JP2004222434A - Controller of power conversion apparatus which links with power system - Google Patents

Controller of power conversion apparatus which links with power system Download PDF

Info

Publication number
JP2004222434A
JP2004222434A JP2003007880A JP2003007880A JP2004222434A JP 2004222434 A JP2004222434 A JP 2004222434A JP 2003007880 A JP2003007880 A JP 2003007880A JP 2003007880 A JP2003007880 A JP 2003007880A JP 2004222434 A JP2004222434 A JP 2004222434A
Authority
JP
Japan
Prior art keywords
power
power system
voltage
phase
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003007880A
Other languages
Japanese (ja)
Inventor
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003007880A priority Critical patent/JP2004222434A/en
Publication of JP2004222434A publication Critical patent/JP2004222434A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain voltage variation in a power system by preventing the performance of a power conversion apparatus from deteriorating due to a phase characteristic of a filter when voltage in the power system is detected. <P>SOLUTION: When effective power or reactive power is output by a method wherein the power conversion apparatus 3 is connected to the power system 1 and voltage of the power conversion apparatus 3 is controlled in response to voltage of the power system 1 which is detected via the filter 13, a frequency computing unit 18 which calculates frequency of the power system 1 from the voltage which is detected from the power system 1 via the filter 13, a reference signal computing unit 15 which calculates a reference signal having constant phase difference to voltage phase of the power system 1 from the voltage detected from the power system 1 via the filter 13, a filter phase characteristic computing unit 19 which calculates the amount of phase difference of the filter corresponding to the frequency of the power system 1, and a phase compensator 21 which corrects phase of the reference signal by using the amount of filter phase difference are installed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統と連系して有効電力または無効電力を出力する電力変換装置の制御装置に関する。
【0002】
【従来の技術】
図4は電力変換装置の構成の例を示した回路図である。この図4に図示のように、電力変換装置3は、自己消弧型半導体スイッチ素子9とダイオード10との逆並列接続でなるスイッチング回路をブリッジ接続し、これの直流側に平滑コンデンサ4を接続して構成している。これらの自己消弧型半導体スイッチ素子9を順次オン・オフ動作させることで、交流電力を直流電力に変換することができるし、これとは逆に直流電力を交流電力に変換することもできる。
図5は電力系統に変圧器を介して電力変換装置を接続して連系運転する場合の状態を示した主回路接続図であり、符号1は電力系統、符号2は変圧器、符号3が電力変換装置で符号4は平滑コンデンサである。電力系統1の電圧をV、変圧器2のインダクタンスがXでその電圧降下をVとし、電力変換装置3の電圧をVとすると、Vは系統電圧Vに比べて極めて小さいから、系統電圧Vと電力変換装置電圧Vとの位相差θはほぼ零である。よって電力変換装置電圧Vを制御することで無効電力を調整することができるし、位相差θを制御することで有効電力を調整できる。
【0003】
図6は電力系統に連系した電力系統で負荷の無効電力を補償する制御装置の従来例を示したブロック回路図である。
この図6において、電力系統1には変圧器2を介して電力変換装置3が接続されていて、負荷20へ電力を供給している。電流検出器12で検出した負荷電流は、三相/二相変換演算器16で二相量に変換され、これを回転座標変換演算器17で直流の有効電流成分と無効電流成分とに分離演算する。電力変換装置3を制御する制御回路22へ、演算されたこの無効電流を指令値として与えることにより、当該電力変換装置3はこれと同じ値の無効電流を出力し、負荷20の無効電力を補償する。ここで回転座標変換演算器17は、電力系統1の電圧Vと同位相の基準信号 cosωt と、これとは電気角で位相が90度異なる sinωt を用いて演算を行う。そのために電力系統1の電圧Vを電圧検出器11とフィルタ回路13を介して検出し、これをフェイズ・ロックド・ループ回路(以下ではPLL回路と略記する)14で位相信号ωt を求める。この位相信号ωt を使って基準信号演算器15は基準信号 sinωt と cosωt を演算し、これを回転座標変換演算器17へ与える(例えば、非特許文献1参照。)。
【0004】
なお電力系統の電圧を検出するにあたっては、系統に重畳している高調波やノイズ等の影響を避けるためにフィルタ回路13を設けているが、このフィルタ回路13は当該電力系統1の商用周波数に合わせたバンドパスフィルタである。また、ここでは cosωt を電力系統1の電圧と同位相としているが、 sinωt を電力系統1の電圧と同位相としてもよい。
【0005】
【非特許文献1】
「電力用アクティブフィルタ技術」,電気学会技術報告,電気学会,1992年6月,II部第425号,p.27,5.3図
【0006】
【発明が解決しようとする課題】
前述したように高調波やノイズの影響を回避するために、電力系統1からの電圧の検出には、電圧検出器11と共にバンドパスフィルタでなるフィルタ回路13を使用する。
図7はバンドパスフィルタの入力周波数に対応したゲインと位相の一般的な特性を示した特性図であって、横軸は入力周波数(単位:H)である。この特性図において、入力周波数変化に伴うゲインの変化は太い実線で記載し、入力周波数変化に伴う位相の変化は一点鎖線で記載している。
【0007】
図8は図7に図示のバンドパスフィルタの中心周波数付近の位相特性を拡大して示した拡大特性図であって、横軸は入力周波数(単位:H)、縦軸は位相(単位:度)を示している。電力系統1の商用周波数が60Hの場合は、60H以外の周波数のゲインを減衰させる構成にしたフィルタ回路13を使用するが、フィルタ位相も60Hのときの電気角が零度になるようにして、位相差が生じないようにしている。しかしながら電力系統1の周波数が例えば0.5H変動すると、図8で明らかなように、位相は電気角で約5度の変化をする。
図9は図6で既述の回路で電力変換装置が有効電力出力時に位相差φを生じた場合を示したベクトル図である。この図9において、電力系統1の周波数が変動すると、フィルタ回路13には前述した位相特性があるために、このフィルタ回路13を介して取り出された電圧VSFの位相は、電力系統1の電圧Vに対してφなる位相差を有するから、この電圧VSFから得られる基準信号も電力系統1の電圧Vに対してφなる位相差を有することになる。よって電力変換装置3が出力する有効電流Iは、電力系統1に流れる有効電流Iprと電力系統1に流れる無効電流Iqrとのベクトル和になる。すなわち有効電流を供給する際に無効電流も流れてしまう不具合を生じる。
【0008】
図10は図6で既述の回路で電力変換装置が無効電力出力時に図9と同様の位相差φを生じた場合を示したベクトル図である。この図10において、フィルタ回路13を介して取り出された電圧VSFから得られる基準信号も、電力系統1の電圧Vに対してφなる位相差を有することになるから、電力変換装置3が出力する無効電流Iは、電力系統1に流れる有効電流Iprと電力系統1に流れる無効電流Iqrとのベクトル和になる。すなわち無効電流を供給する際に有効電流も流れてしまう不具合を生じる。
これらは、いずれも電力変換装置としての性能の低下をもたらし、電力系統1の電圧変動を引き起こす不具合を生じてしまう。
【0009】
そこでこの発明の目的は、電力系統の電圧を検出する際のフィルタの位相特性のために電力変換装置の性能が低下するのを防ぎ、電力系統の電圧変動を抑制できるようにすることにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、この発明の電力系統と連系する電力変換装置の制御装置は、
電力系統に電力変換装置を接続し、フィルタを介して検出される該電力系統の電圧に対して前記電力変換装置の電圧を制御して、有効電力あるいは無効電力を出力する際に、電力系統からフィルタを介して検出する電圧から当該電力系統の周波数を演算する周波数演算器と、この電圧から当該電力系統の電圧位相に対して一定の位相差を有する基準信号を演算する基準信号演算器と、前記周波数に対応した前記フィルタの位相差量を演算するフィルタ位相特性演算器と、前記基準信号の位相をこのフィルタ位相差量で補正する位相補正回路と、を備える。
【0011】
【発明の実施の形態】
図1は本発明の実施例を表したブロック回路図であるが、この図1に図示の実施例回路は、図6で既述の従来例回路に周波数演算器18とフィルタ位相特性演算器19と位相補正器21を追加した構成である。よって以下では追加分の説明のみを行うこととし、これら以外の各機器の説明は省略する。
図1において、電圧検出器11とフィルタ回路13で取り出された電力系統1の電圧VSFは、PLL回路14と基準信号演算器15で基準信号 sinωt と cosωt を演算するのであるが、この基準信号には既にφなる位相差が含まれていることは、前述した通りである。一方でフィルタ回路13から取り出した電圧VSFを周波数演算器18へ入力してその周波数を演算し、更にフィルタ位相特性演算器19はこの周波数に対応した位相差φを演算する。位相補正回路21は、基準信号演算器15で得られる基準信号 sinωt と cosωt に含まれている位相差を、フィルタ位相特性演算器19で演算した位相差φで補正することにより、新たな基準信号である sin (ωt +φ) と cos (ωt +φ) を得る。
【0012】
フィルタ回路13の特性が図8の場合、電力系統1の周波数が60.5Hになれば位相差φは−5度(遅れ位相)になるから、本発明により位相補正回路21が出力する新たな基準信号は sin (ωt −5) と cos (ωt −5) となり、フィルタ回路13により5度遅れの位相が補正される。
図2は図1で既述の実施例回路の効果の例を表したベクトル図であって、電力変換装置が有効電力を出力している場合を図示している。この図2において、電力系統1の周波数変動が原因でフィルタ回路13が検出する電圧VSFの位相がφだけ遅れても、この位相遅れφを補正することで得られる新たな基準信号 cos (ωt +φ) は、電力系統1の電圧Vとの位相差が零となる。従って電力変換装置3が出力する有効電流Iと電力系統1に流れる有効電流Iprとは一致し、電力系統1に流れる無効電流Iqrは零となる。
【0013】
図3は図1で既述の実施例回路の効果の別の例を表したベクトル図であって、電力変換装置が無効電力を出力している場合を図示している。この図3でも前述した図2と同様に新たな基準信号 cos (ωt +φ) が位相遅れφを補正しているので、電力系統1の電圧Vとの位相差が零となり、電力変換装置3が出力する無効電流Iと電力系統1に流れる無効電流Iqrとは一致し、電力系統1に流れる有効電流Iprは零となる。
【0014】
【発明の効果】
電力変換装置を電力系統と連系して運転する場合に、高調波やノイズを抑制するために電力系統の電圧はフィルタ回路を介して検出するが、電力系統の周波数が予め定めた値からずれると、その周波数のずれに対応してフィルタ回路から取り出す電圧の位相も変化する。電力変換装置が電力系統と連系して有効電力を出力しているときに位相が変化すると無効電力も出力するし、電力変換装置が無効電力を供給しているときは有効電力も出力してしまうので、電力変換装置の性能が低下したり、電力系統の電圧が変動する等の不具合が発生する。
【0015】
これに対して本発明では、電力系統周波数の変動からフィルタ回路の位相変化分を求め、フィルタ回路から取り出した電圧から得られる既に位相がずれている基準信号をこの位相変化分で補正することで、電力系統の電圧と補正された基準信号との位相差を零にする。その結果、電力変換装置が電力系統と連系して有効電力を出力しているときの無効電力の出力は零であり、電力変換装置が無効電力を供給しているときの有効電力の出力は零になる。よって電力変換装置の性能を低下させることはなく、電力系統の電圧変動を回避できる効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施例を表したブロック回路図
【図2】図1で既述の実施例回路の効果の例を表したベクトル図
【図3】図1で既述の実施例回路の効果の別の例を表したベクトル図
【図4】電力変換装置の構成の例を示した回路図
【図5】電力系統に変圧器を介して電力変換装置を接続して連系運転する場合の状態を示した主回路接続図
【図6】電力系統に連系した電力系統で負荷の無効電力を補償する制御装置の従来例を示したブロック回路図
【図7】バンドパスフィルタの周波数に対応したゲインと位相の一般的な特性を示した特性図
【図8】図7に図示のバンドパスフィルタの中心周波数付近の位相特性を拡大して示した拡大特性図
【図9】図6で既述の回路で電力変換装置が有効電力出力時に位相差φを生じた場合を示したベクトル図
【図10】図6で既述の回路で電力変換装置が無効電力出力時に図9と同様の位相差φを生じた場合を示したベクトル図
【符号の説明】
1 電力系統
2 変圧器
3 電力変換装置
4 平滑コンデンサ
9 自己消弧型半導体スイッチ素子
10 ダイオード
11 電圧検出器
12 電流検出器
13 フィルタ回路
14 PLL回路
15 基準信号演算器
16 三相/二相変換演算器
17 回転座標変換演算器
18 周波数演算器
19 フィルタ位相特性演算器
20 負荷
21 位相補正回路
22 制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a power conversion device that outputs active power or reactive power in connection with a power system.
[0002]
[Prior art]
FIG. 4 is a circuit diagram showing an example of the configuration of the power converter. As shown in FIG. 4, the power converter 3 has a bridge connection of a switching circuit composed of an anti-parallel connection of a self-extinguishing semiconductor switch element 9 and a diode 10, and connects a smoothing capacitor 4 to the DC side of the switching circuit. It is composed. By sequentially turning on and off these self-extinguishing type semiconductor switch elements 9, AC power can be converted to DC power, and conversely, DC power can be converted to AC power.
FIG. 5 is a main circuit connection diagram showing a state in which a power converter is connected to a power system via a transformer to perform an interconnected operation, wherein reference numeral 1 denotes a power system, reference numeral 2 denotes a transformer, and reference numeral 3 denotes a transformer. In the power converter, reference numeral 4 denotes a smoothing capacitor. Of the voltage V S power system 1, the inductance of the transformer 2 is the voltage drop between V X by X, the voltage of the power converter 3, V I, because V X is extremely small as compared with the system voltage V S , the phase difference θ between the system voltage V S and the power conversion device voltage V I is substantially zero. Thus to be able to adjust the reactive power by controlling the power converter voltage V I, can adjust the active power by controlling the phase difference theta.
[0003]
FIG. 6 is a block circuit diagram showing a conventional example of a control device for compensating for reactive power of a load in a power system connected to a power system.
In FIG. 6, a power converter 3 is connected to a power system 1 via a transformer 2, and supplies power to a load 20. The load current detected by the current detector 12 is converted into a two-phase quantity by a three-phase / two-phase conversion calculator 16, which is separated by a rotary coordinate conversion calculator 17 into a DC active current component and a reactive current component. I do. By giving the calculated reactive current as a command value to the control circuit 22 that controls the power converter 3, the power converter 3 outputs a reactive current of the same value and compensates for the reactive power of the load 20. I do. Here, the rotation coordinate conversion calculator 17 performs the calculation using the reference signal cosωt having the same phase as the voltage V S of the power system 1 and sinωt having an electrical angle different from the reference signal by 90 degrees. Therefore the voltage V S of the electric power system 1 is detected through the voltage detector 11 and the filter circuit 13 in which the (abbreviated as PLL circuit hereinafter) phase locked loop circuit 14 obtains a phase signal ωt in. The reference signal calculator 15 calculates the reference signals sinωt and cosωt using the phase signal ωt, and supplies the calculated signals to the rotation coordinate conversion calculator 17 (for example, see Non-Patent Document 1).
[0004]
When detecting the voltage of the power system, a filter circuit 13 is provided to avoid the influence of harmonics, noise, and the like superimposed on the system. This is a combined bandpass filter. Further, here, cosωt has the same phase as the voltage of power system 1, but sinωt may have the same phase as the voltage of power system 1.
[0005]
[Non-patent document 1]
"Active Filter Technology for Electric Power", Technical Report of the Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, June 1992, Part II No. 425, p. Figure 27, 5.3
[Problems to be solved by the invention]
As described above, in order to avoid the influence of harmonics and noise, the voltage from the power system 1 is detected using the filter circuit 13 including a band detector together with the voltage detector 11.
FIG. 7 is a characteristic diagram showing general characteristics of gain and phase corresponding to the input frequency of the band-pass filter, and the horizontal axis represents the input frequency (unit: HZ ). In this characteristic diagram, a change in gain due to a change in input frequency is indicated by a thick solid line, and a change in phase due to a change in input frequency is indicated by a chain line.
[0007]
FIG. 8 is an enlarged characteristic diagram showing an enlarged phase characteristic near the center frequency of the band-pass filter shown in FIG. 7, in which the horizontal axis is the input frequency (unit: HZ ), and the vertical axis is the phase (unit: Degree). If the commercial frequency of the power system 1 of 60H Z, but using a filter circuit 13 was configured to attenuate the gain of the frequency other than 60H Z, as electrical angle when the filter in phase 60H Z is zero degrees Thus, no phase difference is generated. However, if the frequency of the power system 1, for example 0.5H Z fluctuates, as is apparent in FIG. 8, the phase is a change of about 5 degrees in electrical angle.
FIG. 9 is a vector diagram showing a case in which the power converter generates a phase difference φ at the time of active power output in the circuit described in FIG. In FIG. 9, when the frequency of the power system 1 varies, to the filter circuit 13 is a phase characteristic as described above, the phase of the voltages V SF taken through the filter circuit 13, the power system 1 of the voltage Since there is a phase difference of φ with respect to V S , the reference signal obtained from this voltage V SF also has a phase difference of φ with respect to voltage V S of power system 1. Therefore, the effective current Ip output from the power converter 3 is a vector sum of the effective current Ipr flowing through the power system 1 and the reactive current Iqr flowing through the power system 1. That is, there occurs a problem that a reactive current flows when an effective current is supplied.
[0008]
FIG. 10 is a vector diagram showing a case where a phase difference φ similar to that in FIG. 9 occurs when the power converter outputs reactive power in the circuit described in FIG. 6. In FIG. 10, the reference signal obtained from the voltages V SF taken through the filter circuit 13 is also because will have a phase difference obtained as φ with respect to the voltage V S of the power system 1, the power conversion device 3 The reactive current Iq to be output is a vector sum of the active current Ipr flowing through the power system 1 and the reactive current Iqr flowing through the power system 1. That is, there is a problem that the effective current flows when the reactive current is supplied.
Each of these causes a decrease in performance as a power converter, and causes a problem of causing a voltage fluctuation of the power system 1.
[0009]
Therefore, an object of the present invention is to prevent the performance of a power converter from deteriorating due to a phase characteristic of a filter when detecting a voltage of a power system, and to suppress voltage fluctuation of the power system.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a control device for a power conversion device interconnected with a power system according to the present invention includes:
Connecting a power converter to a power system, controlling the voltage of the power converter with respect to the voltage of the power system detected via a filter, when outputting active power or reactive power, from the power system A frequency calculator for calculating the frequency of the power system from the voltage detected through the filter, and a reference signal calculator for calculating a reference signal having a certain phase difference with respect to the voltage phase of the power system from the voltage, A filter phase characteristic calculator for calculating a phase difference amount of the filter corresponding to the frequency; and a phase correction circuit for correcting the phase of the reference signal with the filter phase difference amount.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block circuit diagram showing an embodiment of the present invention. The circuit shown in FIG. 1 is different from the conventional circuit shown in FIG. 6 in that a frequency calculator 18 and a filter phase characteristic calculator 19 are used. And a phase corrector 21 are added. Therefore, only the additional description will be given below, and the description of the other devices will be omitted.
In Figure 1, voltages V SF of the power system 1 taken out by the voltage detector 11 and the filter circuit 13, although for calculating the reference signal sinωt and cosωt in PLL circuit 14 and the reference signal calculation unit 15, the reference signal Already includes a phase difference of φ as described above. Meanwhile Enter the voltages V SF taken out from the filter circuit 13 to the frequency calculator 18 calculates the frequency, even filter phase characteristic calculator 19 calculates a phase difference φ corresponding to this frequency. The phase correction circuit 21 corrects the phase difference included in the reference signals sinωt and cosωt obtained by the reference signal calculator 15 with the phase difference φ calculated by the filter phase characteristic calculator 19 to obtain a new reference signal. Sin (ωt + φ) and cos (ωt + φ) are obtained.
[0012]
When the characteristic of the filter circuit 13 of FIG. 8, since the frequency of the power system 1 becomes if the 60.5H Z phase difference phi -5 degrees (delayed phase), a new phase correction circuit 21 outputs the present invention reference signal is sin (ωt -5 O) and cos (ωt -5 O), and the by the filter circuit 13 of 5 degrees phase delay is corrected.
FIG. 2 is a vector diagram illustrating an example of the effect of the circuit of the embodiment described above with reference to FIG. 1, and illustrates a case where the power converter outputs active power. In FIG. 2, also delayed by the phase of the voltages V SF which frequency change in the power system 1 detects the filter circuit 13 because phi, new reference signal obtained by correcting the phase delay phi cos (.omega.t + phi) is the phase difference between the voltage V S of the power system 1 is zero. Therefore, the effective current I p output from the power converter 3 matches the effective current I pr flowing through the power system 1, and the reactive current I qr flowing through the power system 1 becomes zero.
[0013]
FIG. 3 is a vector diagram showing another example of the effects of the circuit of the embodiment described above with reference to FIG. 1, and shows a case where the power converter outputs reactive power. This 3 even aforementioned FIG similarly to the new reference signal cos (ωt + φ) is corrected phase delay phi, the phase difference becomes zero and the voltage V S of the power system 1, the electric power converter 3 There match the reactive current I qr flowing through the reactive current I q and the power system 1 to be output, the effective current I pr flowing in the power system 1 is zero.
[0014]
【The invention's effect】
When the power converter is operated in connection with the power system, the voltage of the power system is detected through a filter circuit to suppress harmonics and noise, but the frequency of the power system deviates from a predetermined value. Then, the phase of the voltage extracted from the filter circuit also changes in accordance with the frequency shift. When the power converter is connected to the power system and outputs active power and the phase changes, the reactive power is also output, and when the power converter is supplying reactive power, the active power is also output. Therefore, problems such as a decrease in the performance of the power converter and a fluctuation in the voltage of the power system occur.
[0015]
On the other hand, in the present invention, the phase change of the filter circuit is obtained from the fluctuation of the power system frequency, and the reference signal, which is already out of phase, obtained from the voltage extracted from the filter circuit is corrected by the phase change. , The phase difference between the voltage of the power system and the corrected reference signal is made zero. As a result, the output of the reactive power when the power converter is outputting the active power in connection with the power system is zero, and the output of the active power when the power converter is supplying the reactive power is zero. Becomes zero. Therefore, the effect of avoiding the voltage fluctuation of the power system can be obtained without lowering the performance of the power converter.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing an embodiment of the present invention. FIG. 2 is a vector diagram showing an example of the effect of the embodiment circuit described in FIG. 1. FIG. 3 is a circuit diagram described in FIG. FIG. 4 is a circuit diagram showing an example of the configuration of a power conversion device. FIG. 5 is a diagram showing an example of the configuration of a power conversion device. FIG. 6 is a block diagram showing a conventional example of a control device for compensating for reactive power of a load in a power system connected to a power system. FIG. 7 is a diagram showing a frequency of a band-pass filter. FIG. 8 is a characteristic diagram showing general gain and phase characteristics corresponding to FIG. 8 FIG. 8 is an enlarged characteristic diagram showing an enlarged phase characteristic near the center frequency of the bandpass filter shown in FIG. 7 FIG. A vector showing the case where the power converter generates a phase difference φ at the time of active power output in the circuit described above. Figure [10] 6 vector diagram showing a case where power converter produced similar phase difference φ and 9 when the reactive power output by the circuit described above in [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Power system 2 Transformer 3 Power conversion device 4 Smoothing capacitor 9 Self-extinguishing type semiconductor switch element 10 Diode 11 Voltage detector 12 Current detector 13 Filter circuit 14 PLL circuit 15 Reference signal calculator 16 Three-phase / two-phase conversion calculation Unit 17 rotation coordinate conversion operation unit 18 frequency operation unit 19 filter phase characteristic operation unit 20 load 21 phase correction circuit 22 control circuit

Claims (1)

電力系統に電力変換装置を接続し、フィルタを介して検出される該電力系統の電圧に対して前記電力変換装置の電圧を制御して、有効電力あるいは無効電力を出力する電力変換装置の制御装置において、
電力系統のフィルタを介して得られる前記電圧から当該電力系統の周波数を演算する周波数演算器と、この電圧から当該電力系統の電圧位相に対して一定の位相差を有する基準信号を演算する基準信号演算器と、前記周波数に対応した前記フィルタの位相差量を演算するフィルタ位相特性演算器と、前記基準信号の位相をこのフィルタ位相差量で補正する位相補正回路と、を備えることを特徴とする電力系統と連系する電力変換装置の制御装置。
A power converter control device that connects a power converter to a power system, controls the voltage of the power converter with respect to the voltage of the power system detected through a filter, and outputs active power or reactive power. At
A frequency calculator for calculating the frequency of the power system from the voltage obtained through the filter of the power system, and a reference signal for calculating a reference signal having a certain phase difference with respect to the voltage phase of the power system from the voltage A calculator, a filter phase characteristic calculator for calculating a phase difference amount of the filter corresponding to the frequency, and a phase correction circuit for correcting the phase of the reference signal with the filter phase difference amount. The control device of the power converter connected to the power system to be connected.
JP2003007880A 2003-01-16 2003-01-16 Controller of power conversion apparatus which links with power system Withdrawn JP2004222434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007880A JP2004222434A (en) 2003-01-16 2003-01-16 Controller of power conversion apparatus which links with power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007880A JP2004222434A (en) 2003-01-16 2003-01-16 Controller of power conversion apparatus which links with power system

Publications (1)

Publication Number Publication Date
JP2004222434A true JP2004222434A (en) 2004-08-05

Family

ID=32897845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007880A Withdrawn JP2004222434A (en) 2003-01-16 2003-01-16 Controller of power conversion apparatus which links with power system

Country Status (1)

Country Link
JP (1) JP2004222434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
CN105743377A (en) * 2014-12-24 2016-07-06 株式会社东芝 Power Conversion Device And Control Method Thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
CN105743377A (en) * 2014-12-24 2016-07-06 株式会社东芝 Power Conversion Device And Control Method Thereof
JP2016123160A (en) * 2014-12-24 2016-07-07 株式会社東芝 Power conversion device and control method for the same

Similar Documents

Publication Publication Date Title
JP5542609B2 (en) Reactive power compensator
US8860341B2 (en) Power regeneration device and power conversion device
JP6351331B2 (en) Power converter
TWI554005B (en) Uninterruptible power supply device
JPWO2007135730A1 (en) Power converter
JP4945499B2 (en) Single-phase voltage type AC / DC converter
FI118784B (en) Method and arrangement for a network inverter
JP2012085482A (en) Distributed power supply system
US7075274B2 (en) Reactive power compensator
JP3742316B2 (en) Power converter
JP2004222434A (en) Controller of power conversion apparatus which links with power system
JP3570913B2 (en) Control device for semiconductor switch
JPH08147057A (en) Device and method for generating reactive power
JP3444011B2 (en) Active filter for electric power
JP6939465B2 (en) Power converter
JPH07123726A (en) Power converter
JP3252634B2 (en) Inverter circuit output voltage control method
JP3110898B2 (en) Inverter device
JPH0956170A (en) Controller for inverter for system linkage
JP5026821B2 (en) Power converter
JP2006174679A (en) Controlling method for parallel operation of uninterruptible power supply device
CN114094601B (en) Alternating-current voltage fluctuation control method for isolated network operation of direct-current power distribution network
JP3887944B2 (en) Active filter
US20140239716A1 (en) Ac power supply apparatus
JP3655058B2 (en) Self-excited AC / DC converter controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080507