is input to the switch element 12 to give a command to perform a switching operation, and the input voltage is pulsed.
(2) Control is performed so that this pulse becomes a sine wave in an arbitrary section.
(3) This sine wave makes the charging current a sine wave during charging, and makes the output voltage a sine wave during discharging.
(4) This control enables bidirectional power conversion in the bidirectional power converter 2.
[0020]
When the pulse width during the switching control is increased, the current and the voltage are increased, and when the pulse width is reduced, the current and the voltage are decreased. The storage means 3 is charged at a constant current with an arbitrary current. When the charge amount approaches the charge amount, the pulse width is reduced to reduce the charge current, and charging is performed until the charge amount is completed. During the discharging operation, the discharge of the power storage means 3 can be controlled by changing the pulse width and the inverter output voltage.
[0021]
(1) The switching voltage is input to the switch element 12 to give a command to perform a switching operation, and the input voltage is pulsed.
(2) On / off operation is performed in an arbitrary section (100 μS in this configuration). The current value in an arbitrary section is determined by utilizing the fact that the current increases when the element is on and decreases when the element is off. This current value increases as the pulse width of the ON state in an arbitrary section increases, and decreases when the pulse width decreases. By utilizing this, the pulse width is controlled so that the current value becomes a sine wave in the entire arbitrary section (here, 8 mS).
(3) When charging the sine wave, the storage battery is charged as a DC current by smoothing with the capacitor C. At the time of discharging, the power is supplied to the load at the same frequency as the commercial frequency. Further, when performing a system replenishment operation from a commercial operation, the inverter output is performed in synchronization with the commercial frequency.
(4) These controls enable bidirectional power conversion in the bidirectional power converter 2.
[0022]
The bidirectional power converter 2 is provided with a reactor L and a smoothing capacitor C, and smoothes a charging current to the storage battery 30. Further, a transformer 15 is provided between the power selection means 1 and the bidirectional power converter 2 to step down when the storage battery 30 is charged and to step up when discharging the storage battery 30.
[0023]
The power storage means 3 is provided with a temperature sensor 14 for detecting the temperature of the storage battery 30.
[0024]
The control means 4 is constituted by a CPU in the present embodiment, and controls each switch of the power selection means 1 based on the voltage and current of the commercial power supply, the output voltage and current, the voltage of the storage battery, and the time information of the internal timer. And controls the inverter function and the converter function of the bidirectional power converter 2.
[0025]
The principle of operation of the autotransformer 11 is shown in FIG. Assuming that the number of turns on the input 1 side of the autotransformer 11 is n1 and the number of turns on the input 2 side is n2, the relationship between the current I1 from the input 1 side flowing to the output side and the current I2 from the input 2 side is equal amperes. By the law of turn,
I1 * n1 = I2 * n2
Is represented by When the output is the intermediate tap of the autotransformer 11, n1 = n2, and therefore I1 = I2. By utilizing this principle, a system replenishment operation from the commercial power supply 10 and the storage battery 30 is performed.
[0026]
When the winding ratio of the intermediate lead terminal is n1: n2 (n1 ≠ n2), the use of the autotransformer 11 enables n2 / n1 times the inverter output. As for the turns ratio, a sliderack, tap switching and other switching means can be used.
In this way, even when the output of the storage battery is reduced, by supplying the commercial power by changing the winding ratio, power can be supplied to the load in any way up to the discharge limit of the storage battery.
[0027]
Next, the operation in the present embodiment will be described with reference to the flowcharts of FIGS. 3 to 7 and the system connection diagrams of FIGS.
[0028]
1. Steady-state operation In step 100 shown in FIG. 3, it is determined whether the current time is in a discharge start time zone, that is, a time zone other than a nightly charge time zone. This can be done by using a timer (not shown) inside the CPU of the control device 4 to measure time. If it is the discharge start time zone, it is determined in step 110 whether the discharge start condition is satisfied.
The discharge start conditions in this example are the remaining amount of the storage battery power, the storage battery temperature, and the discharge time zone.
[0029]
If the condition is satisfied, it is determined in step 120 whether the load power is equal to or greater than a set value (3 kVA in this example). If it is less than the set value, the switches MS2 and MS3 of the power selection means 1 are turned on in step 130, and the "battery" independent operation mode using only the storage battery 30 is set (FIG. 10). If the load power is equal to or greater than the set value, all switches MS1, MS2 and MS3 of the power selecting means 1 are turned on in step 140 to set the system replenishment operation mode for supplying commercial power to the "battery" independent operation (FIG. 11). ). When the operation mode is determined, the discharge operation output control of step 150 is performed.
[0030]
In step 160, the discharge operation continuation conditions such as the remaining amount of the storage battery, the storage battery temperature, and the discharge time zone are monitored. If the condition is not satisfied, the discharge operation is stopped and the discharge amount is recorded in step 170. For this purpose, the discharge amount monitoring process of step 180 is always performed. In step 190, the switch MS2 of the power selection means 1 is opened, and the switches MS1 and MS3 are closed to switch the power distribution to commercial operation (FIG. 8).
[0031]
2. Unsteady operation When a power failure occurs in step 200 shown in FIG. 4, the current operation state is determined in step 210. If it is the charging mode, the charging operation unsteady process is performed in step 220. If it is the discharge mode (including the system replenishment operation mode), the discharge operation unsteady process is performed in step 230. If it is in the commercial operation mode, the commercial operation unsteady process is performed in step 240. In step 250, the depth of discharge is determined.
If the depth of discharge is exceeded, at step 260, an equal charge request flag is set.
[0032]
That is,
(1) In the non-stationary operation, when the storage capacity is reduced by supplying power from the storage battery to the load and reaches the depth of discharge, the operation of step 260 is performed. During this time, commercial power is down.
(2) When the commercial power returns from the power failure, the system shifts from the unsteady operation to the steady operation (commercial operation). At this time, if the flag is set, charging is performed during the charging time zone.
In step 270, power failure occurrence recording is performed. (FIG. 12)
[0033]
3. Charge control (1)
In step 300 shown in FIG. 5, it is determined whether or not the charging time period. If it is the charging time zone, it is determined in step 310 whether or not charging is necessary. If charging is necessary, the switches MS1, MS2 and MS3 of the power selecting means 1 are turned on in step 310 and the bidirectional power converter 2 Charge from commercial power supply (FIG. 9).
[0034]
4. Battery temperature monitoring In step 400 of FIG. 6, the temperature at the start of charging is recorded. In step 410, the current battery temperature value measured by the temperature sensor 14 is compared with the temperature at the start of charging.
In step 420, it is determined whether or not charging has been completed. If charging has not been completed, it is determined whether or not the temperature has risen by 6 ° C. or more. If there has been a temperature rise, a charging stop flag is set in step 440 to stop charging. I do.
[0035]
5. Charge control (2)
In step 500 of FIG. 7, battery voltage detection and battery temperature detection processing are performed. In step 510, various charging amounts are set.
Here, the various charging amounts refer to a current value setting when performing charging by gradually reducing the charging current value until reaching the charging electric amount when performing the charging operation.
Next, at step 520, low-current charging is performed. In step 530, it is determined whether or not the charged amount has been reached, and if it has, the battery voltage determination process is performed in step 540.
[0036]
【The invention's effect】
As described above, according to the present invention, when the power consumption of the load is equal to or more than the predetermined value in a time zone other than the nighttime charge application time zone, the power supply to the load from the commercial power and the power storage means to the load is performed. Function in parallel, the power stored in the power storage means is effectively used up even when the load requires a power larger than the output capacity, so that nighttime power can be effectively used and daytime power can be used. Can be suppressed.
[0037]
The rectifying means and the power converting means are bidirectional power converters having both functions, so that they operate as converters when charging the power storage means, and when discharging power from the power storage means to the load. Is controlled to operate as an inverter.
[0038]
By configuring the power selection means with three switches and an autotransformer, the power from the two AC power supplies can be balanced and supplied to the load in parallel without combining a complicated power adjustment circuit.
[0039]
By providing a switch that shuts off commercial power between the commercial power and providing a power failure detection means on the commercial power side of the switch, if a power failure occurs on the commercial power side, by opening the switch, It is possible to prevent reverse power flow to the commercial power system that occurs when the power storage means performs an independent operation.
[Brief description of the drawings]
FIG. 1 is a block diagram (single line diagram) illustrating a configuration of an embodiment of a power storage system according to the present invention.
FIG. 2 is an explanatory diagram showing an operation of the autotransformer in the embodiment of the present invention.
FIG. 3 is a flowchart illustrating an operation of a control unit according to the embodiment of the present invention.
FIG. 4 is a flowchart illustrating an operation of a control unit according to the embodiment of the present invention.
FIG. 5 is a flowchart illustrating an operation of a control unit according to the embodiment of the present invention.
FIG. 6 is a flowchart illustrating an operation of a control unit according to the embodiment of the present invention.
FIG. 7 is a flowchart illustrating an operation of a control unit according to the embodiment of the present invention.
FIG. 8 is an explanatory diagram of each operation mode in the embodiment of the present invention.
FIG. 9 is an explanatory diagram of each operation mode in the embodiment of the present invention.
FIG. 10 is an explanatory diagram of each operation mode in the embodiment of the present invention.
FIG. 11 is an explanatory diagram of each operation mode in the embodiment of the present invention.
FIG. 12 is an explanatory diagram of each operation mode in the embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 power selection means 2 bidirectional power converter 3 power storage means 4 control means 10 commercial power supply 11 autotransformer 12 switching element 13 switching control unit 14 temperature sensor 15 transformer 20 load 30 storage battery

Claims (4)

商用電力を直流電力に変換する整流手段と、整流された直流電力を貯蔵する蓄電手段と、前記蓄電手段に蓄電された直流電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する電力変換手段と、前記商用電力と前記電力変換手段により変換された交流電力を複数のスイッチを切り替えて選択的に負荷に供給する電力選択手段と、前記電力選択手段の複数のスイッチの制御を行う制御手段とを有し、
前記制御手段は、夜間料金適用時間帯は前記商用電力から前記整流手段を介して前記蓄電手段に電力を供給するとともに前記負荷に電力を供給する夜間運転モードと、前記夜間料金適用時間帯以外の時間帯においては、前記負荷の消費電力が所定の値未満のときは前記蓄電手段からのみの前記負荷への電力供給を行う放電運転モードと、前記負荷の消費電力が前記所定の値以上のときは前記商用電力と前記蓄電手段からの前記負荷への電力供給を並行して行う系統補充運転モードの各モードに応じて前記複数のスイッチを制御するものであることを特徴とする電力貯蔵システム。
Rectifying means for converting commercial power into DC power, power storage means for storing rectified DC power, and power for converting DC power stored in the power storage means into AC power substantially equal to the voltage and frequency of the commercial power Conversion means, power selection means for selectively switching the commercial power and the AC power converted by the power conversion means to a plurality of switches to selectively supply the load to a load, and control for controlling the plurality of switches of the power selection means Means,
The control means includes a night operation mode in which the night charge application time zone supplies power to the power storage means through the rectifier from the commercial power and supplies power to the load, and a night operation mode other than the night charge application time zone. In the time period, when the power consumption of the load is less than a predetermined value, a discharge operation mode for supplying power to the load only from the power storage unit, and when the power consumption of the load is equal to or more than the predetermined value. Wherein the plurality of switches are controlled in accordance with each mode of a system replenishment operation mode in which the commercial power and power supply from the power storage means to the load are performed in parallel.
前記整流手段および前記電力変換手段は、両者の機能を備えた双方向電力変換器である請求項1記載の電力貯蔵システム。The power storage system according to claim 1, wherein the rectifier and the power converter are bidirectional power converters having both functions. 前記電力選択手段は、第1入力端子側が第1のスイッチを介して商用電力に接続され、第2入力端子側が第2のスイッチを介して前記電力変換手段に接続され、前記第1入力端子と前記第2の入力端子間の所定の中間タップが前記負荷に接続され、前記第1入力端子と前記第2の入力端子間に第3のスイッチが接続された単巻変成器である請求項1または2に記載の電力貯蔵システム。The power selection means has a first input terminal connected to commercial power via a first switch, a second input terminal connected to the power conversion means via a second switch, and a first input terminal connected to the first input terminal. 2. An autotransformer in which a predetermined intermediate tap between the second input terminals is connected to the load, and a third switch is connected between the first input terminal and the second input terminal. Or the power storage system according to 2. 前記蓄電手段の出力部と商用電力との接続点の商用電力側に停電検出手段と商用電源を遮断する遮断器を設けたことを特徴とする請求項1から3のいずれかの項に記載の電力貯蔵システム。The power failure detecting means and a circuit breaker for shutting off commercial power are provided on the commercial power side of a connection point between the output part of the power storage means and commercial power, and the circuit breaker according to any one of claims 1 to 3, wherein Power storage system.
JP2003008793A 2003-01-16 2003-01-16 Power storage system Expired - Lifetime JP3786922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008793A JP3786922B2 (en) 2003-01-16 2003-01-16 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008793A JP3786922B2 (en) 2003-01-16 2003-01-16 Power storage system

Publications (2)

Publication Number Publication Date
JP2004222456A true JP2004222456A (en) 2004-08-05
JP3786922B2 JP3786922B2 (en) 2006-06-21

Family

ID=32898489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008793A Expired - Lifetime JP3786922B2 (en) 2003-01-16 2003-01-16 Power storage system

Country Status (1)

Country Link
JP (1) JP3786922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124811A (en) * 2005-10-28 2007-05-17 Seiko Electric Co Ltd Power storage system, route generatiing device and route generation method
WO2011051772A1 (en) * 2009-10-26 2011-05-05 パナソニック電工株式会社 Direct-current power supply device and direct-current power supply system
JP2016059129A (en) * 2014-09-08 2016-04-21 東芝エレベータ株式会社 Storage battery device and storage battery control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124811A (en) * 2005-10-28 2007-05-17 Seiko Electric Co Ltd Power storage system, route generatiing device and route generation method
WO2011051772A1 (en) * 2009-10-26 2011-05-05 パナソニック電工株式会社 Direct-current power supply device and direct-current power supply system
JP2016059129A (en) * 2014-09-08 2016-04-21 東芝エレベータ株式会社 Storage battery device and storage battery control system
CN105762912A (en) * 2014-09-08 2016-07-13 东芝电梯株式会社 Storage battery device and storage battery control system

Also Published As

Publication number Publication date
JP3786922B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3759151B1 (en) Power storage system
JP5124114B2 (en) Power conditioner with power storage function
JP5342598B2 (en) Power converter
US9660483B2 (en) Power supply control apparatus and power supply control system having the same
US20230369991A1 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
US20130270911A1 (en) Power controller
JP2003079054A (en) Solar power generation system having storage battery
JP2010130836A (en) Power supply system and power switching apparatus
US9705361B2 (en) Power supply device and method of controlling power supply
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2012253952A (en) Fast charger, fast charging apparatus and fast charging method
JP4660422B2 (en) Energy supply system
WO2015118844A1 (en) Energy management device and energy management method
JP2014121241A (en) Power transmission system
JP3775134B2 (en) Private power generation facilities
KR20200005862A (en) Energy management system and energy storage system having the energy management system
JP3827676B2 (en) Power storage system
KR20150085227A (en) The control device and method for Energy Storage System
Teo et al. Modelling and optimisation of stand alone power generation at rural area
JP3786922B2 (en) Power storage system
JP2002298887A (en) Power management device
JP2016093081A (en) Power supply system and controller
JP2012151977A (en) Load leveling system
JP6076381B2 (en) Power supply system
JP2006158148A (en) Power consumption installation and cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170331

Year of fee payment: 11