JP2004219466A - Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method - Google Patents
Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method Download PDFInfo
- Publication number
- JP2004219466A JP2004219466A JP2003003432A JP2003003432A JP2004219466A JP 2004219466 A JP2004219466 A JP 2004219466A JP 2003003432 A JP2003003432 A JP 2003003432A JP 2003003432 A JP2003003432 A JP 2003003432A JP 2004219466 A JP2004219466 A JP 2004219466A
- Authority
- JP
- Japan
- Prior art keywords
- current
- transistor
- electronic circuit
- transistors
- switch means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 238000005401 electroluminescence Methods 0.000 claims description 40
- 239000003990 capacitor Substances 0.000 claims description 23
- 239000010409 thin film Substances 0.000 claims description 16
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000004297 night vision Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、特に、電子回路に関する。この電子回路の1つの特徴的な用途として、有機エレクトロルミネッセンス装置の画素を駆動するための回路が挙げられる。
【0002】
【発明の背景】
有機エレクトロルミネッセンス(OEL)素子は、アノード層とカソード層に挟まれた発光物質層を備えている。この素子は、電気的には、ダイオードのように動作する。この素子は、光学的には、順バイアス時に発光し、順バイアス電流の増加にともなってその発光強度が増加する。少なくとも1つの透明電極層を有しつつ透明基板上に作りこまれた有機エレクトロルミネッセンス素子のマトリクスを用いて、ディスプレイパネルを構築することが可能である。低温ポリシリコン薄膜トランジスタ(薄膜トランジスタ)技術を用いることにより、このパネル上に、電子回路をも一体的に設けることができる。
【0003】
アクティブマトリクス型有機エレクトロルミネッセンスディスプレイ用の基本的なアナログ駆動方式では、原理的に、1画素につき少なくとも2つのトランジスタが必要である(図1)。T1は画素を選択し、T2は、データ電圧信号を、有機エレクトロルミネッセンス素子(OELD)を指定の輝度で発光させるための駆動電流に変換する。前記データ信号は、画素が選択されていないときには、蓄積容量素子(storage capacitor)Cstorageに保存される。各図には、Pチャンネル型の薄膜トランジスタが示されているが、Nチャンネル型薄膜トランジスタを用いた回路にも同じ原理が適用できる。
【0004】
そこで、本発明者らは、図2に示す画素駆動回路(電子回路)を発明した。トランジスタT2は、有機エレクトロルミネッセンス素子(OELD)への駆動電流を供給するアナログ電流コントローラとして動作する。また、蓄積容量素子(ストレージキャパシタ)C1は、トランジスタT2のゲート及びソースの間に接続されている。図2の回路において、トランジスタT2のドレインは、トランジスタT3のソース−ドレイン経路を介して、トランジスタT1のソースに接続されている。トランジスタT1のソースはトランジスタT2のゲートに接続され、トランジスタT1とT3のゲートは互いに接続されている。T1とT3のゲートには、プログラミング電圧Vpが印加される。プログラミングステージ中オフにされるトランジスタT4は、T2のドレインとT3のソースを有機エレクトロルミネッセンス素子(OELD)に接続している。プログラミングステージ中、トランジスタT1は、トランジスタT2を、接地もしくは基準電圧に接続された電流シンクに接続する。このステージにおいては、トランジスタT2を介して有機エレクトロルミネッセンス素子に流れる電流はゼロである。
【0005】
図2の回路は、プログラミングステージ中、T4がオフで、T1及びT3がオンの状態で動作する。オンの状態のT3は、T2をダイオードとして動作させる効果を有する。また、T1は、このダイオードをデータ電流シンクへと接続する。その結果、容量素子C1は蓄電(電荷の蓄積)する(又は、前段階中に蓄積された電圧に依存して放電する)。容量素子C1は、トランジスタT2のゲート−ソース間電圧に応じて蓄電し、その結果、リプロダクションステージ中に有機エレクトロルミネッセンス素子への電流供給を制御することになる電圧(VGS2、データ電流IDATに対応)を蓄積する。プログラミングステージの終了時に、T1及びT3はオフとなる。このフレームの残りの期間(すなわち、リプロダクションステージ)のために、電圧VGS2がC1に蓄積される。
【0006】
C1が蓄電されてT3がオフになった後、T3のオフ抵抗は、このフレームの残り期間中、C1に印加された電圧に影響を与え得るので、T3のオフ抵抗が重要になることがある。そのため、T3のゲート−ソース間容量は、C1に比較して小さいことが望ましい。
【0007】
リプロダクション電圧VRは、トランジスタT4のゲートに印加される。図2の回路における、リプロダクションステージの開始時には、T4はオンであり、T1及びT3はオフのままである。その結果、T2は、C1によりバイアスされたVGS2により電流源として動作し、電流を有機エレクトロルミネッセンス素子に供給する。リプロダクションステージの終了時には、T4はオフにされ、T1及びT3はオフのままとどまる。これにより1つのサイクルが終了する。この駆動波形は、図2に示されている。
【0008】
図2に示された回路によれば、プログラミングステージ中は、電流制御トランジスタによる、電流駆動素子への電流供給はないということに気づくであろう。本発明のエレクトロルミネッセンス装置では、このエレクトロルミネッセンス装置によって表示される画像の質を損なうことなく、画素駆動回路を実現することができる。本発明では、プログラミング電流の経路とリプロダクション電流の経路とを分けることができる。これにより、多くの効果が得られる。例えば、プログラミングステージにおいて、有機エレクトロルミネッセンス素子を通過する電流が無ければ、プログラミングステージをより高速に動作させることができる。なぜならば、このような構成では、有機エレクトロルミネッセンス素子の寄生容量(parasitic capacitance)により引き起こされる低速化を防止することができるからである。
【0009】
図2の回路は効果的であるが、依然として、低消費電力化というニーズがある。このため、昨今の有機エレクトロルミネッセンス素子の材料の改良により、小さな電流でも駆動できるようになってきた。
【0010】
【発明が解決しようとする課題】
しかしながら、特に、低階調を表現する際には、プログラミングステージにおいて、データ電流IDATを非常に小さくする必要があり、蓄積容量素子C1への蓄電速度が遅くなるといった問題が生じてきた。加えて、小さなデータ電流IDATでプログラミングすると、蓄積容量素子C1やデータ線の製造のばらつきにより、蓄積容量素子C1への蓄電速度や蓄積される電荷量に大きな影響が出てしまうのである。
【0011】
【課題を解決するための手段】
本発明の第1の様態によれば、プログラミング経路及びリプロダクション経路を有する電子回路であって、前記回路は、電流駆動素子と、前記電流駆動素子に供給される電流の制御用に動作すべく配置された、前記プロダクション経路中のトランジスタと、前記トランジスタの動作電圧を蓄積するために配置された容量素子と、前記容量素子に前記動作電圧を蓄積すべく、前記プロダクション経路中において前記トランジスタに並列に配置された追加のトランジスタと、前記プログラミング経路及び前記リプロダクション経路を制御するスイッチ手段とを備えたこととする電子回路が提供される。
【0012】
本発明の第2の様態によれば、EL(エレクトロルミネッセンス)装置の画素を駆動するための電子回路であって、前記画素はエレクトロルミネッセンス素子を有し、前記回路は、前記エレクトロルミネッセンス素子に供給される電流の制御用に動作すべく配置されたトランジスタと、プログラミングステージ中に、前記トランジスタの動作電圧を蓄積するために配置された容量素子と、前記容量素子に前記動作電圧を蓄積すべく、前記トランジスタに並列に配置された追加のトランジスタと、前記プログラミングステージ中の動作時に、前記トランジスタ及び前記追加トランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、リプロダクションステージ中の動作時に、前記トランジスタ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段とを有することとする電子回路が提供される。
【0013】
本発明の第3の様態によれば、エレクトロルミネッセンス装置の画素を駆動するための電子回路であって、前記画素はエレクトロルミネッセンス素子を有し、前記回路は、前記エレクトロルミネッセンス素子に供給される電流の制御用に動作すべく配置されたトランジスタと、プログラミングステージ中に、前記トランジスタの動作電圧を蓄積するために配置された容量素子と、前記容量素子に前記動作電圧を蓄積すべく、前記トランジスタに並列に接続された追加のトランジスタと、前記プログラミングステージ中の動作時に、前記トランジスタ及び前記追加トランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、リプロダクションステージ中の動作時に、前記トランジスタ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段と、電流シンクとを有し、前記第1のスイッチ手段は、前記プログラミングステージ中の前記電流経路が前記トランジスタ及び前記追加トランジスタを介して前記電流シンクへと通じるように配置されていることとする電子回路が提供される。
【0014】
本発明の第4の様態によれば、電流駆動素子と、データ信号として電流を出力するデータ線と、前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続されるとともに互いに並列に配置された複数のトランジスタと、前記電流駆動素子と直列に配置された駆動トランジスタと、を備えた電子回路であって、前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタを介して前記電流駆動素子に供給することとする電子回路が提供される。
【0015】
本発明の第5の様態によれば、エレクトロルミネッセンス装置の画素を駆動するための電子回路であって、前記画素はエレクトロルミネッセンス素子を有し、前記回路は、電流駆動素子と、データ信号として電流を出力するデータ線と、前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続された複数のトランジスタと、前記電流駆動素子と直列に配置された駆動トランジスタとを備え、前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタ(T4)を介して前記電流駆動素子に供給するのであって、前記複数のトランジスタを通過するプログラミング経路を生じさせるスイッチ手段と、電流シンクとを有し、前記スイッチ手段は、前記プログラミング経路において前記複数のトランジスタを介して前期電流シンクへと通じるように配置されていることとする電子回路が提供される。
【0016】
本発明の第6の様態によれば、電流駆動素子と、データ信号として電流を出力するデータ線と、前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続されるとともに互いに並列に配置された複数のトランジスタと、前記電流駆動素子と直列に配置された駆動トランジスタとを備えた電子回路であって、前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記複数のトランジスタのうち少なくとも一つを介して前記電流駆動素子に供給することとする電子回路が提供される。
【0017】
本発明の第7の様態によれば、エレクトロルミネッセンス装置の画素を駆動するための電子回路であって、前記画素はエレクトロルミネッセンス素子を有し、前記回路は、電流駆動素子と、データ信号として電流を出力するデータ線と、プログラミングステージ中に前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続された複数のトランジスタとを備え、前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタを介して前記電流駆動素子に供給するのであって、前記プログラミングステージ中の動作時に、前記複数のトランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、リプロダクションステージ中の動作時に、前記複数のトランジスタの少なくとも一つ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段とを有することとする電子回路が提供される。
【0018】
本発明の第8の様態によれば、前記の電子回路を1つ又は2つ以上備えたエレクトロルミネッセンスディスプレイ装置が提供される。
【0019】
本発明の第9の様態によれば、前記のエレクトロルミネッセンスディスプレイ装置を用いた電子機器が提供される。
【0020】
本発明の第10の様態によれば、エレクトロルミネッセンス素子への電流供給を制御する方法であって、複数の副電流経路を含むプログラミング経路を提供するステップと、前記エレクトロルミネッセンス素子を通過するリプロダクション経路を提供するステップとを有する方法が提供される。
【0021】
本発明の第11の様態によれば、エレクトロルミネッセンス素子への電流供給を制御する方法であって、電流シンクへと接続された複数の副電流経路を含むプログラミング経路を提供するステップと、前記エレクトロルミネッセンス素子を通過するリプロダクション経路を提供するステップとを有する方法が提供される。
【0022】
本発明によれば、データ電流を大きくできるため、プログラミング動作の大幅な高速化が図れる。
【0023】
【発明の実施の形態】
本発明の実施形態について、さらに実例によって、添付の図面を参照しつつ説明する。これらはあくまでも例示に過ぎない。本実施形態では、前述した図2で示した回路に対し、構成、動作及び作用効果に関し、共通する部分は既に述べた通りであるので、相違する部分を中心に説明する。
【0024】
本実施形態の回路では、図3に示すように、まず、前述した図2で示した回路に加え、追加のトランジスタT5及び追加のスイッチングトランジスタT6を有する。これらT5及びT6はP型トランジスタである。
【0025】
この追加のスイッチングトランジスタT6のソースは、蓄積容量素子(ストレージキャパシタ)C1に接続され、そのドレインは、P型トランジスタT1のソースに接続されている。この追加のスイッチングトランジスタT6とT1とP型トランジスタT3のゲートは互いに接続されている。これらT1、T3及びT6のゲートには、プログラミング電圧Vpが印加される。T1はT6のドレイン−ソースを経由してC1に接続されている。
【0026】
追加のトランジスタT5のソースは、VDDに接続されており、そのゲートは、蓄積容量素子(ストレージキャパシタ)C1に接続されて、トランジスタT2のゲートと同じ駆動電圧信号が印加される。T5のドレインはトランジスタT1、T3、及びT6の共通接続箇所に接続されている。つまり、蓄積容量素子(ストレージキャパシタ)C1は、この追加のトランジスタT5のゲート及びソースの間にも接続されている。
【0027】
図3の回路において、トランジスタT1、T3、及びT6のゲートには、プログラミング電圧Vpが印加される。プログラミングステージ中オフにされるP型トランジスタT4は、P型トランジスタT2のドレインとT3のソースを有機エレクトロルミネッセンス素子(OELD)に接続している。プログラミングステージ中、トランジスタT1は、トランジスタT2、T5を接地もしくは基準電圧に接続された電流シンクに接続する。
【0028】
図3の回路は、プログラミングステージ中、T4がオフで、T1、T3及びT6がオンの状態で動作する。オンの状態のT3及びT6は、T2及びT5をダイオードとして動作させる効果を有する。また、T1は、これらダイオードT2及びT5をデータ電流シンクへと接続する。その結果、容量素子C1は蓄電(電荷の蓄積)する(又は、前段階中に蓄積された電圧に依存して放電する)。容量素子C1は、トランジスタT2及びT5のゲート−ソース間電圧に応じて蓄電し、その結果、リプロダクションステージ中に有機エレクトロルミネッセンス素子への電流供給を制御することになる電圧(VGS2、データ電流IDATに対応)を蓄積する。ここで、データ電流IDATとはデータ線より出力されるデータ信号である。プログラミングステージの終了時に、T1、T3及びT6はオフとなる。このフレームの残りの期間、すなわち、リプロダクションステージのために、電圧VGS2がC1に蓄積される。
【0029】
より具体的には、プログラミングステージ中における図3の回路は、図4に示す回路のように動作する。つまり、図4において、ダイオードとして動作する二つのトランジスタT2、T5を含む二つの副電流経路からなるプログラミング経路が生じることとなる。
【0030】
リプロダクション電圧VRは、トランジスタT4のゲートに印加される。図3の回路における、リプロダクションステージの開始時には、T4はオンであり、T1、T3及びT6はオフのままである。その結果、図5に示すようなリプロダクション経路が生じ、T2は、C1によりバイアスされたVGS2により電流源として動作し、電流を有機エレクトロルミネッセンス素子に供給する。リプロダクションステージの終了時には、T4はオフにされ、T1、T3及びT6はオフのままとどまる。これにより1つのサイクルが終了する。この駆動波形は、図3に示されている。
【0031】
前述したように、プログラミングステージ中、図4に示すように、ダイオードとして動作する二つのトランジスタT2あるいはT5を含む二つの副電流経路が生じる。従って、例えば、T2とT5の電流供給能力の比を1:9に設定すれば、図6に示すように、プロダクションステージにおいてエレクトロルミネッセンス素子へ供給される電流IOELが同じ100[nA]である場合、データ電流IDATが100[nA]となる図2で示した回路に比べて、本実施形態では、その10倍の1[μA]と大きくできる。その結果、図6に示すように、データ電流IDATを流すプログラミングステージの期間(プログラミングタイム)を、図2で示した回路の100[μS]に対して、40[μS]と極めて短くできる。このため、プログラミング動作の大幅な高速化が図れる。図6で示される対比はあくまで一例である。
【0032】
有機エレクトロルミネッセンス素子装置において、図3の駆動回路を実装する際の一例を図7に表す。図7の回路では、共通の電流シンクに対し、多数の回路ブロック10が接続される。
【0033】
その他の実施形態としての回路例を図8及び図9に示す。図8の回路では、プログラミングステージ中において、トランジスタT1、T6がオンとなり、ダイオードとして動作する二つのトランジスタT2あるいはT5を含む二つの副電流経路が生じることとなる。そして、リプロダクションステージの開始時には、T4はオンであり、T1、T6はオフのままである。その結果、図8に示すように、T4は、C1によりバイアスされたVGS2により電流源として動作し、電流を有機エレクトロルミネッセンス素子に供給する。リプロダクションステージの終了時には、T4はオフにされ、T1、T6はオフのままとどまる。これにより1つのサイクルが終了する。この駆動波形は、図8に示されている。この図8の実施形態においても、前述した図3の回路と同様、データ電流IDATを大きくでき、プログラミング動作の大幅な高速化が図れる。ここで例えば、T2、T4,T5を同一特性のトランジスタで構成すれば、各トランジスタの特性が合わせ易く、かつ、IDAT:IOEL=2:1の状態が実現できる。
【0034】
図9の回路では、プログラミングステージ中において、トランジスタT1、T3、及びT6がオンとなり、ダイオードとして動作する二つのトランジスタT2あるいはT5をそれぞれ含む二つの副電流経路が生じることとなる。そして、リプロダクションステージの開始時には、T4はオンであり、T1、T3及びT6はオフのままである。その結果、図9に示すように、T4は、C1によりバイアスされたVGS2により電流源として動作し、電流を有機エレクトロルミネッセンス素子に供給する。リプロダクションステージの終了時には、T4はオフにされ、T1、T3及びT6はオフのままとどまる。これにより1つのサイクルが終了する。この駆動波形は、図9に示されている。この図9の実施形態においても、前述した図3の回路と同様、データ電流IDATを大きくでき、プログラミング動作の大幅な高速化が図れる。ここで例えば、T2、T5を同一特性のトランジスタで構成すれば、各トランジスタの特性が合わせ易く、かつ、IDAT:IOEL=2:1の状態が実現できる。
【0035】
図10は、ある有機エレクトロルミネッセンス素子装置の模式的断面図である。図10において、符号132は正孔輸送層を示し、符号133は有機エレクトロルミネッセンス層を示し、符号151は、絶縁膜などで形成される抵抗もしくは分離体を示す。スイッチング薄膜トランジスタ121及びpチャンネル型の電流薄膜トランジスタ(current thin film transistor)122には、例えば公知の薄膜トランジスタ液晶ディスプレイ装置などにおいて使用されるような、トップゲートストラクチャ(top−gate structure)や最高温度が摂氏600度以下の製造方法などの、低温ポリシリコン薄膜トランジスタに通常使用される構造及び方法を採用する。しかし、その他の構造や方法なども使用可能である。
【0036】
有機エレクトロルミネッセンスディスプレイ素子131は、アルミニウム製などの陰極116、ITO製陽極115、正孔輸送層132、及び有機エレクトロルミネッセンス層133から構成される。
【0037】
正孔輸送層132及び有機エレクトロルミネッセンス層は、抵抗151を画素間の分離構造体として利用しつつ、インクジェット法やマスク蒸着法などにより形成することができる。ITO製の対向する陽極115は、スパッタリングにより形成することができる。しかし、これらの構成要素すべてを形成するために、これ以外の方法を用いることも可能である。例えば、発光層と陰極との間に電子輸送層も配置することもできる。
【0038】
本発明を用いたディスプレイパネル全体の典型的なレイアウトを図11に模式的に示す。このパネルは、アナログ電流プログラム式画素を有するアクティブマトリクス型有機エレクトロルミネッセンス素子200、レベルシフタを有する一体化(integrated)薄膜トランジスタ走査ドライバ210、フレキシブルTABテープ220、及び一体化RAM/コントローラ(integrated RAM/controller)付き外部アナログドライバLSI230から構成される。もちろんこれは、本発明を利用して実現可能なパネル構成の一例に過ぎない。
【0039】
有機エレクトロルミネッセンスディスプレイ装置の構造は、上記のものに限定されるものではない。その他の構造も適用可能である。
【0040】
図3乃至図11に示した回路は、薄膜トランジスタ(薄膜トランジスタ)技術を用いて実現することが好ましく、最も好ましくはポリシリコン薄膜トランジスタである。
【0041】
本発明は、携帯電話、コンピュータ、CDプレーヤー、DVDプレーヤーなどの小型の、携帯電子機器に対して特に有効である。もちろんこれらに限られるものではない。
【0042】
上述の有機エレクトロルミネッセンスディスプレイ装置を使用した電子機器について幾つか以下に説明する。
【0043】
<1:モバイルコンピュータ>
上述の実施形態のうちの1つによるディスプレイ装置を適用したモバイルパーソナルコンピュータの例について次に説明する。
【0044】
図12は、このパーソナルコンピュータの構成を表す等角投影図である。図中、パーソナルコンピュータ1100は、キーボード1102を含む本体1104、及びディスプレイユニット1106を備える。このディスプレイユニット1106は、本発明により製造されたディスプレイパネルを用いて上述の様に実現されている。
【0045】
<2:携帯電話>
次に、携帯電話のディスプレイ部分に本発明のディスプレイ装置を適用した例について説明する。図13は、この携帯電話の構成を表す等角投影図である。図中、携帯電話1200は、複数の操作キー1202、スピーカ1204、マイク1206、及びディスプレイパネル100を備える。このディスプレイパネル100は、本発明により製造されたディスプレイパネルを用いて上述の様に実現されている。
【0046】
<3:デジタルスチルカメラ>
次に、有機エレクトロルミネッセンスディスプレイ装置をファインダーとして用いたデジタルスチルカメラについて説明する。図14はこのデジタルスチルカメラの構成、及び外部装置への接続の概要を表す等角投影図である。
【0047】
通常のカメラは、被写体の光学画像をフィルムに感光させるが、デジタルスチルカメラ1300は、例えば、電荷結合素子(CCD)を用いて光電変換により、被写体の光学画像から画像信号を生成する。このデジタルスチルカメラ1300は、ケース1302の後面に、CCDからの画像信号に基づき表示を行う有機エレクトロルミネッセンス素子100を備える。そのため、このディスプレイパネル100は、被写体を表示するファインダーとして機能する。光学レンズ及びCCDを有する受光ユニット(photo acceptance unit)1304が、ケース1302の前面(図の後方)に備わっている。
【0048】
撮影者が有機エレクトロルミネッセンス素子パネル100に表示された被写体画像を決定し、シャッターを開放するとCCDからの画像信号が伝送され、回路基板1308内のメモリに保存される。このデジタルスチルカメラ1300では、ケース1302の側面にビデオ信号出力端子1312及びデータ通信用入出力端子1314が設けられている。図に示されているように、必要に応じて、TVモニタ1430及びパーソナルコンピュータ1440を、それぞれ、ビデオ信号端子1312及び入出力端子1314に接続する。所定の操作により、回路基板1308のメモリに保存された画像信号が、TVモニタ1430及びパーソナルコンピュータ1440への出力となる。
【0049】
図12に示したパーソナルコンピュータ、図13の携帯電話、及び図14のデジタルスチルカメラ以外の電子機器の例としては、有機エレクトロルミネッセンス素子TVセット、ビューファインダー式及びモニタリング式のビデオテープ録画器、カーナビゲーションシステム、ポケットベル、電子ノート、電卓、ワードプロセッサ、ワークステーション、TV電話、POSシステム端末、及びタッチパネル付きデバイス等が挙げられる。無論、上述の有機エレクトロルミネッセンス装置はこれらの電子機器のディスプレイ部分に適用可能である。
【0050】
本発明の駆動回路は、ディスプレイユニットの画素内に配置するのみならず、ディスプレイユニット外に配置することも可能である。
【0051】
前述の説明では、本発明の駆動回路は種々のディスプレイ装置を例として説明した。本発明の駆動回路の用途は、ディスプレイ装置にとどまらず、例えば、磁気抵抗RAM、容量センサ(capacitance sensor)、電荷センサ(charge sensor)、DNAセンサ、暗視カメラ、及びその他多くの装置なども含まれる。
【0052】
図15は、本発明の駆動回路の磁気RAMへの応用を示している。図13では、磁気ヘッドを符号MHで示している。
【0053】
図16は、本発明の駆動回路の磁気抵抗素子への応用を示している。図14では、磁気ヘッドを符号MHで、磁気レジスタを符号MRで示している。
【0054】
図17は、本発明の駆動回路の容量センサ、又は電荷センサへの応用を示している。図17では、センス容量素子(sense capacitor)を符号Csenseで示している。図17の回路は、指紋センサやDNAなどこの他の用途にも応用可能である。
【0055】
図18は、本発明の駆動回路の暗視カメラへの応用を示している。図18では、光伝導体を符号Rで示している。
【0056】
上述の特定された説明において示された実施形態では、各トランジスタはpチャンネル型トランジスタとして示された。このことは本発明の限定的要素ではない。例えば、駆動トランジスタをpチャンネル型のままとした以外、nチャンネル型のトランジスタを使用してもよい。
【0057】
図3から図18までに関して説明された構成には、本発明の範囲から逸脱することなく、種々の変更や改良が可能であることが当業者には明らかであろう。
【図面の簡単な説明】
【図1】2個のトランジスタを使用した、従来の有機エレクトロルミネッセンス素子画素駆動回路を示している。
【図2】先に発明された電流プログラム式有機エレクトロルミネッセンス素子駆動回路を示している。
【図3】本発明の第1の実施形態による画素駆動回路を示している。
【図4】本発明の一実施形態による画素駆動回路のプログラミングステージ中の等価回路を示している。
【図5】本発明の一実施形態による画素駆動回路のリプロダクションステージ中の等価回路を示している。
【図6】データ電流の値及びプログラミングステージの動作速度に関し、発明による一実施形態の画素駆動回路と図2の画素駆動回路とを比較した図表である。
【図7】本発明の一実施形態による有機エレクトロルミネッセンス素子及び画素駆動回路をディスプレイに適用した一例の回路図である。
【図8】本発明による画素駆動回路の別の実施形態を示している。
【図9】本発明による画素駆動回路の別の実施形態を示している。
【図10】本発明による有機エレクトロルミネッセンス素子装置における画素駆動回路の実装状態を表す模式的断面図である。
【図11】本発明による有機エレクトロルミネッセンスディスプレイパネルの概略平面図である。
【図12】本発明の画素駆動回路を有するディスプレイ装置を使用したモバイルパーソナルコンピュータの模式図である。
【図13】本発明の画素駆動回路を有するディスプレイ装置を使用した携帯電話の模式図である。
【図14】本発明の画素駆動回路を有するディスプレイ装置を使用したデジタルカメラの模式図である。
【図15】本発明の駆動回路の磁気RAMへの応用を示している。
【図16】本発明の駆動回路の磁気抵抗素子への応用を示している。
【図17】本発明の駆動回路の容量センサ又は電荷センサへの応用を示している。
【図18】本発明の駆動回路の暗視カメラへの応用を示している。[0001]
TECHNICAL FIELD OF THE INVENTION
The invention particularly relates to electronic circuits. One characteristic application of the electronic circuit is a circuit for driving a pixel of an organic electroluminescence device.
[0002]
BACKGROUND OF THE INVENTION
An organic electroluminescence (OEL) element has a light emitting material layer sandwiched between an anode layer and a cathode layer. This element operates electrically like a diode. This element optically emits light at the time of forward bias, and its emission intensity increases with an increase in forward bias current. A display panel can be constructed using a matrix of organic electroluminescent elements formed on a transparent substrate while having at least one transparent electrode layer. By using low-temperature polysilicon thin film transistor (thin film transistor) technology, an electronic circuit can also be integrally provided on this panel.
[0003]
The basic analog drive scheme for active matrix organic electroluminescent displays requires in principle at least two transistors per pixel (FIG. 1). T1 selects a pixel, and T2 converts a data voltage signal into a drive current for causing an organic electroluminescence element (OELD) to emit light at a specified luminance. When no pixel is selected, the data signal is stored in a storage capacitor Cstorage. Although each drawing shows a P-channel thin film transistor, the same principle can be applied to a circuit using an N-channel thin film transistor.
[0004]
Therefore, the present inventors have invented the pixel drive circuit (electronic circuit) shown in FIG. The transistor T2 operates as an analog current controller that supplies a drive current to an organic electroluminescence element (OELD). The storage capacitor (storage capacitor) C1 is connected between the gate and the source of the transistor T2. In the circuit of FIG. 2, the drain of the transistor T2 is connected to the source of the transistor T1 via the source-drain path of the transistor T3. The source of the transistor T1 is connected to the gate of the transistor T2, and the gates of the transistors T1 and T3 are connected to each other. A programming voltage Vp is applied to the gates of T1 and T3. Transistor T4, which is turned off during the programming stage, connects the drain of T2 and the source of T3 to an organic electroluminescent device (OELD). During the programming stage, transistor T1 connects transistor T2 to a current sink connected to ground or a reference voltage. In this stage, the current flowing through the organic electroluminescence element via the transistor T2 is zero.
[0005]
The circuit of FIG. 2 operates during the programming stage with T4 off and T1 and T3 on. T3 in the ON state has an effect of operating T2 as a diode. T1 also connects this diode to the data current sink. As a result, the capacitive element C1 stores electricity (accumulates charges) (or discharges depending on the voltage accumulated during the previous stage). The capacitance element C1 stores a voltage according to the gate-source voltage of the transistor T2, and as a result, a voltage (VGS2, corresponding to the data current IDAT) that controls the current supply to the organic electroluminescence element during the re-production stage. ) To accumulate. At the end of the programming stage, T1 and T3 are off. Voltage VGS2 is stored on C1 for the remainder of the frame (ie, the re-production stage).
[0006]
After C1 has been charged and T3 has been turned off, the off-resistance of T3 can be important because the off-resistance of T3 can affect the voltage applied to C1 during the remainder of this frame. . Therefore, it is desirable that the gate-source capacitance of T3 be smaller than C1.
[0007]
The reproduction voltage VR is applied to the gate of the transistor T4. At the start of the re-production stage in the circuit of FIG. 2, T4 is on and T1 and T3 remain off. As a result, T2 operates as a current source by VGS2 biased by C1, and supplies current to the organic electroluminescent element. At the end of the reproduction stage, T4 is turned off and T1 and T3 remain off. This completes one cycle. This drive waveform is shown in FIG.
[0008]
It will be noted that according to the circuit shown in FIG. 2, during the programming stage, there is no current supply to the current driver by the current control transistor. According to the electroluminescence device of the present invention, a pixel driving circuit can be realized without deteriorating the quality of an image displayed by the electroluminescence device. In the present invention, the path of the programming current and the path of the reproduction current can be separated. Thereby, many effects can be obtained. For example, if there is no current passing through the organic electroluminescent element in the programming stage, the programming stage can be operated at higher speed. This is because such a configuration can prevent a reduction in the speed caused by the parasitic capacitance of the organic electroluminescence element.
[0009]
Although the circuit of FIG. 2 is effective, there is still a need for lower power consumption. For this reason, recent improvements in the materials of organic electroluminescent elements have made it possible to drive even small currents.
[0010]
[Problems to be solved by the invention]
However, in particular, when expressing a low gradation, the data current IDAT needs to be extremely small in the programming stage, and a problem has arisen in that the speed of charging the storage capacitor C1 is reduced. In addition, when programming with a small data current IDAT, the manufacturing speed of the storage capacitor C1 and the data lines greatly affects the speed of charging the storage capacitor C1 and the amount of charge stored therein.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an electronic circuit having a programming path and a reproduction path, wherein the circuit operates to control a current driving element and a current supplied to the current driving element. A transistor arranged in the production path, a capacitor arranged to accumulate an operating voltage of the transistor, and a transistor arranged in parallel in the production path to accumulate the operating voltage in the capacitor. An electronic circuit is provided, comprising an additional transistor arranged in the circuit and switch means for controlling the programming path and the reproduction path.
[0012]
According to a second aspect of the present invention, there is provided an electronic circuit for driving a pixel of an electroluminescence (EL) device, wherein the pixel has an electroluminescence element, and the circuit supplies the electroluminescence element. A transistor arranged to operate for controlling the current to be applied, a capacitive element arranged to accumulate an operating voltage of the transistor during a programming stage, and storing the operating voltage in the capacitive element. An additional transistor arranged in parallel with the transistor, first switch means for creating a current path through the transistor and the additional transistor during operation during the programming stage, and during operation during the reproduction stage, The transistor and the electroluminescent element Electronic circuits to having a second switch means for producing a current path through is provided.
[0013]
According to a third aspect of the present invention, there is provided an electronic circuit for driving a pixel of an electroluminescence device, wherein the pixel has an electroluminescence element, and the circuit includes a current supplied to the electroluminescence element. A transistor arranged to operate for control of the transistor, a capacitive element arranged to accumulate an operating voltage of the transistor during a programming stage, and a transistor arranged to accumulate the operating voltage in the capacitive element. An additional transistor connected in parallel, first switch means for creating a current path through the transistor and the additional transistor during operation during the programming stage; and Pass through the electroluminescent element Second switching means for providing a current path, and a current sink, wherein the first switching means connects the current path during the programming stage to the current sink via the transistor and the additional transistor. An electronic circuit is provided that is arranged to communicate.
[0014]
According to a fourth aspect of the present invention, a current driver, a data line that outputs a current as a data signal, a capacitor that accumulates a charge based on the current output via the data line, An electronic circuit comprising: a plurality of transistors each having a gate connected to an element and arranged in parallel with each other; and a driving transistor arranged in series with the current driving element, wherein the plurality of transistors are connected to the data line. Supplying a current corresponding to the amount of charge accumulated in the capacitive element to the current driving element via the driving transistor based on the amount of current flowing in a current path including the plurality of transistors in a state where the current driving element is connected to the current driving element. An electronic circuit is provided.
[0015]
According to a fifth aspect of the present invention, there is provided an electronic circuit for driving a pixel of an electroluminescence device, wherein the pixel has an electroluminescence element, wherein the circuit includes a current driving element and a current signal as a data signal. , A capacitance element that accumulates charges based on a current output through the data line, a plurality of transistors each having a gate connected to the capacitance element, and a current driver. And a current corresponding to the amount of charge stored in the capacitive element based on the amount of current flowing through a current path including the plurality of transistors in a state where the plurality of transistors are connected to the data line. Is supplied to the current driving element via the driving transistor (T4), and the current passing through the plurality of transistors is supplied to the current driving element. An electronic circuit having switching means for generating a programming path, and a current sink, wherein the switching means is arranged to communicate with the current sink via the plurality of transistors in the programming path. Provided.
[0016]
According to a sixth aspect of the present invention, a current driver, a data line that outputs a current as a data signal, a capacitor that accumulates charges based on the current output via the data line, An electronic circuit comprising a plurality of transistors each having a gate connected to an element and arranged in parallel with each other, and a driving transistor arranged in series with the current driving element, wherein the plurality of transistors are connected to the data line. A current corresponding to the amount of electric charge accumulated in the capacitance element based on the amount of current flowing in a current path including the plurality of transistors in the connected state, via at least one of the plurality of transistors, the current driving element An electronic circuit is provided for supplying the electronic circuit.
[0017]
According to a seventh aspect of the present invention, there is provided an electronic circuit for driving a pixel of an electroluminescence device, wherein the pixel has an electroluminescence element, the circuit includes a current driving element, and a current signal as a data signal. A data line that outputs a current, a capacitance element that accumulates charges based on a current output through the data line during a programming stage, and a plurality of transistors each having a gate connected to the capacitance element. A current corresponding to the amount of charge accumulated in the capacitive element based on the amount of current flowing through a current path including the plurality of transistors in a state where the transistor is connected to the data line, and driving the current through the driving transistor. An element that operates through the plurality of transistors during operation during the programming stage. First switch means for generating a path, and second switch means for generating a current path passing through at least one of the plurality of transistors and the electroluminescent element during operation during the reproduction stage. An electronic circuit is provided.
[0018]
According to an eighth aspect of the present invention, there is provided an electroluminescent display device including one or more electronic circuits.
[0019]
According to a ninth aspect of the present invention, there is provided an electronic apparatus using the above-described electroluminescent display device.
[0020]
According to a tenth aspect of the present invention, there is provided a method of controlling a current supply to an electroluminescent device, the method comprising: providing a programming path including a plurality of sub-current paths; Providing a route.
[0021]
According to an eleventh aspect of the present invention, there is provided a method of controlling current supply to an electroluminescent device, the method comprising: providing a programming path including a plurality of sub-current paths connected to a current sink; Providing a re-production path through the luminescent element.
[0022]
According to the present invention, since the data current can be increased, the speed of the programming operation can be significantly increased.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be further described by way of example with reference to the accompanying drawings. These are only examples. In the present embodiment, as for the configuration, operation, and effect of the circuit shown in FIG. 2 described above, common parts are as already described, and therefore, different parts will be mainly described.
[0024]
As shown in FIG. 3, the circuit of the present embodiment includes an additional transistor T5 and an additional switching transistor T6 in addition to the circuit shown in FIG. T5 and T6 are P-type transistors.
[0025]
The source of the additional switching transistor T6 is connected to the storage capacitor C1, and the drain is connected to the source of the P-type transistor T1. The gates of this additional switching transistors T6 and T1 and the P-type transistor T3 are connected to each other. A programming voltage Vp is applied to the gates of T1, T3 and T6. T1 is connected to C1 via the drain-source of T6.
[0026]
The source of the additional transistor T5 is connected to VDD, and its gate is connected to the storage capacitor C1, so that the same drive voltage signal as the gate of the transistor T2 is applied. The drain of T5 is connected to a common connection point of the transistors T1, T3, and T6. That is, the storage capacitance element (storage capacitor) C1 is also connected between the gate and the source of the additional transistor T5.
[0027]
In the circuit of FIG. 3, the programming voltage Vp is applied to the gates of the transistors T1, T3, and T6. The P-type transistor T4, which is turned off during the programming stage, connects the drain of the P-type transistor T2 and the source of T3 to an organic electroluminescent device (OELD). During the programming stage, transistor T1 connects transistors T2, T5 to a current sink connected to ground or a reference voltage.
[0028]
The circuit of FIG. 3 operates during the programming stage with T4 off and T1, T3 and T6 on. T3 and T6 in the ON state have an effect of operating T2 and T5 as diodes. T1 also connects these diodes T2 and T5 to the data current sink. As a result, the capacitive element C1 stores electricity (accumulates charges) (or discharges depending on the voltage accumulated during the previous stage). The capacitance element C1 stores the electric charge according to the gate-source voltages of the transistors T2 and T5, and as a result, a voltage (VGS2, data current IDAT2) that controls the current supply to the organic electroluminescence element during the re-production stage. Accumulate). Here, the data current IDAT is a data signal output from the data line. At the end of the programming stage, T1, T3 and T6 are off. The voltage VGS2 is stored on C1 for the remainder of this frame, the re-production stage.
[0029]
More specifically, the circuit of FIG. 3 during the programming stage operates like the circuit shown in FIG. That is, in FIG. 4, a programming path including two sub-current paths including two transistors T2 and T5 operating as diodes is generated.
[0030]
The reproduction voltage VR is applied to the gate of the transistor T4. At the start of the reproduction stage in the circuit of FIG. 3, T4 is on and T1, T3 and T6 remain off. As a result, a reproduction path as shown in FIG. 5 is generated, and T2 operates as a current source by VGS2 biased by C1, and supplies a current to the organic electroluminescence element. At the end of the re-production stage, T4 is turned off and T1, T3 and T6 remain off. This completes one cycle. This drive waveform is shown in FIG.
[0031]
As described above, during the programming stage, as shown in FIG. 4, two auxiliary current paths including two transistors T2 or T5 operating as diodes are generated. Therefore, for example, if the ratio of the current supply capabilities of T2 and T5 is set to 1: 9, as shown in FIG. 6, the current IOEL supplied to the electroluminescent element in the production stage is the same 100 [nA]. In the present embodiment, the data current IDAT can be increased to 1 [μA], which is ten times that of the circuit shown in FIG. 2 in which the data current IDAT is 100 [nA]. As a result, as shown in FIG. 6, the period (programming time) of the programming stage for flowing the data current IDAT can be extremely shortened to 40 [μS] with respect to 100 [μS] of the circuit shown in FIG. For this reason, the speed of the programming operation can be significantly increased. The comparison shown in FIG. 6 is merely an example.
[0032]
FIG. 7 shows an example of mounting the drive circuit of FIG. 3 in the organic electroluminescence element device. In the circuit of FIG. 7, a large number of circuit blocks 10 are connected to a common current sink.
[0033]
8 and 9 show circuit examples as other embodiments. In the circuit of FIG. 8, during the programming stage, the transistors T1 and T6 are turned on, and two sub-current paths including two transistors T2 or T5 operating as diodes are generated. At the start of the reproduction stage, T4 is on and T1 and T6 remain off. As a result, as shown in FIG. 8, T4 operates as a current source by VGS2 biased by C1, and supplies current to the organic electroluminescent element. At the end of the reproduction stage, T4 is turned off and T1 and T6 remain off. This completes one cycle. This drive waveform is shown in FIG. In the embodiment of FIG. 8, as in the circuit of FIG. 3, the data current IDAT can be increased, and the programming operation can be performed at a significantly higher speed. Here, for example, if T2, T4, and T5 are composed of transistors having the same characteristics, the characteristics of each transistor can be easily matched, and a state of IDAT: IOEL = 2: 1 can be realized.
[0034]
In the circuit of FIG. 9, during the programming stage, the transistors T1, T3, and T6 are turned on, and two sub-current paths including two transistors T2 or T5 each operating as a diode are generated. Then, at the start of the reproduction stage, T4 is on and T1, T3, and T6 remain off. As a result, as shown in FIG. 9, T4 operates as a current source by VGS2 biased by C1, and supplies current to the organic electroluminescent element. At the end of the re-production stage, T4 is turned off and T1, T3 and T6 remain off. This completes one cycle. This drive waveform is shown in FIG. Also in the embodiment of FIG. 9, similarly to the circuit of FIG. 3, the data current IDAT can be increased, and the programming operation can be greatly speeded up. Here, for example, if T2 and T5 are composed of transistors having the same characteristics, the characteristics of each transistor can be easily matched, and a state of IDAT: IOEL = 2: 1 can be realized.
[0035]
FIG. 10 is a schematic cross-sectional view of a certain organic electroluminescence element device. In FIG. 10,
[0036]
The organic
[0037]
The
[0038]
FIG. 11 schematically shows a typical layout of the entire display panel using the present invention. The panel includes an active matrix
[0039]
The structure of the organic electroluminescent display device is not limited to the above. Other structures are also applicable.
[0040]
The circuits shown in FIGS. 3 through 11 are preferably implemented using thin film transistor (thin film transistor) technology, and are most preferably polysilicon thin film transistors.
[0041]
The present invention is particularly effective for small, portable electronic devices such as mobile phones, computers, CD players, and DVD players. Of course, it is not limited to these.
[0042]
Some electronic devices using the above-described organic electroluminescent display device will be described below.
[0043]
<1: Mobile computer>
Next, an example of a mobile personal computer to which the display device according to one of the above embodiments is applied will be described.
[0044]
FIG. 12 is an isometric view showing the configuration of the personal computer. In the figure, a
[0045]
<2: Mobile phone>
Next, an example in which the display device of the present invention is applied to a display portion of a mobile phone will be described. FIG. 13 is an isometric view showing the configuration of the mobile phone. In the figure, a
[0046]
<3: Digital still camera>
Next, a digital still camera using the organic electroluminescence display device as a finder will be described. FIG. 14 is an isometric view showing an outline of the configuration of the digital still camera and connection to an external device.
[0047]
An ordinary camera exposes an optical image of a subject to a film, while the
[0048]
When the photographer determines the subject image displayed on the organic
[0049]
Examples of electronic devices other than the personal computer shown in FIG. 12, the mobile phone shown in FIG. 13, and the digital still camera shown in FIG. 14 include an organic electroluminescence element TV set, a viewfinder type and a monitoring type video tape recorder, and a car. Examples include a navigation system, a pager, an electronic notebook, a calculator, a word processor, a workstation, a TV phone, a POS system terminal, and a device with a touch panel. Of course, the above-mentioned organic electroluminescence device is applicable to the display portion of these electronic devices.
[0050]
The driving circuit of the present invention can be arranged not only in the pixel of the display unit but also outside the display unit.
[0051]
In the above description, the driving circuit of the present invention has been described using various display devices as examples. Applications of the drive circuit of the present invention are not limited to display devices, but also include, for example, a magnetoresistive RAM, a capacitance sensor, a charge sensor, a DNA sensor, a night vision camera, and many other devices. It is.
[0052]
FIG. 15 shows an application of the drive circuit of the present invention to a magnetic RAM. In FIG. 13, the magnetic head is indicated by reference numeral MH.
[0053]
FIG. 16 shows an application of the drive circuit of the present invention to a magnetoresistive element. In FIG. 14, the magnetic head is denoted by reference numeral MH, and the magnetic register is denoted by reference numeral MR.
[0054]
FIG. 17 shows an application of the drive circuit of the present invention to a capacitance sensor or a charge sensor. In FIG. 17, a sense capacitance element (sense capacitor) is indicated by reference symbol Csense. The circuit in FIG. 17 can be applied to other uses such as a fingerprint sensor and DNA.
[0055]
FIG. 18 shows an application of the drive circuit of the present invention to a night vision camera. In FIG. 18, the photoconductor is indicated by the symbol R.
[0056]
In the embodiments shown in the above-identified description, each transistor has been shown as a p-channel transistor. This is not a limiting element of the present invention. For example, an n-channel transistor may be used instead of a p-channel transistor.
[0057]
It will be apparent to those skilled in the art that various modifications and improvements can be made to the configurations described with respect to FIGS. 3 through 18 without departing from the scope of the invention.
[Brief description of the drawings]
FIG. 1 shows a conventional organic electroluminescence element pixel drive circuit using two transistors.
FIG. 2 shows a current-programmed organic electroluminescence element driving circuit invented earlier.
FIG. 3 shows a pixel driving circuit according to the first embodiment of the present invention.
FIG. 4 illustrates an equivalent circuit during a programming stage of a pixel driving circuit according to an embodiment of the present invention.
FIG. 5 shows an equivalent circuit in a reproduction stage of the pixel driving circuit according to one embodiment of the present invention.
FIG. 6 is a table comparing the pixel driving circuit of FIG. 2 with the pixel driving circuit of one embodiment according to the present invention with respect to the value of the data current and the operation speed of the programming stage.
FIG. 7 is a circuit diagram of an example in which an organic electroluminescence element and a pixel driving circuit according to an embodiment of the present invention are applied to a display.
FIG. 8 shows another embodiment of the pixel driving circuit according to the present invention.
FIG. 9 shows another embodiment of the pixel drive circuit according to the present invention.
FIG. 10 is a schematic sectional view illustrating a mounted state of a pixel drive circuit in the organic electroluminescence element device according to the present invention.
FIG. 11 is a schematic plan view of an organic electroluminescent display panel according to the present invention.
FIG. 12 is a schematic diagram of a mobile personal computer using a display device having a pixel drive circuit of the present invention.
FIG. 13 is a schematic diagram of a mobile phone using a display device having a pixel drive circuit of the present invention.
FIG. 14 is a schematic diagram of a digital camera using a display device having a pixel driving circuit of the present invention.
FIG. 15 shows an application of the drive circuit of the present invention to a magnetic RAM.
FIG. 16 shows an application of the drive circuit of the present invention to a magnetoresistive element.
FIG. 17 shows an application of the drive circuit of the present invention to a capacitance sensor or a charge sensor.
FIG. 18 shows an application of the drive circuit of the present invention to a night vision camera.
Claims (34)
前記回路は、
電流駆動素子と、
前記電流駆動素子に供給される電流の制御用に動作すべく配置された、前記プロダクション経路中のトランジスタと、
前記トランジスタの動作電圧を蓄積するために配置された容量素子と、
前記容量素子に前記動作電圧を蓄積すべく、前記プロダクション経路中において前記トランジスタに並列に配置された追加のトランジスタと、
前記プログラミング経路及び前記リプロダクション経路を制御するスイッチ手段とを備えたことを特徴とする電子回路。An electronic circuit having a programming path and a reproduction path,
The circuit comprises:
A current driving element;
A transistor in the production path arranged to operate for controlling a current supplied to the current driving element;
A capacitive element arranged to store an operating voltage of the transistor;
An additional transistor disposed in parallel with the transistor in the production path to store the operating voltage in the capacitive element;
An electronic circuit comprising switch means for controlling the programming path and the reproduction path.
前記画素はエレクトロルミネッセンス素子を有し、
前記回路は、
前記エレクトロルミネッセンス素子に供給される電流の制御用に動作すべく配置されたトランジスタと、
プログラミングステージ中に、前記トランジスタの動作電圧を蓄積するために配置された容量素子と、
前記容量素子に前記動作電圧を蓄積すべく、前記トランジスタに並列に配置された追加のトランジスタと、
前記プログラミングステージ中の動作時に、前記トランジスタ及び前記追加トランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、
リプロダクションステージ中の動作時に、前記トランジスタ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段とを有することを特徴とする電子回路。An electronic circuit for driving pixels of an EL (electroluminescence) device,
The pixel has an electroluminescent element,
The circuit comprises:
A transistor arranged to operate for controlling a current supplied to the electroluminescent element,
During the programming stage, a capacitive element arranged to store the operating voltage of said transistor;
An additional transistor arranged in parallel with the transistor to store the operating voltage in the capacitive element;
First switch means for creating a current path through the transistor and the additional transistor during operation during the programming stage;
An electronic circuit comprising: a second switch for generating a current path passing through the transistor and the electroluminescent element during operation during a reproduction stage.
前記画素はエレクトロルミネッセンス素子を有し、
前記回路は、
前記エレクトロルミネッセンス素子に供給される電流の制御用に動作すべく配置されたトランジスタと、
プログラミングステージ中に、前記トランジスタの動作電圧を蓄積するために配置された容量素子と、
前記容量素子に前記動作電圧を蓄積すべく、前記トランジスタに並列に接続された追加のトランジスタと、
前記プログラミングステージ中の動作時に、前記トランジスタ及び前記追加トランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、
リプロダクションステージ中の動作時に、前記トランジスタ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段と、
電流シンクとを有し、
前記第1のスイッチ手段は、前記プログラミングステージ中の前記電流経路が前記トランジスタ及び前記追加トランジスタを介して前記電流シンクへと通じるように配置されていることを特徴とする電子回路。An electronic circuit for driving a pixel of an electroluminescence device,
The pixel has an electroluminescent element,
The circuit comprises:
A transistor arranged to operate for controlling a current supplied to the electroluminescent element,
During the programming stage, a capacitive element arranged to store the operating voltage of said transistor;
An additional transistor connected in parallel to the transistor to store the operating voltage in the capacitive element;
First switch means for creating a current path through the transistor and the additional transistor during operation during the programming stage;
Second switch means for creating a current path through the transistor and the electroluminescent element during operation during the reproduction stage;
A current sink;
The electronic circuit according to claim 1, wherein said first switch means is arranged such that said current path during said programming stage leads to said current sink via said transistor and said additional transistor.
前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタを介して前記電流駆動素子に供給することを特徴とする電子回路。A current driver, a data line that outputs a current as a data signal, a capacitor that accumulates charges based on the current output through the data line, and a gate connected to the capacitor and connected in parallel with each other. An electronic circuit comprising: a plurality of arranged transistors; and a driving transistor arranged in series with the current driving element,
A current corresponding to the amount of charge accumulated in the capacitive element based on the amount of current flowing through a current path including the plurality of transistors in a state where the plurality of transistors is connected to the data line, via the driving transistor. An electronic circuit, which is supplied to a current driving element.
前記画素はエレクトロルミネッセンス素子を有し、
前記回路は、
電流駆動素子と、データ信号として電流を出力するデータ線と、前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続された複数のトランジスタと、前記電流駆動素子と直列に配置された駆動トランジスタとを備え、
前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタ(T4)を介して前記電流駆動素子に供給するのであって、
前記複数のトランジスタを通過するプログラミング経路を生じさせるスイッチ手段と、
電流シンクとを有し、
前記スイッチ手段は、前記プログラミング経路において前記複数のトランジスタを介して前期電流シンクへと通じるように配置されていることを特徴とする電子回路。An electronic circuit for driving a pixel of an electroluminescence device,
The pixel has an electroluminescent element,
The circuit comprises:
A current driver, a data line that outputs a current as a data signal, a capacitor that accumulates charges based on the current output through the data line, and a plurality of transistors whose gates are connected to the capacitor. , Comprising a driving transistor arranged in series with the current driving element,
When the plurality of transistors are connected to the data line, a current corresponding to the amount of charge stored in the capacitive element is supplied to the drive transistor (T4) based on the amount of current flowing through a current path including the plurality of transistors. Supply to the current driving element through
Switch means for creating a programming path through the plurality of transistors;
A current sink;
The electronic circuit according to claim 1, wherein said switch means is arranged to communicate with said current sink via said plurality of transistors in said programming path.
前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記複数のトランジスタのうち少なくとも一つを介して前記電流駆動素子に供給することを特徴とする電子回路。A current driver, a data line that outputs a current as a data signal, a capacitor that accumulates charges based on the current output through the data line, and a gate connected to the capacitor and connected in parallel with each other. An electronic circuit comprising a plurality of transistors arranged and a driving transistor arranged in series with the current driving element,
At least one of the plurality of transistors outputs a current corresponding to a charge amount stored in the capacitor based on a current amount flowing through a current path including the plurality of transistors in a state where the plurality of transistors are connected to the data line. An electronic circuit, wherein the current is supplied to the current driving element via one of the electronic circuits.
前記画素はエレクトロルミネッセンス素子を有し、
前記回路は、
電流駆動素子と、データ信号として電流を出力するデータ線と、プログラミングステージ中に前記データ線を介して出力された電流に基づいた電荷を蓄積する容量素子と、前記容量素子にゲートが接続された複数のトランジスタとを備え、
前記複数のトランジスタが前記データ線に接続された状態で前記複数のトランジスタを含む電流経路に流れる電流量に基づいて前記容量素子に蓄積された電荷量に応じた電流を前記駆動トランジスタを介して前記電流駆動素子に供給するのであって、
前記プログラミングステージ中の動作時に、前記複数のトランジスタを通過する電流経路を生じさせる第1のスイッチ手段と、
リプロダクションステージ中の動作時に、前記複数のトランジスタの少なくとも一つ及び前記エレクトロルミネッセンス素子を通過する電流経路を生じさせる第2のスイッチ手段と、
を有することを特徴とする電子回路。An electronic circuit for driving a pixel of an electroluminescence device,
The pixel has an electroluminescent element,
The circuit comprises:
A current driver, a data line that outputs a current as a data signal, a capacitor that accumulates charges based on the current output through the data line during a programming stage, and a gate connected to the capacitor. Comprising a plurality of transistors,
A current corresponding to the amount of charge accumulated in the capacitive element based on the amount of current flowing through a current path including the plurality of transistors in a state where the plurality of transistors is connected to the data line, via the driving transistor. Supply to the current drive element,
First switch means for creating a current path through the plurality of transistors during operation during the programming stage;
Second switch means for generating a current path passing through at least one of the plurality of transistors and the electroluminescent element during operation during a reproduction stage;
An electronic circuit, comprising:
複数の副電流経路を含むプログラミング経路を提供するステップと、
前記エレクトロルミネッセンス素子を通過するリプロダクション経路を提供するステップとを有する方法。A method for controlling current supply to an electroluminescent element,
Providing a programming path including a plurality of sub-current paths;
Providing a re-production path through the electroluminescent device.
電流シンクへと接続された複数の副電流経路を含むプログラミング経路を提供するステップと、
前記エレクトロルミネッセンス素子を通過するリプロダクション経路を提供するステップとを有する方法。A method for controlling current supply to an electroluminescent element,
Providing a programming path including a plurality of sub-current paths connected to the current sink;
Providing a re-production path through the electroluminescent device.
前記電流駆動素子への電流供給を制御するトランジスタと
を備えた回路を駆動する方法であって、
所定の電流に基づいて前記トランジスタのゲート電圧を決定するステップを有し、前記所定電流は、前記電流駆動素子へ供給される前記電流より大きいことを特徴とする方法。A current driving element;
A method of driving a circuit including a transistor that controls current supply to the current driving element,
Determining a gate voltage of the transistor based on a predetermined current, wherein the predetermined current is greater than the current supplied to the current driver.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003432A JP2004219466A (en) | 2003-01-09 | 2003-01-09 | Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003432A JP2004219466A (en) | 2003-01-09 | 2003-01-09 | Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003003331A Division JP3952953B2 (en) | 2002-01-09 | 2003-01-09 | Electronic circuit, electroluminescence device, and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004219466A true JP2004219466A (en) | 2004-08-05 |
JP2004219466A5 JP2004219466A5 (en) | 2006-02-23 |
Family
ID=32894699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003003432A Withdrawn JP2004219466A (en) | 2003-01-09 | 2003-01-09 | Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004219466A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060816A (en) * | 2008-09-03 | 2010-03-18 | Canon Inc | Pixel circuit, light emitting display device, and method of driving them |
-
2003
- 2003-01-09 JP JP2003003432A patent/JP2004219466A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060816A (en) * | 2008-09-03 | 2010-03-18 | Canon Inc | Pixel circuit, light emitting display device, and method of driving them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3952953B2 (en) | Electronic circuit, electroluminescence device, and electronic device | |
JP4556354B2 (en) | Drive circuit, device, and electronic device | |
US6943759B2 (en) | Circuit, driver circuit, organic electroluminescent display device electro-optical device, electronic apparatus, method of controlling the current supply to an organic electroluminescent pixel, and method for driving a circuit | |
US6864863B2 (en) | Driving circuit including organic electroluminescent element, electronic equipment, and electro-optical device | |
US7091939B2 (en) | System and methods for providing a driving circuit for active matrix type displays | |
EP1170719B1 (en) | Current driven electrooptical device, e.g. organic electroluminescent display, with complementary driving transistors to counteract threshold voltage variations | |
JP2004302211A (en) | Pixel circuit, electro-optical device and electronic appliance | |
JP2003323153A (en) | Light emitting device | |
KR20020032571A (en) | Current driven electrooptical device, e. g. organic electroluminescent display, with complementary driving transistors to counteract threshold voltage variation | |
JP3849466B2 (en) | Drive circuit, electro-optical device, drive circuit drive method, organic electroluminescence device, and electronic apparatus | |
JP2004219466A (en) | Electronic circuit, electroluminescent display device, electrooptical device, electronic equipment, method of controlling current to organic electroluminescent pixel, and circuit driving method | |
JP4556814B2 (en) | Device, device driving method, and electronic apparatus | |
JP5441673B2 (en) | Electro-optical device and electronic apparatus | |
JP2006072377A (en) | Circuit, device, and electronic equipment | |
JP4556957B2 (en) | Electro-optical device and electronic apparatus | |
JP2007025713A (en) | Light emission device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20080319 |