【0001】
【発明の属する技術分野】
本発明は、外部からの入力電圧の制御により所望の容量値が出力される可変容量素子に関する。
【0002】
【従来の技術】
高周波デバイス用途の可変容量素子として、圧電体からなる支持梁の表面に形成された一方の電極を逆圧電効果により移動させ、他方の電極との間隔を変更して、前記両電極間の静電容量を可変する素子が提案されている。
【0003】
このような技術の例として、特開平7−335491号公報に示される可変容量素子がある。図12に、前記可変容量素子の断面図を示す。
【0004】
図12に示すように、可変容量素子101において、親基板102の上面に下部電極103及びギャップ調整材104が形成される。前記ギャップ調整材104の上部には、ギャップ調整材104側から順に、上部電極105、絶縁体106、第一圧電電極107、圧電体108及び第二圧電電極109が、各々の一端側が前記下部電極103上に突出するように設けられ、前記ギャップ調整材104とともに支持梁110を構成する。前記下部電極103と前記上部電極105の一部は空気層を介して対向している。
【0005】
上述した可変容量素子101の第一圧電電極107と第二圧電電極109の間には、圧電体108の抗電圧以上の電圧があらかじめ印加されることにより分極処理が施される。前記分極処理がなされた状態において、第一圧電電極107と第二圧電電極109間に前記抗電圧以下の電圧が印加されることにより、圧電体108がその厚み方向と垂直な方向、すなわち長手方向に伸び縮みする。このように圧電体108の長手方向に伸び縮みする現象は、主として圧電定数d31に基づく逆圧電効果(横効果)によるものである。つまり、分極方向と印加電界の方向が同じである場合に、印加電界の方向と垂直な方向に歪みが生じる効果である。圧電体108が長手方向に伸びる場合、上部電極105及び絶縁体106の弾性的な制約力により、第一圧電電極107側の方が第二圧電電極109側に比べて伸びが小さくなるため、支持梁110が下方に湾曲する。それに伴い、上部電極105と下部電極103の間隔が減少し、可変容量素子101の容量が増加する。このようにして、外部からの入力電圧の制御により所望の容量値が出力される可変容量素子が実現される。
【0006】
このような可変容量素子101は、例えば以下の方法により製造される。シリコンよりなる親基板102にフォトリソグラフィー、イオン注入技術によりホウ素やリン等を注入して下部電極103が形成される。次に、親基板102上にCVD技術によりPSGよりなるギャップ調整材104と、n+ポリシリコンよりなる上部電極105と、SiO2よりなる絶縁体106が順に形成される。次に、前記絶縁体106上に、スパッタ技術によりCrよりなる第一圧電電極107と、PZT(チタン酸ジルコン酸鉛)よりなる圧電体108と、Crよりなる第二圧電電極109が順に形成される。次に、フォトリソグラフィー、ウェットエッチング技術により、第二圧電電極109、圧電体108、第一圧電電極107、絶縁体106及び上部電極105を順次所定のパターンにエッチング形成する。そして、PSGよりなるギャップ調整材104がエッチングにより所定部分まで除去され、可変容量素子101が得られる。
【0007】
【特許文献1】
特開平7−335491号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述した従来の可変容量素子101においては、支持梁110はギャップ調整材104、上部電極105、絶縁体106、第一圧電電極107、圧電体108及び第二圧電電極109の計6層の積層膜から構成されることとなり、各々の膜はその成膜手法等に起因する異なる大きさの内部応力を有する。これらの内部応力により支持梁110には反りが生じる。そのため、支持梁110に形成された上部電極105と親基板102に形成された下部電極103との間隔を所望の値に制御できず、可変容量素子101の初期状態の容量を所望の値に制御できないという問題点があった。また、電圧が入力されたときの支持梁110の変位量も所望の値に制御することができず、所望の入力電圧−出力容量変化率を得ることができないという問題があった。
【0009】
また、従来の可変容量素子では、支持梁110を構成する圧電体108はスパッタ等の手法により堆積された圧電体薄膜より構成される。このため、バルクの圧電体に比べて圧電性能が劣り、支持梁110の変位量が小さくなり、容量変化率を大きくすることができない問題があった。
【0010】
上述した問題を解決するため、本発明は、初期容量値及び容量変化率を高精度に制御できるとともに、容量変化率が大きく、信頼性の高い電圧駆動型の可変容量素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明の可変容量素子は、親基板の表面に形成された下部電極と、前記親基板上に直接または絶縁体を介して設けられた圧電体基板と、前記圧電体基板を上面から見たときに少なくとも前記下部電極の一部を含む領域が薄層状に加工されてなる圧電体薄層部と、前記圧電体薄層部の前記親基板側の面に前記下部電極の一部と対向するように形成される上部電極と、前記圧電体薄層部の前記親基板側の面に形成される櫛型電極を有し、前記櫛型電極への電圧入力時に生じる前記圧電体薄層部の歪みによる前記上部電極と前記下部電極間の距離の変動に伴い前記両電極間の静電容量を変化させてなることを特徴とする。
【0012】
このように圧電体薄層部が圧電体基板の加工により形成されるため、圧電体薄層部の内部応力が抑えられる。また、櫛型電極は導体層が圧電体薄層部の長手方向に分割して形成されることにより内部応力の発生が抑えられるため、前記櫛型電極から圧電体薄層部に及ぼされる応力が抑えられる。これらにより、初期状態の圧電体薄層部の反りが抑制されるため、上部電極と下部電極の間隔の制御が容易となり、所望の初期容量値を精度良く得ることができる。また、前記櫛型電極への入力電圧の変化量に対する圧電体薄層部の変位変化量の制御が容易となり、所望の入力電圧−出力容量変化率を精度良く得ることができる。
【0013】
また、前記可変容量素子の前記櫛型電極及び前記上部電極は、圧縮応力を有する電極膜と引っ張り応力を有する電極膜が積層されることにより電極全体の内部応力が打ち消されたものであることを特徴とする。
【0014】
このような構成とすることで、初期状態の圧電体薄層部の反りが抑制されるため、可変容量素子の初期容量値及び入力電圧−出力容量変化率をより高精度に制御することができる。
【0015】
また、前記可変容量素子において、前記圧電体基板及び前記圧電体薄層部は単結晶よりなることを特徴とする。
【0016】
このような構成とすることで、圧電体が結晶粒界を有する多結晶体である場合に比べ圧電体薄層部の繰り返し駆動に伴う変位量の劣化が抑えられる。このため、繰り返し駆動に伴う可変容量値の変動が抑えられ、素子の信頼性が向上する。
【0017】
【発明の実施の形態】
以下、本発明について実施の形態に基づき詳細に説明する。
(1)第一の実施形態
図1に、本発明の第一の実施形態による可変容量素子の上面図を示す。また、図2に前記可変容量素子の切断面Aによる断面図を示す。また、図3に前記可変容量素子の切断面Bによる断面図を示す。
【0018】
図に示すように、可変容量素子1の親基板11の上面に、下部電極8a、8b及びギャップ調整材9が形成される。また、前記ギャップ調整材9の上面には、親基板11の上面をほぼ覆うように圧電体基板4が形成される。前記圧電体基板4の少なくとも一部は加工により薄くされ、圧電体薄層部5とされる。ここで、前記圧電体薄層部5は上方向から見て前記下部電極8a、8bの少なくとも一部と重なりを有するように形成される。前記圧電体薄層部5の下面には、前記下部電極8a、8bの一部と対向するように上部電極6が形成されるとともに、前記上部電極6より圧電体薄層部5の付け根に近い側の領域に櫛型電極7が形成される。前記櫛型電極7は、図4または図6に示すように複数電極指を有する第一の櫛型電極7a及び第二の櫛型電極7bよりなる。また、前記圧電体基板4上に、前記櫛型電極7a、7bとそれぞれ接続するように取り出し電極用パッド10が形成される。
【0019】
上述した可変容量素子1において、上部電極6と下部電極8aまたは8bは空気層を誘電体とした容量素子を形成する。また、前記容量素子の容量は、上部電極6と下部電極8a間の容量及び上部電極6と下部電極8b間の容量の合成容量であり、下部電極8a,8bより出力される。
【0020】
次に、可変容量素子1の容量が制御される原理を説明する。可変容量素子1の櫛型電極7aと櫛型電極7bの間に、圧電体薄層部5の抗電圧以上の電圧が印加され、圧電体薄層部5に分極処理が施される。図4に、前記分極処理における前記圧電体薄層部5への電圧印加の様子を示す。圧電体薄層部5の内部には電界の方向13に示す方向の電界が印加されて分極処理される。分極処理が完了した状態において、櫛型電極7aと7b間に圧電体薄層部5の抗電圧以下の電圧を印加すると、前記圧電体薄層部5の電界の方向13に示す方向に沿って、圧電定数d33に基づく歪み(d33歪み、縦効果歪み)が発生する。ここで、櫛型電極7aと7bの隣り合う電極指間の領域で、前記d33歪みは主として圧電体薄層部5の長手方向に生じる。電界の強度は圧電体薄層部の下面(櫛型電極7の形成面)に近いほど強く、上面に近づくにほど弱くなるため、前記d33歪みは圧電体薄層部5の厚み方向に沿って分布が生じる。したがって、前記d33歪みが圧電体薄層部5の伸びる方向に発生する場合には、圧電体薄層部5は下に凸、すなわち前記上部電極6が前記下部電極8a、8bから離れる方向に湾曲し、前記歪みが圧電体薄層部5の縮まる方向に発生する場合には、前記圧電体薄層部は上に凸、すなわち前記上部電極6が前記下部電極8a、8bに近づく方向に湾曲する。そして、櫛型電極7aと7b間に入力される電圧が変動すると、上部電極6と下部電極8a、8bの間隔が変動して両電極間の容量が変動する。このようにして、櫛型電極7a、7b間へ入力される電圧により下部電極8a、8b間に出力される容量値が制御される。
【0021】
次に、本発明の第一の実施形態による可変容量素子の製造方法について、図5〜図8に基づき説明する。
【0022】
まず、前記可変容量素子を構成する第一の部材の製造方法を図5により説明する。鏡面研磨されたPZT(チタン酸ジルコン酸鉛)よりなる圧電体基板4に、リフトオフ法によりAlよりなる上部電極6、櫛型電極7及び取り出し電極用パッド10(図示せず)が形成される(a)。ここで、前記上部電極6及び櫛型電極7は、内部応力が小さく、かつ抵抗率の小さい電極膜から構成されることが望ましい。
【0023】
次に、メタルマスク法により、Cu/Tiよりなるギャップ調整材9が形成される(b)。次に、圧電体基板4の上面(上部電極6及び櫛型電極7が形成されていない方の面)の所定部が、メタルマスクを介しサンドブラストにより所定の深さまで除去される。その後、サンドブラストにより形成された凹凸部がイオンミリングにより平坦化され、所定の深さまで加工される。このようにして、圧電体基板4に薄層部が形成される(c)。さらに、圧電体基板4の薄層部の所定部がイオンミリング、又はリアクティブイオンエッチングにより加工、貫通されることによりPZTよりなる圧電体薄層部5が形成され、第一の部材2が得られる(d)。第一の部材2の上面図を図6に示す。
【0024】
次に、前記可変容量素子を構成する第二の部材3の製造方法を図7により説明する。まず、Si単結晶よりなる親基板11に、リフトオフ法を用いてAu/Tiよりなる下部電極8a、8bを形成する。次にメタルマスク法を用いて、Cu/Tiよりなる取り出し電極12を形成する。このようにして第二の部材3が作製される。第二の部材3の上面図を図7に示す。
【0025】
最後に、前記第一の部材2の上部電極6が形成された面と、前記第二の部材3の下部電極8a、8bが形成された面が向かい合わされ、加熱及び加圧により接合され、可変容量素子1が得られる。その際、第一の部材2の櫛型電極7a、7bからそれぞれ引き出された取り出し電極用パッド部10a、10b(図6参照)と、第二の部材3の引き出し用電極12(図7参照)が電気的に接続される。
【0026】
なお、本実施形態においては、圧電体薄層部5を片持ち梁としたが、前記圧電体薄層部を2ヶ所で支持した両持ち梁としてもよい。
【0027】
また、上述の可変容量素子1において、高い入力電圧−出力容量変化率を得るためには圧電体薄層部5の変位量が大きいことが必要であり、そのため圧電体の厚みは加工性、強度信頼性の点から許容される範囲において薄いことが好ましい。
【0028】
また、上述の可変容量素子1を高周波下で使用する場合、電極部の抵抗による損失を低減するために上部電極6及び下部電極8a、8bの厚みは厚いことが好ましく、0.2μm以上であることが好ましい。
【0029】
また、前記ギャップ調整材9の厚みは、上部電極6の厚みと、下部電極8a、8bの厚みと、上部電極6と下部電極8a、8b間の空気層厚みの和である。ここで、前記空気層厚みは目標とする容量値に基づいて設定される。
【0030】
このようにして得られた可変容量素子1は、圧電体薄層部5が圧電体基板4の加工により形成されるため内部応力が生じない。また、前記櫛型電極7は圧電体薄層部5の長手方向に分割して形成されるため、圧電体薄層部5に加わる応力が緩和される。このようにして圧電体薄層部5に生じる応力が抑制されることにより、初期状態の圧電体薄層部5の反りが抑制される。このため、前記上部電極6と前記下部電極8a、8bの間隔の制御が容易となり、所望の初期容量値を精度良く得ることができるという効果を有する。また、前記櫛型電極7への入力電圧の変化量に対する圧電体薄層部5の変位変化量の制御が容易となり、所望の入力電圧−出力容量変化率を精度良く得ることができるという効果を有する。
【0031】
また、圧電体薄層部5は、バルクの圧電体基板4が加工されることにより作製されるため、スパッタ等の手法で堆積されて形成した圧電体に比べて、圧電性能が大きい。また、上記構成においては、櫛型電極7の形状から圧電定数d33に基づく歪み(縦効果)が利用されるが、一般に圧電材料においてd33はd31の2倍以上の値をもつため、従来のd31に基づく歪み(横効果)を利用する場合に比べて圧電体薄層部5の変位量が大きくなり、入力電圧−出力容量変化率を向上させることが可能である。
【0032】
なお、上述の可変容量素子1において、櫛型電極7a、7bの各電極指の線幅をl、隣り合う電極指間の間隔をsとすると、s/lは可能な限り大きいことが好ましい。また、前記櫛型電極7a、7bの、隣り合う電極指が対向する部分の長さgは、前記圧電体薄層5の奥行き長さwに可能な限り近いことが好ましい。以上のような構成とすることで、圧電体薄層部5においてd33歪みが発生する領域を広くとることができる。このため、圧電体薄層部5の変位量が向上し、可変容量素子1の容量変化率が向上する。
(2)第二の実施形態
本発明の第二の実施形態による可変容量素子は、その基本構成及び動作原理は第一の実施形態による可変容量素子と同様であるが、圧電体薄層部に形成される櫛型電極及び上部電極が、圧縮応力を有する電極膜と引っ張り応力を有する電極膜が積層されたものである点が第一の実施形態と異なる。
【0033】
図9に、本発明の第二の実施形態による可変容量素子における、櫛型電極と上部電極の構成を示す。上部電極26は、圧電体薄層部25上に形成されるAlよりなる第一層の上部電極膜26aと、前記第一層の上部電極膜26aの上に形成されるCuよりなる第二層の上部電極膜26bと、前記第二層の上部電極膜26bの上に形成されるAlよりなる第三層の上部電極膜26cの3層よりなる。また、櫛型電極27は、圧電体薄層部25上に形成されるAlよりなる第一層の櫛型電極膜27aと、前記第一層の上部電極膜27aの上に形成されるCuよりなる第二層の櫛型電極膜27bと、前記第二層の上部電極膜27bの上に形成されるAlよりなる第三層の櫛型電極膜27cの3層よりなる。
【0034】
前記上部電極26及び前記櫛型電極27を構成する各電極膜はいずれも電子ビーム蒸着を用いてリフトオフ法で形成される。このとき、Al薄膜は圧縮応力を有し、Cu薄膜は引っ張り応力を有する。
【0035】
上述のようにAl/Cu/Alの3層が積層された状態で内部応力が打ち消されるようにするため、第一層の上部電極膜26aと第一層の櫛型電極膜27aの厚みをX、第二層の上部電極膜26bと第二層の櫛型電極膜27bの厚みをY、第三層の上部電極膜26cと第三層の櫛型電極膜27cの厚みをZとし、Al薄膜の内部応力の絶対値をσAl、Cu薄膜の内部応力の絶対値をσCuとしたとき、
X=Z
Y×σCu=2×X×σAl
となるようにX、Y、Zが設定される。
【0036】
このような構成とすることにより、電極全体の内部応力が打ち消されるため、初期状態の圧電体薄層部25の反りが抑制される。このため、上部電極と下部電極の間隔の制御が容易となり、所望の初期容量値を精度良く得ることができるという効果を有する。また、前記櫛型電極27への入力電圧の変化量に対する圧電体薄層部25の変位変化量の制御が容易となり、所望の入力電圧−出力容量変化率を精度良く得ることができるという効果を有する。
【0037】
なお、本実施形態における櫛型電極及び上部電極は、圧縮応力を有する電極膜と引っ張り応力を有する電極膜の積層により全体の応力が打ち消されるのであれば、上述した3層以外の構造であってもよい。また、上述の材料以外のものが使用されてもよい。
(3)第三の実施形態
本発明の第三の実施形態による可変容量素子は、その基本構成及び動作原理は第一の実施形態による可変容量素子と同様であるが、圧電体基板がLiNbO3単結晶よりなる点で第一の実施形態と異なる。
【0038】
以下、本発明の第一の実施形態による可変容量素子の製造方法について説明する。
【0039】
図10に、第三の実施形態による可変容量素子を構成する第一の部材の製造工程を示す。まず、圧電体基板44に、リフトオフ法によりAlよりなる上部電極46、櫛型電極47及び取り出し電極用パッド50(図示せず)が形成される(a)。ここで、前記圧電体基板44として、z軸が基板面内にあるx板又はy板などのLiNbO3単結晶基板が用いられる。また、前記上部電極46等の形成は圧電体基板44のz軸方向に沿うように行われる。
【0040】
次に、メタルマスク法により、Cu/Tiよりなるギャップ調整材49が形成される(b)。次に、圧電体基板44の上面(上部電極46及び櫛型電極47が形成されていない方の面)の所定部が、KrFエキシマレーザーにより所定の深さまで除去される。その後、圧電体基板44の上部電極46等が形成されている方の面がレジストにより保護され、KrFエキシマレーザー加工によるLiNbO3圧電体の変質部がフッ酸と硝酸の混合溶液にてエッチング除去される。このようにして、圧電体基板44に薄層部が形成される(c)。さらに、圧電体基板44の薄層部の所定部がKrFエキシマレーザー、又はイオンミリングにより加工、貫通され、LiNbO3よりなる圧電体薄層部45が形成され、第一の部材42が得られる(d)。第一の部材42の上面図を図11に示す。
【0041】
このようにして得られた第一の部材42と、図7及び図8に示す第二の部材3が加熱及び加圧により接合され、本実施形態の可変容量素子が得られる。
【0042】
なお、上述の実施形態では単結晶基板としてLiNbO3が用いられるが、LiTaO3、KNbO3等の圧電性を有する他の単結晶基板が用いられてもよい。
【0043】
上述の可変容量素子は圧電体基板44及び圧電体薄層部45が単結晶よりなるため、支持材が結晶粒界の存在する多結晶体である場合に比べて材料的に安定であり、圧電体薄層部の繰り返し駆動に伴う変位量の劣化を抑えることができる。このため、繰り返し駆動に伴う可変容量値の変動が抑えされるため、素子の信頼性が向上すると言う効果を有する。
【0044】
【発明の効果】
以上説明してきたように、本発明の可変容量素子は、圧電体薄層部が圧電体基板の加工により形成されるため、圧電体薄層部の内部応力が抑えられる。また、櫛型電極は導体層が圧電体薄層部の長手方向に分割して形成されることにより内部応力が抑えられ、櫛型電極から圧電体薄層部に加わる応力が抑えられる。これらにより、初期状態の圧電体薄層部の反りが抑制されるため、上部電極と下部電極の間隔の制御が容易となり、所望の初期容量値を精度良く得ることができるという効果を有する。また、前記櫛型電極への入力電圧の変化量に対する圧電体薄層部の変位変化量の制御が容易となり、所望の入力電圧−出力容量変化率を精度良く得ることができるという効果も有する。
【0045】
また、前記圧電体薄層部がバルクの圧電体基板の加工により作製された場合、スパッタ等の方法により形成された圧電体薄膜に比べて圧電性能が向上する。また、櫛型電極をd33歪み(縦効果)が利用できる形状とすることにより、d31歪み(横効果)を利用する場合に比べて圧電体薄層部の変位量が向上するため、入力電圧−出力容量変化率が向上する。
【0046】
また、前記可変容量素子の櫛型電極及び上部電極が、圧縮応力を有する電極膜と引っ張り応力を有する電極膜が積層されることより電極全体の内部応力が打ち消されたものとされることで、初期状態の圧電体薄層部の反りが抑制される。これにより、所望の初期容量値及び入力電圧−出力容量変化率が精度良く得られるという効果を有する。
【0047】
また、前記可変容量素子の圧電体基板及び圧電体薄層部が単結晶よりなることにより、多結晶体よりなる場合に比べて圧電体薄層部の繰り返し駆動に伴う変位量の劣化が抑えられる。このため、圧電体薄層部の繰り返し駆動に伴う可変容量値の変動が抑えされるため、素子の信頼性が向上すると言う効果を有する。
【図面の簡単な説明】
【図1】第一の実施形態による可変容量素子の構成を説明する上面図
【図2】図1の切断面A−A’による断面図
【図3】図1の切断面B−B’による断面図
【図4】図2における梁部の拡大図
【図5】第一の実施形態による可変容量素子を構成する第一の部材の製造工程図
【図6】第一の実施形態による可変容量素子を構成する第一の部材の上面図
【図7】第一の実施形態による可変容量素子を構成する第二の部材の上面図
【図8】図7の切断面C−C’による断面図
【図9】第二の実施形態による可変容量素子の櫛型電極と上部電極の構成を説明する断面図
【図10】第三の実施形態による可変容量素子を構成する第一の部材の製造工程図
【図11】第三の実施形態による可変容量素子を構成する第一の部材の上面図
【図12】従来の可変容量素子の構成を説明する断面図
【符号の説明】
1、41 可変容量素子
2、42 第一の部材 3 第二の部材
4、44 圧電体基板 5、25、45 圧電体薄層部
6、26、46 上部電極 7、27、47 櫛型電極
7a、47a 第一の櫛型電極 7b、47b 第二の櫛型電極
8a、8b 下部電極 9、49 ギャップ調整材
10a,10b、50a、50b 取り出し用電極パッド
11、51 親基板 12 取り出し電極
13 電界の方向
26a 第一層の上部電極膜 26b 第二層の上部電極膜
26c 第三層の上部電極膜
27a 第一層の櫛型電極膜 27b 第二層の櫛型電極膜
27c 第三層の櫛型電極膜
101 可変容量素子 102 親基板
103 下部電極 104 ギャップ調整材
105 上部電極 106 絶縁体
107 第一圧電電極 108 圧電体
109 第二圧電電極 110 支持梁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a variable capacitance element that outputs a desired capacitance value by controlling an external input voltage.
[0002]
[Prior art]
As a variable-capacitance element for high-frequency devices, one electrode formed on the surface of a support beam made of a piezoelectric material is moved by the inverse piezoelectric effect, and the distance between the other electrode is changed, so that the electrostatic capacitance between the two electrodes is increased. An element that changes the capacitance has been proposed.
[0003]
As an example of such a technique, there is a variable capacitance element disclosed in JP-A-7-335549. FIG. 12 shows a sectional view of the variable capacitance element.
[0004]
As shown in FIG. 12, in the variable capacitance element 101, a lower electrode 103 and a gap adjusting material 104 are formed on an upper surface of a parent substrate. An upper electrode 105, an insulator 106, a first piezoelectric electrode 107, a piezoelectric body 108, and a second piezoelectric electrode 109 are provided above the gap adjusting material 104 in this order from the gap adjusting material 104 side. It is provided so as to protrude above 103, and forms a support beam 110 together with the gap adjusting member 104. The lower electrode 103 and a part of the upper electrode 105 face each other via an air layer.
[0005]
A polarization process is performed between the first piezoelectric electrode 107 and the second piezoelectric electrode 109 of the variable capacitance element 101 by applying a voltage equal to or higher than the coercive voltage of the piezoelectric body 108 in advance. In the state where the polarization process has been performed, a voltage equal to or lower than the coercive voltage is applied between the first piezoelectric electrode 107 and the second piezoelectric electrode 109 so that the piezoelectric body 108 is oriented in a direction perpendicular to the thickness direction, that is, in the longitudinal direction. To expand and contract. Phenomenon of expansion and contraction in this manner in the longitudinal direction of the piezoelectric element 108 is mainly due to the inverse piezoelectric effect based on the piezoelectric constant d 31 (lateral effect). That is, when the polarization direction and the direction of the applied electric field are the same, distortion is generated in a direction perpendicular to the direction of the applied electric field. When the piezoelectric body 108 extends in the longitudinal direction, the elasticity of the upper electrode 105 and the insulator 106 causes the first piezoelectric electrode 107 side to expand less than the second piezoelectric electrode 109 side. The beam 110 curves downward. Accordingly, the distance between the upper electrode 105 and the lower electrode 103 decreases, and the capacitance of the variable capacitance element 101 increases. In this way, a variable capacitance element that outputs a desired capacitance value by controlling an external input voltage is realized.
[0006]
Such a variable capacitance element 101 is manufactured by, for example, the following method. The lower electrode 103 is formed by implanting boron, phosphorus, or the like into the parent substrate 102 made of silicon by photolithography or ion implantation. Next, a gap adjusting material 104 made of PSG, an upper electrode 105 made of n + polysilicon, and an insulator 106 made of SiO2 are sequentially formed on the parent substrate 102 by the CVD technique. Next, a first piezoelectric electrode 107 made of Cr, a piezoelectric body 108 made of PZT (lead zirconate titanate), and a second piezoelectric electrode 109 made of Cr are sequentially formed on the insulator 106 by a sputtering technique. You. Next, the second piezoelectric electrode 109, the piezoelectric body 108, the first piezoelectric electrode 107, the insulator 106, and the upper electrode 105 are sequentially etched and formed into a predetermined pattern by photolithography and wet etching techniques. Then, the gap adjusting material 104 made of PSG is removed to a predetermined portion by etching, and the variable capacitance element 101 is obtained.
[0007]
[Patent Document 1]
JP-A-7-3355491
[Problems to be solved by the invention]
However, in the above-described conventional variable capacitance element 101, the support beam 110 has a total of six layers including the gap adjusting material 104, the upper electrode 105, the insulator 106, the first piezoelectric electrode 107, the piezoelectric body 108, and the second piezoelectric electrode 109. Each of the films has a different internal stress due to a film forming method or the like. Due to these internal stresses, the support beam 110 is warped. Therefore, the distance between the upper electrode 105 formed on the support beam 110 and the lower electrode 103 formed on the parent substrate 102 cannot be controlled to a desired value, and the initial capacitance of the variable capacitance element 101 is controlled to a desired value. There was a problem that it was not possible. Further, the displacement amount of the support beam 110 when a voltage is input cannot be controlled to a desired value, and a desired input voltage-output capacitance change rate cannot be obtained.
[0009]
In the conventional variable capacitance element, the piezoelectric body 108 forming the support beam 110 is formed of a piezoelectric thin film deposited by a method such as sputtering. For this reason, there is a problem that the piezoelectric performance is inferior to the bulk piezoelectric body, the displacement amount of the support beam 110 is small, and the capacity change rate cannot be increased.
[0010]
In order to solve the above-described problems, an object of the present invention is to provide a voltage-driven variable capacitance element that can control an initial capacitance value and a capacitance change rate with high accuracy, has a large capacitance change rate, and has high reliability. And
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a variable capacitance element according to the present invention includes a lower electrode formed on a surface of a parent substrate, a piezoelectric substrate provided directly or via an insulator on the parent substrate, and When the body substrate is viewed from the upper surface, at least a region including a part of the lower electrode is processed into a thin layer in a piezoelectric thin layer portion, and the lower portion of the piezoelectric thin layer portion is provided on a surface of the parent substrate side. An upper electrode formed so as to face a part of the electrode, and a comb-shaped electrode formed on the surface of the piezoelectric thin layer portion on the parent substrate side, which is generated when a voltage is input to the comb-shaped electrode It is characterized in that the capacitance between the two electrodes is changed in accordance with a change in the distance between the upper electrode and the lower electrode due to distortion of the piezoelectric thin layer portion.
[0012]
Since the piezoelectric thin layer portion is formed by processing the piezoelectric substrate as described above, the internal stress of the piezoelectric thin layer portion is suppressed. Further, since the comb-shaped electrode is formed by dividing the conductor layer in the longitudinal direction of the piezoelectric thin-layer portion, the generation of internal stress is suppressed, so that the stress exerted on the piezoelectric thin-layer portion from the comb-shaped electrode is reduced. Can be suppressed. Thus, since the warpage of the piezoelectric thin layer portion in the initial state is suppressed, it is easy to control the interval between the upper electrode and the lower electrode, and a desired initial capacitance value can be obtained with high accuracy. In addition, it is easy to control the amount of change in displacement of the piezoelectric thin layer portion with respect to the amount of change in input voltage to the comb-shaped electrode, and a desired input voltage-output capacitance change rate can be obtained with high accuracy.
[0013]
Further, the comb-shaped electrode and the upper electrode of the variable capacitance element are formed by stacking an electrode film having a compressive stress and an electrode film having a tensile stress so that the internal stress of the entire electrode is canceled. Features.
[0014]
With such a configuration, since the warpage of the piezoelectric thin layer portion in the initial state is suppressed, the initial capacitance value and the input voltage-output capacitance change rate of the variable capacitance element can be controlled with higher accuracy. .
[0015]
Further, in the variable capacitance element, the piezoelectric substrate and the piezoelectric thin layer portion are made of a single crystal.
[0016]
With such a configuration, the deterioration of the displacement amount due to the repeated driving of the piezoelectric thin layer portion is suppressed as compared with the case where the piezoelectric body is a polycrystalline body having a crystal grain boundary. For this reason, the fluctuation of the variable capacitance value due to the repeated driving is suppressed, and the reliability of the element is improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
(1) First Embodiment FIG. 1 shows a top view of a variable capacitance element according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the variable capacitance element taken along a cut plane A. FIG. 3 is a sectional view of the variable capacitance element taken along a cut surface B.
[0018]
As shown in the figure, lower electrodes 8 a and 8 b and a gap adjusting material 9 are formed on the upper surface of a parent substrate 11 of the variable capacitance element 1. The piezoelectric substrate 4 is formed on the upper surface of the gap adjusting member 9 so as to substantially cover the upper surface of the parent substrate 11. At least a part of the piezoelectric substrate 4 is thinned by processing to form a piezoelectric thin layer portion 5. Here, the piezoelectric thin layer portion 5 is formed so as to overlap at least a part of the lower electrodes 8a and 8b when viewed from above. An upper electrode 6 is formed on the lower surface of the piezoelectric thin layer portion 5 so as to face a part of the lower electrodes 8a and 8b, and is closer to the base of the piezoelectric thin layer portion 5 than the upper electrode 6. Comb-shaped electrode 7 is formed in the side region. The comb-shaped electrode 7 includes a first comb-shaped electrode 7a and a second comb-shaped electrode 7b having a plurality of electrode fingers as shown in FIG. 4 or FIG. Further, on the piezoelectric substrate 4, a lead electrode pad 10 is formed so as to be connected to the comb-shaped electrodes 7a and 7b, respectively.
[0019]
In the above-described variable capacitance element 1, the upper electrode 6 and the lower electrode 8a or 8b form a capacitance element using an air layer as a dielectric. The capacitance of the capacitive element is a combined capacitance of the capacitance between the upper electrode 6 and the lower electrode 8a and the capacitance between the upper electrode 6 and the lower electrode 8b, and is output from the lower electrodes 8a and 8b.
[0020]
Next, the principle of controlling the capacitance of the variable capacitance element 1 will be described. A voltage equal to or higher than the coercive voltage of the piezoelectric thin-layer portion 5 is applied between the comb-shaped electrode 7a and the comb-shaped electrode 7b of the variable capacitance element 1, and the piezoelectric thin-layer portion 5 is polarized. FIG. 4 shows how a voltage is applied to the piezoelectric thin layer portion 5 in the polarization process. An electric field in the direction indicated by the electric field direction 13 is applied to the inside of the piezoelectric thin layer portion 5 to be polarized. When a voltage equal to or lower than the coercive voltage of the piezoelectric thin-layer portion 5 is applied between the comb-shaped electrodes 7a and 7b in a state where the polarization process is completed, the piezoelectric thin-layer portion 5 along the direction indicated by the electric field direction 13 is applied. distortion based on the piezoelectric constant d 33 (d 33 strain, longitudinal effect distortion) occurs. Here, the region between the adjacent electrode fingers of the comb electrodes 7a and 7b, the d 33 strain occurs mainly in the longitudinal direction of the piezoelectric thin layer portion 5. Since the intensity of the electric field is stronger as it approaches the lower surface of the piezoelectric thin layer portion (the surface on which the comb-shaped electrode 7 is formed) and becomes weaker as it approaches the upper surface, the d 33 strain is increased along the thickness direction of the piezoelectric thin layer portion 5. Distribution. Therefore, when the d 33 strain is generated in the extending direction of the piezoelectric thin layer portion 5, the piezoelectric thin layer portion 5 is convex downward, i.e. in the direction in which the upper electrode 6 is separated from the lower electrode 8a, 8b When the piezoelectric thin layer portion 5 is curved and the distortion occurs in a direction in which the piezoelectric thin layer portion 5 contracts, the piezoelectric thin layer portion projects upward, that is, the upper electrode 6 curves in a direction approaching the lower electrodes 8a and 8b. I do. When the voltage input between the comb electrodes 7a and 7b fluctuates, the distance between the upper electrode 6 and the lower electrodes 8a and 8b fluctuates, and the capacitance between the two electrodes fluctuates. Thus, the capacitance value output between the lower electrodes 8a and 8b is controlled by the voltage input between the comb-shaped electrodes 7a and 7b.
[0021]
Next, a method for manufacturing the variable capacitance element according to the first embodiment of the present invention will be described with reference to FIGS.
[0022]
First, a method of manufacturing the first member constituting the variable capacitance element will be described with reference to FIG. An upper electrode 6, a comb-shaped electrode 7, and an extraction electrode pad 10 (not shown) made of Al are formed on a piezoelectric substrate 4 made of mirror-polished PZT (lead zirconate titanate) by a lift-off method (not shown). a). Here, it is desirable that the upper electrode 6 and the comb-shaped electrode 7 are formed of an electrode film having a small internal stress and a small resistivity.
[0023]
Next, a gap adjusting material 9 made of Cu / Ti is formed by a metal mask method (b). Next, a predetermined portion of the upper surface (the surface on which the upper electrode 6 and the comb-shaped electrode 7 are not formed) of the piezoelectric substrate 4 is removed to a predetermined depth by sandblasting via a metal mask. After that, the concavo-convex portions formed by sandblasting are flattened by ion milling and processed to a predetermined depth. Thus, a thin layer portion is formed on the piezoelectric substrate 4 (c). Further, a predetermined portion of the thin layer portion of the piezoelectric substrate 4 is processed and penetrated by ion milling or reactive ion etching to form the piezoelectric thin layer portion 5 made of PZT, and the first member 2 is obtained. (D). FIG. 6 shows a top view of the first member 2.
[0024]
Next, a method for manufacturing the second member 3 constituting the variable capacitance element will be described with reference to FIG. First, lower electrodes 8a and 8b made of Au / Ti are formed on a parent substrate 11 made of a Si single crystal by using a lift-off method. Next, an extraction electrode 12 made of Cu / Ti is formed using a metal mask method. Thus, the second member 3 is manufactured. FIG. 7 shows a top view of the second member 3.
[0025]
Finally, the surface of the first member 2 on which the upper electrode 6 is formed and the surface of the second member 3 on which the lower electrodes 8a and 8b are formed face each other and are joined by heating and pressurizing. The capacitance element 1 is obtained. At that time, the extraction electrode pads 10a and 10b (see FIG. 6) respectively drawn out from the comb-shaped electrodes 7a and 7b of the first member 2, and the extraction electrode 12 (see FIG. 7) of the second member 3. Are electrically connected.
[0026]
In this embodiment, the piezoelectric thin layer portion 5 is a cantilever, but may be a double-supported beam that supports the piezoelectric thin layer portion at two locations.
[0027]
In addition, in the above-described variable capacitance element 1, in order to obtain a high input voltage-output capacitance change rate, it is necessary that the displacement amount of the piezoelectric thin layer portion 5 is large. It is preferable that the thickness be as thin as possible from the viewpoint of reliability.
[0028]
When the above-described variable capacitance element 1 is used under a high frequency, the thickness of the upper electrode 6 and the lower electrodes 8a and 8b is preferably large in order to reduce the loss due to the resistance of the electrode part, and is 0.2 μm or more. Is preferred.
[0029]
The thickness of the gap adjusting member 9 is the sum of the thickness of the upper electrode 6, the thickness of the lower electrodes 8a and 8b, and the thickness of the air layer between the upper electrode 6 and the lower electrodes 8a and 8b. Here, the air layer thickness is set based on a target capacity value.
[0030]
In the variable capacitance element 1 thus obtained, since the piezoelectric thin layer portion 5 is formed by processing the piezoelectric substrate 4, no internal stress is generated. Further, since the comb-shaped electrode 7 is formed by being divided in the longitudinal direction of the piezoelectric thin layer portion 5, the stress applied to the piezoelectric thin layer portion 5 is reduced. By suppressing the stress generated in the piezoelectric thin layer portion 5 in this manner, the warpage of the piezoelectric thin layer portion 5 in the initial state is suppressed. Therefore, it is easy to control the distance between the upper electrode 6 and the lower electrodes 8a and 8b, and it is possible to obtain a desired initial capacitance value with high accuracy. Further, it is easy to control the amount of change in displacement of the piezoelectric thin layer portion 5 with respect to the amount of change in the input voltage to the comb-shaped electrode 7, so that a desired input voltage-output capacitance change rate can be obtained with high accuracy. Have.
[0031]
In addition, since the piezoelectric thin layer portion 5 is manufactured by processing the bulk piezoelectric substrate 4, the piezoelectric performance is higher than that of a piezoelectric body deposited and formed by a method such as sputtering. Also, since in the above configuration, the distortion based from the shape of the comb electrode 7 in the piezoelectric constant d 33 (longitudinal effect) is utilized, d 33 in general piezoelectric material having a value of more than 2 times the d 31, displacement of the piezoelectric thin layer portion 5 is increased as compared with the case of using the distortion (transverse effect) based on the conventional d 31, the input voltage - it is possible to improve the output rate of change in capacitance.
[0032]
In the variable capacitance element 1 described above, if the line width of each electrode finger of the comb-shaped electrodes 7a and 7b is 1 and the interval between adjacent electrode fingers is s, s / l is preferably as large as possible. Further, it is preferable that a length g of a portion of the comb-shaped electrodes 7a and 7b where adjacent electrode fingers face each other is as close as possible to a depth length w of the piezoelectric thin layer 5. With the above configuration, a region where the d33 distortion occurs in the piezoelectric thin layer portion 5 can be widened. For this reason, the displacement amount of the piezoelectric thin layer portion 5 is improved, and the rate of change in capacitance of the variable capacitance element 1 is improved.
(2) Second Embodiment A variable capacitance element according to a second embodiment of the present invention has the same basic structure and operation principle as the variable capacitance element according to the first embodiment, but includes a piezoelectric thin layer portion. The comb electrode and the upper electrode to be formed are different from the first embodiment in that an electrode film having a compressive stress and an electrode film having a tensile stress are laminated.
[0033]
FIG. 9 shows the configuration of the comb-shaped electrode and the upper electrode in the variable capacitance element according to the second embodiment of the present invention. The upper electrode 26 has a first layer upper electrode film 26a made of Al formed on the piezoelectric thin layer portion 25 and a second layer made of Cu formed on the first layer upper electrode film 26a. And a third upper electrode film 26c made of Al formed on the second upper electrode film 26b. Further, the comb-shaped electrode 27 is formed of a first comb-shaped electrode film 27a made of Al formed on the piezoelectric thin layer portion 25 and a Cu formed on the upper electrode film 27a of the first layer. And a third comb-shaped electrode film 27c made of Al formed on the second-layer upper electrode film 27b.
[0034]
Each of the electrode films constituting the upper electrode 26 and the comb-shaped electrode 27 is formed by a lift-off method using electron beam evaporation. At this time, the Al thin film has a compressive stress, and the Cu thin film has a tensile stress.
[0035]
As described above, in order to cancel the internal stress in a state where the three layers of Al / Cu / Al are laminated, the thickness of the first upper electrode film 26a and the first comb electrode film 27a is set to X. The thickness of the second upper electrode film 26b and the second comb electrode film 27b is Y, the thickness of the third upper electrode film 26c and the third comb electrode film 27c is Z, and the Al thin film is formed. Where σ Al is the absolute value of the internal stress of σ Al and σ Cu is the absolute value of the internal stress of the Cu thin film,
X = Z
Y × σ Cu = 2 × X × σ Al
X, Y, and Z are set so that
[0036]
With such a configuration, the internal stress of the entire electrode is canceled, and thus the warpage of the piezoelectric thin layer portion 25 in the initial state is suppressed. Therefore, it is easy to control the interval between the upper electrode and the lower electrode, and it is possible to obtain a desired initial capacitance value with high accuracy. Further, it is easy to control the amount of change in the displacement of the piezoelectric thin layer portion 25 with respect to the amount of change in the input voltage to the comb-shaped electrode 27, so that a desired input voltage-output capacitance change rate can be obtained with high accuracy. Have.
[0037]
Note that the comb-shaped electrode and the upper electrode in the present embodiment have a structure other than the above-described three layers as long as the entire stress is canceled by the lamination of the electrode film having the compressive stress and the electrode film having the tensile stress. Is also good. Further, materials other than the above-mentioned materials may be used.
(3) Third Embodiment A variable capacitance element according to a third embodiment of the present invention has the same basic configuration and operation principle as the variable capacitance element according to the first embodiment, except that the piezoelectric substrate is made of LiNbO 3. It differs from the first embodiment in that it is made of a single crystal.
[0038]
Hereinafter, the method for manufacturing the variable capacitance element according to the first embodiment of the present invention will be described.
[0039]
FIG. 10 shows a process of manufacturing the first member constituting the variable capacitance element according to the third embodiment. First, an upper electrode 46 made of Al, a comb-shaped electrode 47, and an extraction electrode pad 50 (not shown) are formed on the piezoelectric substrate 44 by a lift-off method (a). Here, as the piezoelectric substrate 44, a LiNbO3 single crystal substrate such as an x-plate or a y-plate whose z-axis is within the substrate plane is used. The formation of the upper electrode 46 and the like is performed along the z-axis direction of the piezoelectric substrate 44.
[0040]
Next, a gap adjusting material 49 made of Cu / Ti is formed by a metal mask method (b). Next, a predetermined portion of the upper surface of the piezoelectric substrate 44 (the surface on which the upper electrode 46 and the comb-shaped electrode 47 are not formed) is removed to a predetermined depth by a KrF excimer laser. Thereafter, the surface of the piezoelectric substrate 44 on which the upper electrode 46 and the like are formed is protected by a resist, and the altered portion of the LiNbO3 piezoelectric material by KrF excimer laser processing is removed by etching with a mixed solution of hydrofluoric acid and nitric acid. . Thus, a thin layer portion is formed on the piezoelectric substrate 44 (c). Further, a predetermined portion of the thin layer portion of the piezoelectric substrate 44 is processed and penetrated by KrF excimer laser or ion milling to form a piezoelectric thin layer portion 45 made of LiNbO 3 , thereby obtaining the first member 42 ( d). FIG. 11 shows a top view of the first member 42.
[0041]
The first member 42 thus obtained and the second member 3 shown in FIGS. 7 and 8 are joined by heating and pressing, and the variable capacitance element of the present embodiment is obtained.
[0042]
In the above embodiment, LiNbO 3 is used as a single crystal substrate, but another single crystal substrate having piezoelectricity, such as LiTaO 3 or KNbO 3 , may be used.
[0043]
In the above-described variable capacitance element, since the piezoelectric substrate 44 and the piezoelectric thin layer portion 45 are made of single crystal, the material is more stable than the case where the support material is a polycrystalline material having crystal grain boundaries, and It is possible to suppress the deterioration of the displacement amount due to the repeated driving of the body thin layer portion. For this reason, the fluctuation of the variable capacitance value due to the repetitive driving is suppressed, which has the effect of improving the reliability of the element.
[0044]
【The invention's effect】
As described above, in the variable capacitance element of the present invention, since the piezoelectric thin layer portion is formed by processing the piezoelectric substrate, the internal stress of the piezoelectric thin layer portion is suppressed. Further, in the comb-shaped electrode, since the conductor layer is formed by being divided in the longitudinal direction of the piezoelectric thin layer portion, internal stress is suppressed, and the stress applied to the piezoelectric thin layer portion from the comb electrode is suppressed. Thus, since the warpage of the piezoelectric thin layer portion in the initial state is suppressed, the control of the interval between the upper electrode and the lower electrode is facilitated, and the desired initial capacitance value can be obtained with high accuracy. Further, it is easy to control the amount of change in the displacement of the piezoelectric thin layer portion with respect to the amount of change in the input voltage to the comb-shaped electrode, so that a desired input voltage-output capacitance change rate can be accurately obtained.
[0045]
Further, when the piezoelectric thin layer portion is manufactured by processing a bulk piezoelectric substrate, the piezoelectric performance is improved as compared with a piezoelectric thin film formed by a method such as sputtering. Further, with the shape that can utilize comb electrodes d 33 strain (longitudinal effect), because the displacement of the piezoelectric thin layer portion is improved as compared with the case of using the d 31 strain (transverse effect), the input The voltage-output capacitance change rate is improved.
[0046]
Further, the comb-shaped electrode and the upper electrode of the variable capacitance element, the internal stress of the entire electrode is canceled out by stacking an electrode film having a compressive stress and an electrode film having a tensile stress, Warpage of the piezoelectric thin layer portion in the initial state is suppressed. Thereby, there is an effect that a desired initial capacitance value and an input voltage-output capacitance change rate can be accurately obtained.
[0047]
Further, since the piezoelectric substrate and the piezoelectric thin layer portion of the variable capacitance element are made of a single crystal, the deterioration of the displacement amount due to the repeated driving of the piezoelectric thin layer portion is suppressed as compared with the case where the piezoelectric body is made of a polycrystalline material. . For this reason, the variation of the variable capacitance value due to the repeated driving of the piezoelectric thin layer portion is suppressed, which has the effect of improving the reliability of the element.
[Brief description of the drawings]
FIG. 1 is a top view illustrating the configuration of a variable capacitance element according to a first embodiment; FIG. 2 is a cross-sectional view taken along a section AA ′ in FIG. 1 FIG. 3 is a section taken along a section BB ′ in FIG. FIG. 4 is an enlarged view of a beam portion in FIG. 2; FIG. 5 is a manufacturing process diagram of a first member constituting a variable capacitance element according to the first embodiment; FIG. 6 is a variable capacitance according to the first embodiment; FIG. 7 is a top view of a first member forming the element. FIG. 7 is a top view of a second member forming the variable capacitance element according to the first embodiment. FIG. 8 is a cross-sectional view taken along a cutting plane CC ′ in FIG. FIG. 9 is a cross-sectional view illustrating the configuration of a comb-shaped electrode and an upper electrode of the variable capacitance element according to the second embodiment. FIG. 10 is a process of manufacturing a first member that forms the variable capacitance element according to the third embodiment. FIG. 11 is a top view of a first member constituting a variable capacitance element according to a third embodiment. FIG. 12 is a conventional variable capacitance element. Sectional view illustrating the configuration of a device [Description of symbols]
1, 41 Variable capacitance element 2, 42 First member 3 Second member 4, 44 Piezoelectric substrate 5, 25, 45 Piezoelectric thin layer portion 6, 26, 46 Upper electrode 7, 27, 47 Comb electrode 7a , 47a First comb-shaped electrode 7b, 47b Second comb-shaped electrode 8a, 8b Lower electrode 9, 49 Gap adjusting material 10a, 10b, 50a, 50b Extraction electrode pad 11, 51 Parent substrate 12 Extraction electrode 13 Electric field Direction 26a First layer upper electrode film 26b Second layer upper electrode film 26c Third layer upper electrode film 27a First layer comb electrode film 27b Second layer comb electrode film 27c Third layer comb type Electrode film 101 Variable capacitance element 102 Substrate 103 Lower electrode 104 Gap adjusting material 105 Upper electrode 106 Insulator 107 First piezoelectric electrode 108 Piezoelectric 109 Second piezoelectric electrode 110 Support beam