JP2004219288A - Device for measuring power-related amount - Google Patents

Device for measuring power-related amount Download PDF

Info

Publication number
JP2004219288A
JP2004219288A JP2003007778A JP2003007778A JP2004219288A JP 2004219288 A JP2004219288 A JP 2004219288A JP 2003007778 A JP2003007778 A JP 2003007778A JP 2003007778 A JP2003007778 A JP 2003007778A JP 2004219288 A JP2004219288 A JP 2004219288A
Authority
JP
Japan
Prior art keywords
power
phase
current
voltage
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003007778A
Other languages
Japanese (ja)
Other versions
JP4310113B2 (en
Inventor
Atsufumi Kuroda
淳文 黒田
Masaru Shindoi
賢 新土井
Yoshikuni Kondou
桂州 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003007778A priority Critical patent/JP4310113B2/en
Priority to AU2003204811A priority patent/AU2003204811B2/en
Priority to CN 03157783 priority patent/CN1249443C/en
Publication of JP2004219288A publication Critical patent/JP2004219288A/en
Application granted granted Critical
Publication of JP4310113B2 publication Critical patent/JP4310113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein the calculation for power related amounts has errors, if the voltage signal input, current signal input, and A/D converter are influenced by the magnitudes of voltage and current to be detected, the frequency of the voltage and current to be detected, and an operating temperature. <P>SOLUTION: This power-related amount measuring device is set with primary straight lines, beforehand; changes in the characteristics of a voltage signal input; a current signal input whose parameters are the effective value of voltage Vrms_1; the effective value of current Irms_1, and the power supply frequency, and changes in the characteristic of the A/D converter, whose parameter is its temperature. The device is so formed as to correct the changes in the characteristics, by updating the coefficients of an amplitude phase correction matrix being used at regular operations, at a fixed time intervals. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電力(有効、無効)、電力量(有効、無効)の少なくとも一つを計測する計測装置(以下電力関連量計測装置)に関するもので、測定精度を向上する補正機能を有するものに関する。
【0002】
【従来の技術】
従来の電力関連量計測装置は、電圧信号および電流信号をオーバーサンプリング周波数によりそれぞれ量子化するデルタシグマAD変調器と、量子化された電圧信号および電流信号をディジタルフィルタによりそれぞれ移動平均する移動平均処理手段と、移動平均処理された電圧信号および電流信号をサンプリング周波数毎に乗算する乗算手段と、乗算値の高周波成分を除去するディジタルローパスフィルタ手段とを備えている。
【0003】
また、前記のオーバーサンプリング周波数により量子化するデルタシグマAD変調器から、後段の移動平均手段へのデータ移行タイミングを変更可能として電圧信号−電流信号間の位相を調整するシフトレジスタ位相補正手段、および各相の電力関連量のバランスを調整するバランス補正手段とを備えている(特許文献1)。
また、電圧信号入力手段および電流信号入力手段により生ずる信号のバラツキを、各相の電圧信号−電流信号間の位相および各相の電力関連量のバランスを調整して抑制することにより、要求される計測精度を達成させていた(特許文献2)。
【0004】
【特許文献1】
特許第3080207号公報。
【0005】
【特許文献2】
特許第3330519号公報。
【0006】
【発明が解決しようとする課題】
電圧信号入力手段および電流信号入力手段により生ずる信号のバラツキは、検出しようとする電圧および電流の大きさ、検出しようとする電圧および電流の周波数、演算中の温度に依存する。また温度によりAD変換器の変換特性も影響を受ける。すなわち、検出しようとする電圧および電流の大きさ、周波数、演算中の温度が変化すると、電圧信号入力手段および電流信号入力手段およびAD変換器により生ずる信号のバラツキが変化してしまう。
しかしながら、従来の電力関連量計測装置は、装置の出荷時に、定格電圧、定格電流、定格周波数、常温にて補正を行い、その補正値は一定としていた。つまり、初期設定以外に計測中に電圧、電流、周波数または温度によって演算値を補正していない。
したがって、広い入力範囲、広い温度範囲にわたって満足できる精度を得るために、電圧信号入力手段および電流信号入力手段、AD変換器は、検出しようとする電圧および電流の大きさや周波数、演算中の温度などによる誤差の変動が小さい、高精度なものを採用する必要があり、結果として高価なものとなっていた。
【0007】
この発明は、かかる問題点を解決するためになされたものであり、検出しようとする電圧および電流の大きさ、周波数、演算中の温度の影響を受けることが少ない電力関連量計測装置を得ることを目的としている。
【0008】
【課題を解決するための手段】
この発明に係る電力関連量計測装置は、電力線に装架された電流センサ及び電圧センサにより検出された電流および電圧を夫々ディジタル変換するAD変換回路、
前記AD変換回路の出力から前記電圧の周波数を求めるとともに、前記AD変換回路の出力に基づいて前記電力線の電力関連量を演算する電力関連量演算部、前記電圧、電流、周波数のうち少なくともいずれか一つを助変数として、上記電力関連量を補正する補正手段を備えたものである。
【0009】
また、電力線に装架されたCT及びPTにより検出された電流および電圧を夫々ディジタル変換するAD変換回路、
前記CT、PTおよびAD変換回路のすくなくとも1つに装着された温度検出器、
前記AD変換回路の出力から前記電圧の周波数を求めるとともに、前記AD変換回路の出力に基づいて前記電力線の電力関連量を演算する電力関連量演算部、前記温度を助変数として、上記電力関連量を補正する補正手段を備えたものである。
【0010】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1の電力関連量計測装置の構成を図1、図2により説明する。なお、図1,図2では図をわかりやすくするため1相、及び3相の場合のみを図示しており、2相の場合の図は省略している。
なお、以下の説明の内、特に符号については出願手続上、大文字、小文字の区別は厳密にはしないで記載するものとする。
図1において、図示しない電力線に装架した電圧センサ(以下PTと言う場合もある)で検出した電力線の電圧信号101,103と、前記電力線に装架した図示しない電流センサ(以下CTと言う場合もある)で検出した電流信号201,203を、各信号ごとに設けたデルタシグマAD変換器(以下AD変換器)121、123、221、223がオーバーサンプリング周波数によりそれぞれ量子化し、電力関連量演算部100に入力する。また、AD変換器の電圧出力から周波数演算手段54が周波数を求め、また、各AD変換器の温度が温度計測手段56により求められて電力関連量演算部100に入力されている。
電力関連量演算部100の詳細は図2に示す。図2において図示しない移動平均処理手段が量子化された電圧信号および電流信号をディジタルフィルタによりそれぞれ移動平均した後、乗算手段301、303に入力する。乗算手段301、303が移動平均処理された電圧信号および電流信号をサンプリング周波数毎に乗算する。ディジタルローパスフィルタ手段321,323が前記乗算値の高周波成分を除去する。デジタルローバスフィルタ手段321,323の出力を補正前の電力W_in_N(N=1,2,3)と言う。なおW_in_Nは受電の場合に正の値、送電の場合に負の値となる。
なお、図には特に示さないが、図1のAD変換器121,123,221,223によりAD変換された後の部分の処理は全てソフトウェア/ハードウェアのいずれによる処理であってもかまわない。
【0011】
ヒルベルト変換直交相191(193)とヒルベルト変換同相291(293)とからなるヒルベルト変換手段191,193,291,293は、電圧信号−電流信号間の位相を90度回転する。乗算手段341、343は、ヒルベルト変換手段から出力された電圧信号および電流信号をサンプリング周波数毎に乗算する。ディジタルローパスフィルタ手段361,363は乗算値の高周波成分を除去する。ディジタルローパスフィルタ手段361,363の出力を補正前の無効電力var_in_N(N=1,2,3)と言う。なおvar_in_Nは受電遅れおよび送電進みの場合に正の値、受電進みおよび送電遅れの場合に負の値となる。
【0012】
振幅位相補正行列演算手段381,383は、補正前の電力W_in_Nおよび無効電力var_in_Nを入力とし、以下に説明する補正演算を行う。そしてその出力を補正後の電力W_out_N(N=1,2,3)、補正後の無効電力var_out_N(N=1,2,3)と言う。振幅位相補正行列演算手段381、383による補正演算は式(1)で示される。
【0013】
【数2】

Figure 2004219288
【0014】
式(1)、式(2)において、N(N=1,2,3)は各相を表す。式(1)、(2)は、θ_Nが正の場合に左回転を行うので、θ_Nが正の場合に遅れ方向の回転、負の場合に進み方向の回転を行う。理解を助けるため、この関係を図3に示す。
【0015】
定格電圧、定格電流、定格周波数、常温時に、上記式(1)、式(2)の行列のGain_Nおよびθ_Nを求め、本発明の電力関連量計測装置の初期調整時に、これら式(1)、式(2)に基づいて、電圧信号−電流信号間の位相の調整、各相の電力関連量のバランス調整を行う。初期調整時に決定されたGain_Nおよびθ_Nは、調整時以外は変更せず、実際の演算に使用する振幅位相補正行列とは別に初期調整時の振幅位相補正行列として記憶しておく。
【0016】
【数3】
Figure 2004219288
【0017】
本発明の補正のフローを図4に示す。電源周波数の変化による位相変化量の補正の概念を図5に示す。図5は、CTの電流センシングにおける周波数と位相の関連並びに補正直線を説明する図である。図5(a)図は、横軸が周波数(40Hz〜70Hz)、縦軸が位相誤差(−1度〜+0.4度)とした場合の特性図であり、CTの実際の特性90と、実際の特性90を一次式(以下一次直線と言う)により近似させた補正用の一次直線91とを示している。図5(b)図は、図5(a)図と同じ横軸、同じ縦軸で補正用の一次直線91により周波数を補正した後の、各周波数における位相誤差の誤差量を示しており、45Hz〜60Hzの範囲で0.1度の誤差内に入っていることを示している。
【0018】
実施例1.
実効値電圧演算手段161,163より、現在の実効値電圧Vrms_1,Vrms_3を取得して、実効値電圧による振幅補正率(振幅変化率の逆数)と位相変化量を補正用の一次直線により算出する。なお、電圧の振幅補正率と位相変化量の補正用の一次直線は、いずれも図5(a)図、(b)図に示す周波数による誤差例と類似であるのでその特性を図に示すことは省略する。補正式については以下にさらに詳細に説明する。以下の説明においてNは各相を表す。即ち、ここではN=1,2,3である。
実効値電圧Vrms_1,Vrms_3による振幅補正率をGain_Vrms_N、
位相変化量をPhase_Vrms_N、
振幅補正率の一次直線の傾きをA_Gain_Vrms、
切片をB_Gain_Vrms、
位相変化量の一次直線の傾きをA_Phase_Vrms、
切片をB_Phase_Vrms、
現在の実効値電圧をVrms_Nとすると、補正式は以下のように表される。
【0019】
Gain_Vrms_N=A_Gain_Vrms×Vrms_N+B_Gain_Vrms・・・・(V1)
Phase_Vrms_N=A_Phase_Vrms×Vrms_N+B_Phase_Vrms・・(V2)
振幅補正率Gain_Vrms_Nは、実効値電圧が初期調整時の電圧である場合に1となるように定めておく。また、Phase_Vrms_Nは、実効値電圧が初期調整時の電圧の場合に0、進み方向の変化量を正、遅れ方向の変化量を負となるように設定する。ここでいう初期調整時の電圧とは調整を行う際に基準(即ち補正を要しない)と定めた電圧のことを言い、必ずしも実際の調整時の電圧に限定するものではない。理解を助けるため上記の式(V1)(V2)を図6に示す。
【0020】
なお、前記定格電圧を記憶しておき、定格電圧と直線の傾きから、切片を逆算して自動的に求めてもよく、その場合、切片の設定を省略できる。なお1次直線の傾きと切片は、自由に設定し、また変更することができるものとする。
【0021】
したがって、電圧信号入力手段の回路構成が変更された場合(例えばPT回路から抵抗分圧回路などに)、前記補正のための1次直線の傾きと切片の値を変更するのみでよい。
【0022】
実施例2.
実効値電流演算手段261,263より、現在の実効値電流Irm_1,Irm_3を取得して、実効値電流による振幅補正率(振幅変化率の逆数)と位相変化量を一次直線により算出する。
実効値電流による振幅補正率をGain_Irms_N、
位相変化量をPhase_Irms_N、
振幅補正率の一次直線の傾きをA_Gain_Irms、
切片をB_Gain_Irms、
位相変化量の一次直線の傾きをA_Phase_Irms、
切片をB_Phase_Irms、現在の実効値電流をIrms_Nとすると補正式は次のようになる。
Gain_Irms_N=A_Gain_Irms×Irms_N+B_Gain_Irms・・・・(I1)
Phase_Irms_N=A_Phase_Irms×Irms_N+B_Phase_Irms・・・(I2)
Gain_Irms_Nは、現在の実効値電流が初期調整時の電流となった場合に1となるように設定する。また、Phase_Irms_Nは、進み方向の変化量を正、遅れ方向の変化量を負とし、現在の実効値電流が初期調整時の電流となった場合に0となるように設定する。よって初期調整時の電流を記憶しておき、現在の電流値と直線の傾きから、切片を逆算してもよく、その場合、切片の設定量を削減できる。なお1次直線の傾きと切片は、自由に設定変更可能とする。したがって、電流信号入力手段の回路構成が変更された場合(例えばCT回路から分割形CT回路)、1次直線の傾きと切片の値を変更するのみでよい。式(I1)(I2)は図6と類似した特性図となるので、図示説明は省略する。
【0023】
実施例3.
電源周波数演算手段54より、現在の電源周波数Freqを取得して、電源周波数による電圧信号入力および電流信号入力の振幅補正率(振幅変化率の逆数)と位相変化量を補正のための一次直線により算出する。
電源周波数による電圧信号入力の振幅補正率をGain_FreqV、
位相変化量をPhase_FreqV、
振幅補正率の一次直線の傾きをA_Gain_FreqV、
切片をB_Gain_FreqV、
位相変化量の一次直線の傾きをA_Phase_FreqV、
切片をB_Phase_FreqV、
電源周波数による電流信号入力の振幅補正率をGain_FreqI、
位相変化量をPhase_FreqI、
振幅補正率の一次直線の傾きをA_Gain_FreqI、
切片をB_Gain_FreqI、
位相変化量の一次直線の傾きをA_Phase_FreqI、
切片をB_Phase_FreqI、
現在の電源周波数をFreqとすると補正の一次直線は以下のようになる。
Gain_FreqV=A_Gain_FreqV×Freq+B_Gain_FreqV・・・・(FV1)
Gain_FreqI=A_Gain_FreqI×Freq+B_Gain_FreqI・・・・(FI1)
Phase_FreqV=A_Phase_FreqV×Freq+B_Phase_FreqV・・・(FV2)
Phase_FreqI=A_Phase_FreqI×Freq+B_Phase_FreqI・・・(FI2)
【0024】
Gain_FreqVおよびGain_FreqIは、現在の電源周波数が初期調整時の電源周波数となった場合に1となるように1次直線の傾きと切片を設定する。また、Phase_FreqVおよびPhase_FreqIは、進み方向の変化量を正、遅れ方向の変化量を負とし、現在の電源周波数が初期調整時の電源周波数となった場合に0となるように1次直線の傾きと切片を設定する。よって初期調整時の電源周波数を記憶しておき、現在の周波数と直線の傾きから、切片を逆算してもよく、その場合、切片の設定量を削減できる。なお1次直線の傾きと切片は、自由に設定変更可能とする。したがって、電圧信号入力手段および電流信号入力手段の回路構成が変更された場合(例えばPT回路から抵抗分圧回路、CT回路から分割形CT回路)、1次直線の傾きと切片の値を変更するのみでよい。補正式(FV1)(FI1)(FV2)(FI2)はいずれも図6と類似した特性であるから図示説明を省略する。
【0025】
また、電圧信号入力手段と電流信号入力手段を合計した振幅補正率をGain_Freq、位相変化量をPhase_Freqとして、
Gain_Freq= ( A_Gain_FreqV+A_Gain_FreqI)×Freq+
B_Gain_FreqV+B_Gain_FreqI
Phase_Freq= ( A_Phase_FreqV+A_Phase_FreqI)×Freq+
B_Gain_FreqV+B_Phase_FreqI
として、演算量および直線傾きと切片の設定量を削減してもよい。
【0026】
実施例4.
温度計測手段56より、現在のAD変換器の温度Tempを取得して(ここではどのAD変換器もほぼ同一の温度であると仮定している)、温度による電圧信号入力および電流信号入力およびAD変換器の振幅補正率(振幅変化率の逆数)と位相変化量を一次直線により算出する。
1)温度による電圧信号入力の補正については
振幅補正率をGain_TempV、その位相変化量をPhase_TempV、
振幅補正率の一次直線の傾きをA_Gain_TempV、切片をB_Gain_TempV、
位相変化量の一次直線の傾きをA_Phase_TempV、切片をB_Phase_TempV、
2)温度による電流信号入力の補正については
振幅補正率をGain_TempI、位相変化量をPhase_TempI、
振幅補正率の一次直線の傾きをA_Gain_TempI、切片をB_Gain_TempI、
位相変化量の一次直線の傾きをA_Phase_TempI、切片をB_Phase_TempI、
3)温度によるAD変換器の補正については
振幅補正率をGain_TempAD、位相変化量をPhase_TempAD、
振幅補正率の一次直線の傾きをA_Gain_TempAD、切片をB_Gain_TempAD、
位相変化量の一次直線の傾きをA_Phase_TempAD、切片をB_Phase_TempAD、
とし、現在の温度をTempとすると補正式は次のようになる。
Gain_TempV=A_Gain_TempV×Temp+B_Gain_TempV・・・(TV1)
Gain_TempI=A_Gain_TempI×Temp+B_Gain_TempI・・・(TI1)
Gain_TempAD=A_Gain_TempAD×Temp+B_Gain_TempAD・・・(TA1)
Phase_TempV=A_Phase_TempV×Temp+B_Phase_TempV・・・(TV2)
Phase_TempI=A_Phase_TempI×Temp+B_Phase_TempI・・・(TI2)
Phase_TempAD=A_Phase_TempAD×Temp+B_Phase_TempAD・・(TA2)
【0027】
Gain_TempVおよびGain_TempIおよびGain_TempADは、現在の温度が初期調整時の温度となった場合に1となるように1次直線の傾きと切片を設定する。また、Phase_TempVおよびPhase_TempIおよびPhase_TempADは、進み方向の変化量を正、遅れ方向の変化量を負とし、現在の温度が初期調整時の温度となった場合に0となるように1次直線の傾きと切片を設定する。よって初期調整時の温度を記憶しておき、現在の温度と直線の傾きから、切片を逆算してもよく、その場合、切片の設定量を削減できる。なお1次直線の傾きと切片は、自由に設定変更可能とする。したがって、電圧信号入力手段および電流信号入力手段の回路構成が変更された場合(例えばPT回路から抵抗分圧回路、CT回路から分割形CT回路)、1次直線の傾きと切片の値を変更するのみでよい。
【0028】
また、電圧信号入力手段と電流信号入力手段とAD変換器を合計した振幅補正率をGain_Temp、位相変化量をPhase_Tempとして、
Gain_Temp=
( A_Gain_TempV+A_Gain_TempI+A_Gain_TempAD )×
Temp+B_Gain_TempV+B_Gain_TempI+B_Gain_TempAD
Phase_Temp=
( A_Phase_TempV+A_Phase_TempI+A_Phase_TempAD )×
Temp+B_Gain_TempV+B_Phase_TempI+B_Phase_TempAD
として、演算量および直線傾きと切片の設定量を削減してもよい。
【0029】
前記で算出した振幅補正率および位相変化量を、電力、無効電力の演算に反映させるために、初期調整時の振幅位相補正行列(前述)に振幅補正率および位相変化量補正行列を乗算する。その結果を実際の演算に使用する振幅位相補正行列とする。
全体の振幅補正率および位相変化量は、実効値電圧、実効値電流、電源周波数、温度のうち、補正したいパラメータを任意に選択して、選択したパラメータによる影響の合計とする。全パラメータを選択した場合、全体の振幅補正率をGain_all_N、位相変化量をPhase_all_Nとすると、式(3)のようになる。
Gain_all_N=Gain_Vrms_N×Gain_Irms_N×Gain_Freq×Gain_Temp
Phase_all_N=Phase_Vrms_N+Phase_Irms_N+Phase_Freq+Phase_Temp
【0030】
【数4】
Figure 2004219288
【0031】
となる。
したがって、実際の演算に使用する振幅位相補正行列は以下の式(4)のとおりとなる。
【0032】
【数5】
Figure 2004219288
【0033】
また、前記で算出した振幅補正率および位相変化量を、実効値電圧、実効値電流に反映させる場合、実効値は位相に無関係であるため、実効値電圧Vrms−N、実効値電流Irms−Nの振幅補正率を、初期調整時の変換係数 181,183,281,283に乗算した結果を実際の演算に使用する変換係数とすればよい。
また、実際の演算に使用する振幅位相補正行列の係数の算出はサンプリング周波数毎に行うのではなく、例えば各実効値や温度の変化が有意の差として認められる時間間隔、例えば0.5秒〜数秒毎に算出して結果を更新すればよい。よって、演算量は更新した時に増加するのみであり、常時の電力関連量を演算する演算量は増加せず、演算負荷が増加するということもない。
【0034】
以上のように、電力関連量の計測時に、検出された実効値電圧、実効値電流、電源周波数およびAD変換器の温度により補正するので、電力関連量を常に高精度に計測することができる。なお、実効値電圧、実効値電流、電源周波数および温度により補正する例について説明したが、少なくともいずれか一つのパラメータにより、補正するものであってもよく、これについては実施の形態2で説明する。
【0035】
また、回転行列により、位相を補正するので、短時間で補正ができる。
また、電流に対する電圧、または電圧に対する電流の位相を90度直位相変換する90度位相変換手段と、90度位相変換手段の出力により無効電力を求める無効電力演算手段と、電流と電圧から有効電力を求める有効電力演算手段とを有するものに適用するので、調整時の振幅位相補正行列を得るための回転行列演算機能と上述の補正のための回転行列演算機能を兼用することができる。
なお、実施の形態1では温度はAD変換器の温度であると説明しているが、以上に説明した演算を行うための演算装置の温度を用いても良い。
【0036】
実施の形態2.
上記実施の形態1では、実効値電圧、実効値電流、電源周波数、AD変換器の温度の4つのパラメータにて、振幅補正率を7つおよび位相変化量を7つ算出したが、このうち任意の項目のみ選択して算出してもよい。例えば、電流信号入力の位相変化量のみが、実効値電流、電源周波数に大きく依存するため、この補正のみ実施したいのであれば、Phase_Irms_N、Phase_FreqIについてのみ行えばよい。他の項目についても同様である。
【0037】
実施の形態3.
上記実施の形態2では、任意の項目のみ選択して算出したが、全ての項目を選択した上で、特に補正を要しない項目について、その補正のための1次直線の傾きと切片を以下のように設定することでも同様な動作を実現可能である。
即ち、不要な項目の振幅補正率は、一次直線の傾きに0、切片に1を設定する。不要な項目の位相変化量は、一次直線の傾きに0、切片に0を設定する。
【0038】
実施の形態4.
実際の演算に使用する振幅位相補正行列の係数を浮動小数点演算にて算出した後、振幅位相補正行列を更新する際に浮動小数点から固定小数点に変換してセットしてもよい。これにより常時の演算は固定小数点の乗算と加算のみとなり、演算速度が向上する。
【0039】
実施の形態5
上記の実施の形態4では、振幅位相補正行列を更新する際に固定小数点としたが、実際の演算に使用する振幅位相補正行列の係数の算出を固定小数点にて行うことも可能である。
実際には、一次直線の傾きおよび切片を固定小数点の設定とする。また、振幅補正率および位相変化量を算出する際の、実効値電圧、実効値電流、電源周波数、温度のパラメータも固定小数点にて取得する。これにより、振幅補正率および位相変化量を算出する際には、固定小数点の乗算と加算のみとなる。
さらに、位相変化量補正行列を演算する際に必要となる、正弦値、余弦値の浮動小数点による演算量を削除するため、例えば0.01度左回転行列、0.1度左回転行列、1度左回転行列の係数を固定小数点のデフォルトで予め持っておいて、位相変化量を算出後、上記の左回転行列を乗算することで位相変化量補正行列を算出してもよい。
上記の例で、位相変化量が1.24度(進み)である場合、位相変化量補正行列は、1度左回転行列×(0.1度左回転行列)×(0.01度左回転行列)を演算することで算出できる。
【0040】
実施の形態6
分割形CTのように、検出しようとする電流の大きさによる位相変化量が非線形となり一次直線にて補正が困難である場合には、2つもしくは3つ等、傾斜および切片の異なる多数の1次直線を設定して、直線の交点を境界として補正量を算出する一次直線を切替えることにより補正する。
例えば、電流信号入力において分割形CTを採用しており、検出しようとする電流の大きさによる位相変化量が非線形となる場合を例として説明する。このときの特性の一例95を図7(a)図に示す。図7(a)の特性95では負荷が約10%を境として、これより軽負荷では位相誤差がそれより重負荷部分に比べて急に大きくなっている。このような場合、位相変化量Phase_Irms_Nを算出する一次直線を例えば2つ用意する。位相変化量を算出するための、一つ目の一次直線96の傾きをA1_Phase_Irms、切片をB1_Phase_Irms、2つ目の一次直線97の傾きをA2_Phase_Irms、切片をB2_Phase_Irmsとする。2つの一次直線が設定された時点で、直線96と直線97との交点のIrmsを算出する。
【0041】
【数6】
Figure 2004219288
【0042】
したがって、現在のIrms_Nが直線交点のIrms以上の場合に1つ目の一次直線96を使用して、
Phase_Irms_N=A1_Phase_Irms×Irms_N+B1_Phase_Irms
とし、現在のIrms_Nが、直線交点のIrms未満の場合に2つ目の一次直線97を使用して、
Phase_Irms_N=A2_Phase_Irms×Irms_N+B2_Phase_Irms
とする。
このようにすることにより、図7(b)に示す位相誤差98のように、電力関連量の計測をより高い精度で行うことができる。
特性95の曲線に合わせてより多くの直線を用いて良いことは言うまでもない。
【0043】
【発明の効果】
この発明に係る電力関連量計測装置は、検出しようとする電圧および電流の大きさ、周波数、演算中のAD変換器の温度による電圧信号入力手段および電流信号入力手段、AD変換器の各特性が変化しても、それを少ない演算量、少ないメモリ容量で高速に補正して常に高精度に計測することができるので、電力関連量をより高精度に計測することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る電力関連量計測装置の構成を示す図である。
【図2】図1の部分詳細図である。
【図3】補正前後の電力のベクトル図である。
【図4】補正フローを示す図である。
【図5】CTの電流センシングにおける周波数と位相の関連並びに補正直線を説明する特性図である。
【図6】補正直線を説明する図である。
【図7】本発明の実施の形態5に係るCTの電流センシングにおける周波数と位相の関連並びに補正直線を説明する図である。
【符号の説明】
101,103 電圧信号、
121,123,221,223 デルタシグマAD変換器、
141,143,241,243 実効値電圧演算手段、
161,163,261,263 実効値電流演算手段、
191,193,291,293 ヒルベルト変換手段、
201,203 電流信号、 301,303 乗算手段、
321,323 ディジタルローパスフィルタ手段、
341,343 乗算手段、
361,363 ディジタルローパスフィルタ手段、
54 電源周波数演算手段、 56 温度計測手段、
W_in_N 補正前の電力、 W_out_N 補正後の電力、
var_in_N 補正前の無効電力、 var_out_N 補正後の無効電力、
Vrms_1,Vrms_3 実効値電圧、 Irm_1,Irm_3 実効値電流、
Freq 電源周波数、 Temp 温度。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring device for measuring at least one of electric power (valid, invalid) and electric energy (valid, invalid) (hereinafter referred to as a power-related amount measuring device), and to a device having a correction function for improving measurement accuracy. .
[0002]
[Prior art]
A conventional power-related amount measuring device includes a delta-sigma AD modulator that quantizes a voltage signal and a current signal using an oversampling frequency, respectively, and a moving average process that uses a digital filter to perform a moving average of the quantized voltage signal and the current signal. Means, multiplying means for multiplying the moving average processed voltage signal and current signal for each sampling frequency, and digital low-pass filter means for removing high frequency components of the multiplied value.
[0003]
A shift register phase correcting means for adjusting a phase between a voltage signal and a current signal by changing a data transfer timing from a delta-sigma AD modulator quantizing by the oversampling frequency to a moving average means at a subsequent stage, and There is provided a balance correction unit for adjusting the balance of the power-related amount of each phase (Patent Document 1).
Further, it is required to suppress the variation of the signal generated by the voltage signal input means and the current signal input means by adjusting the balance between the phase between the voltage signal and the current signal of each phase and the power related amount of each phase. Measurement accuracy was achieved (Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent No. 3080207.
[0005]
[Patent Document 2]
Japanese Patent No. 3330519.
[0006]
[Problems to be solved by the invention]
The variation of the signal generated by the voltage signal input means and the current signal input means depends on the magnitude of the voltage and current to be detected, the frequency of the voltage and current to be detected, and the temperature during the operation. The conversion characteristics of the AD converter are also affected by the temperature. That is, when the magnitude and frequency of the voltage and current to be detected and the temperature during the calculation change, the variation of the signal generated by the voltage signal input means, the current signal input means, and the AD converter changes.
However, the conventional power-related amount measuring device performs correction at rated voltage, rated current, rated frequency, and normal temperature when the device is shipped, and the correction value is constant. That is, the calculated value is not corrected based on the voltage, current, frequency, or temperature during measurement other than the initial setting.
Therefore, in order to obtain satisfactory accuracy over a wide input range and a wide temperature range, the voltage signal input means, the current signal input means, and the A / D converter are used to determine the magnitude and frequency of the voltage and current to be detected, the temperature during calculation, and the like. Therefore, it is necessary to employ a high-precision one in which the variation of the error due to the fluctuation is small, and as a result, it is expensive.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is an object of the present invention to obtain a power-related amount measuring device which is less affected by the magnitude and frequency of a voltage and a current to be detected and a temperature during calculation. It is an object.
[0008]
[Means for Solving the Problems]
The power-related amount measuring device according to the present invention includes an AD conversion circuit that digitally converts a current and a voltage detected by a current sensor and a voltage sensor mounted on a power line, respectively.
A power-related amount calculation unit that calculates a frequency of the voltage from an output of the AD conversion circuit and calculates a power-related amount of the power line based on an output of the AD conversion circuit, at least one of the voltage, the current, and the frequency. A correction means for correcting the power-related amount using one as an auxiliary variable is provided.
[0009]
An AD conversion circuit for digitally converting the current and the voltage detected by the CT and the PT mounted on the power line, respectively;
A temperature detector mounted on at least one of the CT, PT and AD conversion circuits;
A power-related amount calculation unit that calculates the frequency of the voltage from the output of the AD conversion circuit and calculates the power-related amount of the power line based on the output of the AD conversion circuit; Is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, the configuration of the power-related amount measuring apparatus according to the first embodiment of the present invention will be described with reference to FIGS. Note that FIGS. 1 and 2 show only one-phase and three-phase cases for simplification of the drawings, and omit the two-phase cases.
It should be noted that, in the following description, in particular, reference numerals are not strictly distinguished in capital letters and small letters in the application procedure.
In FIG. 1, voltage signals 101 and 103 of a power line detected by a voltage sensor (hereinafter, also referred to as PT) mounted on a power line (not shown) and a current sensor (hereinafter referred to as CT) mounted on the power line. ), The delta-sigma A / D converters (hereinafter, A / D converters) 121, 123, 221, and 223 quantize the current signals 201 and 203, respectively, based on the oversampling frequency, and calculate the power-related amount. Input to the unit 100. The frequency calculating means 54 obtains the frequency from the voltage output of the AD converter, and the temperature of each AD converter is obtained by the temperature measuring means 56 and input to the power-related amount calculating section 100.
The details of the power-related amount calculation unit 100 are shown in FIG. A moving average processing means (not shown in FIG. 2) performs moving average of the quantized voltage signal and current signal by a digital filter, respectively, and then inputs them to multiplication means 301 and 303. Multiplying means 301 and 303 multiply the moving average processed voltage signal and current signal for each sampling frequency. Digital low pass filter means 321 and 323 remove high frequency components of the multiplied value. Outputs of the digital low-pass filter units 321 and 323 are referred to as uncorrected power W_in_N (N = 1, 2, 3). Note that W_in_N has a positive value in the case of power reception and a negative value in the case of power transmission.
Although not particularly shown in the figure, the processing of the part after the AD conversion by the AD converters 121, 123, 221, and 223 in FIG. 1 may be all processing by software or hardware.
[0011]
The Hilbert transform means 191, 193, 291, 293 comprising the Hilbert transform quadrature phase 191 (193) and the Hilbert transform in-phase 291 (293) rotate the phase between the voltage signal and the current signal by 90 degrees. The multiplying units 341 and 343 multiply the voltage signal and the current signal output from the Hilbert transform unit for each sampling frequency. Digital low-pass filter means 361 and 363 remove high frequency components of the multiplied value. Outputs of the digital low-pass filter means 361 and 363 are referred to as reactive power var_in_N (N = 1, 2, 3) before correction. Note that var_in_N is a positive value in the case of power reception delay and power transmission advance, and a negative value in the case of power reception advance and power transmission delay.
[0012]
The amplitude and phase correction matrix calculation means 381 and 383 receive the power W_in_N before the correction and the reactive power var_in_N as inputs and perform the correction calculation described below. The output is referred to as corrected power W_out_N (N = 1, 2, 3) and corrected reactive power var_out_N (N = 1, 2, 3). The correction calculation by the amplitude and phase correction matrix calculation means 381 and 383 is represented by Expression (1).
[0013]
(Equation 2)
Figure 2004219288
[0014]
In equations (1) and (2), N (N = 1, 2, 3) represents each phase. Equations (1) and (2) perform left rotation when θ_N is positive, so that rotation is performed in the delay direction when θ_N is positive, and rotation in the forward direction is performed when θ_N is negative. This relationship is shown in FIG. 3 to aid understanding.
[0015]
At the time of rated voltage, rated current, rated frequency, and normal temperature, Gain_N and θ_N of the matrix of the above formulas (1) and (2) are obtained. Based on the equation (2), the phase between the voltage signal and the current signal is adjusted, and the balance of the power related amount of each phase is adjusted. Gain_N and θ_N determined at the time of the initial adjustment are not changed except at the time of the adjustment, and are stored as the amplitude-phase correction matrix at the time of the initial adjustment separately from the amplitude-phase correction matrix used for the actual calculation.
[0016]
[Equation 3]
Figure 2004219288
[0017]
FIG. 4 shows a flow of the correction according to the present invention. FIG. 5 shows the concept of correcting the amount of phase change due to a change in the power supply frequency. FIG. 5 is a diagram illustrating the relationship between the frequency and the phase and the correction straight line in the CT current sensing. FIG. 5A is a characteristic diagram in the case where the horizontal axis represents frequency (40 Hz to 70 Hz) and the vertical axis represents phase error (−1 degree to +0.4 degree). A primary straight line 91 for correction is shown in which the actual characteristic 90 is approximated by a linear equation (hereinafter referred to as a primary straight line). FIG. 5B shows the error amount of the phase error at each frequency after the frequency is corrected on the same horizontal axis and the same vertical axis as in FIG. It shows that the error is within 0.1 degree in the range of 45 Hz to 60 Hz.
[0018]
Embodiment 1 FIG.
The current effective value voltages Vrms_1 and Vrms_3 are obtained from the effective value voltage calculating means 161 and 163, and the amplitude correction rate (the reciprocal of the amplitude change rate) and the phase change amount based on the effective value voltage are calculated by a primary straight line for correction. . Note that both the voltage amplitude correction rate and the primary straight line for correcting the phase change amount are similar to the frequency error examples shown in FIGS. 5A and 5B, and the characteristics thereof are shown in the figure. Is omitted. The correction formula will be described in more detail below. In the following description, N represents each phase. That is, N = 1, 2, 3 here.
The amplitude correction rate based on the effective value voltages Vrms_1 and Vrms_3 is Gain_Vrms_N,
The amount of phase change is Phase_Vrms_N,
A_Gain_Vrms represents the slope of the primary straight line of the amplitude correction rate,
The section is B_Gain_Vrms,
A_Phase_Vrms represents the slope of the primary straight line of the phase change amount,
The section is B_Phase_Vrms,
Assuming that the current effective value voltage is Vrms_N, the correction formula is expressed as follows.
[0019]
Gain_Vrms_N = A_Gain_Vrms × Vrms_N + B_Gain_Vrms (V1)
Phase_Vrms_N = A_Phase_Vrms × Vrms_N + B_Phase_Vrms (V2)
The amplitude correction rate Gain_Vrms_N is set to be 1 when the effective value voltage is the voltage at the time of the initial adjustment. Further, Phase_Vrms_N is set such that the effective value voltage is 0 at the time of the initial adjustment, the change amount in the leading direction is positive, and the change amount in the delay direction is negative. Here, the voltage at the time of the initial adjustment refers to a voltage determined as a reference (that is, no correction is required) at the time of the adjustment, and is not necessarily limited to the voltage at the time of the actual adjustment. The equations (V1) and (V2) are shown in FIG. 6 to facilitate understanding.
[0020]
The rated voltage may be stored, and the intercept may be automatically calculated from the rated voltage and the slope of the straight line. In this case, the setting of the intercept can be omitted. Note that the inclination and intercept of the primary straight line can be freely set and changed.
[0021]
Therefore, when the circuit configuration of the voltage signal input means is changed (for example, from a PT circuit to a resistive voltage dividing circuit), it is only necessary to change the slope and intercept of the primary straight line for the correction.
[0022]
Embodiment 2. FIG.
The current effective value currents Irm_1 and Irm_3 are obtained from the effective value current calculation means 261 and 263, and the amplitude correction rate (the reciprocal of the amplitude change rate) and the phase change amount based on the effective value current are calculated by a primary straight line.
Gain_Irms_N,
The amount of phase change is Phase_Irms_N,
A_Gain_Irms is the slope of the primary straight line of the amplitude correction rate,
The section is B_Gain_Irms,
A_Phase_Irms represents the slope of the primary straight line of the phase change amount,
Assuming that the intercept is B_Phase_Irms and the current effective current is Irms_N, the correction equation is as follows.
Gain_Irms_N = A_Gain_Irms × Irms_N + B_Gain_Irms (I1)
Phase_Irms_N = A_Phase_Irms × Irms_N + B_Phase_Irms (I2)
Gain_Irms_N is set to be 1 when the current effective current becomes the current at the time of the initial adjustment. Phase_Irms_N is set such that the amount of change in the leading direction is positive and the amount of change in the lagging direction is negative, and becomes zero when the current effective value current becomes the current at the time of the initial adjustment. Therefore, the current at the time of the initial adjustment may be stored, and the intercept may be calculated backward from the current value and the slope of the straight line. In this case, the set amount of the intercept can be reduced. The inclination and intercept of the primary straight line can be freely changed. Therefore, when the circuit configuration of the current signal input means is changed (for example, from a CT circuit to a divided CT circuit), it is only necessary to change the slope and intercept of the primary line. Equations (I1) and (I2) are characteristic diagrams similar to those in FIG.
[0023]
Embodiment 3 FIG.
The current power supply frequency Freq is obtained from the power supply frequency calculating means 54, and the amplitude correction rate (reciprocal of the amplitude change rate) and the phase change amount of the voltage signal input and the current signal input by the power supply frequency are corrected by a primary straight line. calculate.
The amplitude correction rate of the voltage signal input depending on the power supply frequency is Gain_FreqV,
The amount of phase change is Phase_FreqV,
A_Gain_FreqV represents the slope of the primary straight line of the amplitude correction rate,
The section is B_Gain_FreqV,
A_Phase_FreqV represents the slope of the primary straight line of the phase change amount,
Sections are B_Phase_FreqV,
Gain_FreqI, the amplitude correction rate of the current signal input according to the power supply frequency,
The phase change amount is represented by Phase_FreqI,
A_Gain_FreqI represents the slope of the primary straight line of the amplitude correction rate,
The section is B_Gain_FreqI,
A_Phase_FreqI represents the slope of the primary straight line of the phase change amount,
The section is B_Phase_FreqI,
Assuming that the current power supply frequency is Freq, the primary straight line of the correction is as follows.
Gain_FreqV = A_Gain_FreqV × Freq + B_Gain_FreqV (FV1)
Gain_FreqI = A_Gain_FreqI × Freq + B_Gain_FreqI (FI1)
Phase_FreqV = A_Phase_FreqV × Freq + B_Phase_FreqV (FV2)
Phase_FreqI = A_Phase_FreqI × Freq + B_Phase_FreqI (FI2)
[0024]
Gain_FreqV and Gain_FreqI set the slope and intercept of the linear line so that they become 1 when the current power supply frequency becomes the power supply frequency at the time of the initial adjustment. In addition, Phase_FreqV and Phase_FreqI are such that the amount of change in the leading direction is positive, and the amount of change in the lagging direction is negative, and the slope of the primary straight line becomes zero when the current power supply frequency becomes the power supply frequency at the time of initial adjustment. And set the intercept. Therefore, the power frequency at the time of the initial adjustment may be stored, and the intercept may be calculated backward from the current frequency and the slope of the straight line. In this case, the set amount of the intercept can be reduced. The inclination and intercept of the primary straight line can be freely changed. Therefore, when the circuit configuration of the voltage signal input means and the current signal input means is changed (for example, from the PT circuit to the resistance voltage dividing circuit, from the CT circuit to the divided CT circuit), the values of the slope and intercept of the linear line are changed. Only need. The correction equations (FV1), (FI1), (FV2), and (FI2) have characteristics similar to those in FIG.
[0025]
Also, the amplitude correction rate obtained by summing the voltage signal input means and the current signal input means is Gain_Freq, and the phase change amount is Phase_Freq.
Gain_Freq = (A_Gain_FreqV + A_Gain_FreqI) × Freq +
B_Gain_FreqV + B_Gain_FreqI
Phase_Freq = (A_Phase_FreqV + A_Phase_FreqI) × Freq +
B_Gain_FreqV + B_Phase_FreqI
Alternatively, the amount of calculation and the set amount of the linear slope and intercept may be reduced.
[0026]
Embodiment 4. FIG.
The current temperature Temp of the AD converter is obtained from the temperature measuring means 56 (here, it is assumed that all the AD converters have substantially the same temperature), and the voltage signal input, the current signal input, and the AD based on the temperature are input. The amplitude correction rate (reciprocal of the amplitude change rate) and the phase change amount of the converter are calculated by a linear line.
1) Correction of voltage signal input by temperature
The amplitude correction rate is Gain_TempV, the phase change amount is Phase_TempV,
A_Gain_TempV is the slope of the primary straight line of the amplitude correction rate, B_Gain_TempV is the intercept,
A_Phase_TempV is the slope of the primary line of the phase change amount, B_Phase_TempV is the intercept,
2) Correction of current signal input by temperature
The amplitude correction rate is Gain_TempI, the phase change amount is Phase_TempI,
A_Gain_TempI is the slope of the primary straight line of the amplitude correction rate, B_Gain_TempI is the intercept,
A_Phase_TempI represents the slope of the primary straight line of the phase change amount, B_Phase_TempI represents the intercept,
3) About correction of AD converter by temperature
The amplitude correction rate is Gain_TempAD, the phase change amount is Phase_TempAD,
A_Gain_TempAD is the slope of the primary straight line of the amplitude correction rate, B_Gain_TempAD is the intercept,
A_Phase_TempAD is the slope of the primary line of the phase change amount, B_Phase_TempAD is the intercept,
If the current temperature is Temp, the correction equation is as follows.
Gain_TempV = A_Gain_TempV × Temp + B_Gain_TempV (TV1)
Gain_TempI = A_Gain_TempI × Temp + B_Gain_TempI (TI1)
Gain_TempAD = A_Gain_TempAD × Temp + B_Gain_TempAD (TA1)
Phase_TempV = A_Phase_TempV × Temp + B_Phase_TempV (TV2)
Phase_TempI = A_Phase_TempI × Temp + B_Phase_TempI (TI2)
Phase_TempAD = A_Phase_TempAD × Temp + B_Phase_TempAD (TA2)
[0027]
Gain_TempV, Gain_TempI, and Gain_TempAD set the slope and intercept of the primary straight line so that they become 1 when the current temperature becomes the temperature at the time of the initial adjustment. Further, Phase_TempV, Phase_TempI and Phase_TempAD have positive values for the change amount in the leading direction and negative values for the change amount in the lagging direction. And set the intercept. Therefore, the temperature at the time of the initial adjustment may be stored, and the intercept may be calculated backward from the current temperature and the slope of the straight line. In this case, the set amount of the intercept can be reduced. The inclination and intercept of the primary straight line can be freely changed. Therefore, when the circuit configuration of the voltage signal input means and the current signal input means is changed (for example, from the PT circuit to the resistance voltage dividing circuit, from the CT circuit to the divided CT circuit), the values of the slope and intercept of the linear line are changed. Only need.
[0028]
Also, the sum of the amplitude correction rate of the voltage signal input means, the current signal input means, and the AD converter is Gain_Temp, and the phase change amount is Phase_Temp,
Gain_Temp =
(A_Gain_TempV + A_Gain_TempI + A_Gain_TempAD) ×
Temp + B_Gain_TempV + B_Gain_TempI + B_Gain_TempAD
Phase_Temp =
(A_Phase_TempV + A_Phase_TempI + A_Phase_TempAD) ×
Temp + B_Gain_TempV + B_Phase_TempI + B_Phase_TempAD
Alternatively, the amount of calculation and the set amount of the linear slope and intercept may be reduced.
[0029]
In order to reflect the calculated amplitude correction rate and phase change amount in the calculation of power and reactive power, the amplitude / phase correction matrix (described above) at the time of initial adjustment is multiplied by the amplitude correction rate and phase change amount correction matrix. The result is used as an amplitude / phase correction matrix used for actual calculation.
The overall amplitude correction rate and phase change amount are obtained by arbitrarily selecting a parameter to be corrected from among the effective value voltage, the effective value current, the power supply frequency, and the temperature, and calculating the total effect of the selected parameter. When all parameters are selected, Expression (3) is obtained assuming that the overall amplitude correction rate is Gain_all_N and the phase change amount is Phase_all_N.
Gain_all_N = Gain_Vrms_N × Gain_Irms_N × Gain_Freq × Gain_Temp
Phase_all_N = Phase_Vrms_N + Phase_Irms_N + Phase_Freq + Phase_Temp
[0030]
(Equation 4)
Figure 2004219288
[0031]
It becomes.
Therefore, the amplitude / phase correction matrix used for the actual calculation is as shown in the following equation (4).
[0032]
(Equation 5)
Figure 2004219288
[0033]
When the amplitude correction rate and the phase change amount calculated as described above are reflected on the effective value voltage and the effective value current, the effective value is independent of the phase, and therefore, the effective value voltage Vrms-N and the effective value current Irms-N The result obtained by multiplying the conversion coefficients 181, 183, 281 and 283 at the time of the initial adjustment by the amplitude correction rate of may be used as the conversion coefficient used for the actual calculation.
In addition, the calculation of the coefficient of the amplitude / phase correction matrix used in the actual calculation is not performed for each sampling frequency, but for example, a time interval in which a change in each effective value or temperature is recognized as a significant difference, for example, 0.5 seconds to The calculation may be performed every few seconds and the result may be updated. Therefore, the amount of calculation only increases when updated, the amount of calculation for constantly calculating the power-related amount does not increase, and the calculation load does not increase.
[0034]
As described above, when the power-related amount is measured, the power-related amount is corrected with the detected effective value voltage, effective value current, power supply frequency, and AD converter temperature, so that the power-related amount can always be measured with high accuracy. Although an example in which the correction is performed based on the effective value voltage, the effective value current, the power supply frequency, and the temperature has been described, the correction may be performed using at least one of the parameters. This will be described in Embodiment 2. .
[0035]
Further, since the phase is corrected by the rotation matrix, the correction can be performed in a short time.
A 90-degree phase conversion unit for performing a 90-degree direct phase conversion of a voltage with respect to the current or a phase of the current with respect to the voltage; a reactive power calculation unit that obtains a reactive power from an output of the 90-degree phase conversion unit; Since the present invention is applied to a device having an active power calculating means for obtaining the correction value, the rotation matrix calculation function for obtaining the amplitude / phase correction matrix at the time of adjustment and the rotation matrix calculation function for the above-described correction can be shared.
In the first embodiment, the temperature is described as the temperature of the AD converter. However, the temperature of the arithmetic device for performing the above-described calculation may be used.
[0036]
Embodiment 2 FIG.
In the first embodiment, seven amplitude correction rates and seven phase change amounts are calculated using the four parameters of the effective value voltage, the effective value current, the power supply frequency, and the temperature of the AD converter. May be selected and calculated. For example, since only the phase change amount of the current signal input largely depends on the effective value current and the power supply frequency, if it is desired to perform only this correction, it is sufficient to perform only Phase_Irms_N and Phase_FreqI. The same applies to other items.
[0037]
Embodiment 3 FIG.
In the second embodiment, only arbitrary items are selected and calculated. However, after selecting all items, for items that do not particularly require correction, the slope and intercept of the primary straight line for the correction are calculated as follows. The same operation can be realized by setting as described above.
That is, the amplitude correction rate of an unnecessary item is set to 0 for the slope of the primary straight line and 1 for the intercept. The phase change amount of an unnecessary item is set to 0 for the slope of the primary straight line and to 0 for the intercept.
[0038]
Embodiment 4 FIG.
After the coefficients of the amplitude / phase correction matrix used for the actual calculation are calculated by the floating-point calculation, when updating the amplitude / phase correction matrix, the floating-point may be converted to a fixed point and set. As a result, the usual calculation is only multiplication and addition of the fixed point, and the calculation speed is improved.
[0039]
Embodiment 5
In the fourth embodiment, the fixed-point is used when updating the amplitude-phase correction matrix. However, it is also possible to calculate the coefficient of the amplitude-phase correction matrix used in the actual calculation at the fixed point.
In practice, the slope and intercept of the linear line are set as fixed-point values. In addition, the parameters of the effective value voltage, the effective value current, the power supply frequency, and the temperature at the time of calculating the amplitude correction rate and the phase change amount are also acquired in a fixed point. Accordingly, when calculating the amplitude correction rate and the phase change amount, only multiplication and addition of fixed points are performed.
Furthermore, in order to eliminate the operation amount of the sine value and the cosine value by the floating point required when calculating the phase change amount correction matrix, for example, a 0.01-degree left rotation matrix, a 0.1-degree left rotation matrix, Alternatively, the phase change amount correction matrix may be calculated by holding the coefficients of the degree left rotation matrix in advance as fixed point defaults, calculating the phase change amount, and multiplying the left rotation matrix.
In the above example, when the phase change amount is 1.24 degrees (lead), the phase change amount correction matrix is 1 degree left rotation matrix × (0.1 degree left rotation matrix) 2 × (0.01 degree left rotation matrix) 4 Can be calculated.
[0040]
Embodiment 6
When the amount of phase change due to the magnitude of the current to be detected is non-linear and it is difficult to correct it with a linear line as in the case of the split type CT, a large number of 1s having different slopes and intercepts, such as two or three, are used. The correction is performed by setting the next straight line and switching the primary straight line for calculating the correction amount with the intersection of the straight lines as a boundary.
For example, a case will be described as an example in which a split type CT is adopted for current signal input, and the amount of phase change due to the magnitude of the current to be detected is non-linear. An example 95 of the characteristic at this time is shown in FIG. In the characteristic 95 of FIG. 7A, the phase error is sharply larger at a light load than at a load of about 10% as compared with a heavy load portion. In such a case, for example, two primary straight lines for calculating the phase change amount Phase_Irms_N are prepared. The slope of the first linear line 96 for calculating the amount of phase change is A1_Phase_Irms, the intercept is B1_Phase_Irms, the inclination of the second primary line 97 is A2_Phase_Irms, and the intercept is B2_Phase_Irms. When two primary straight lines are set, Irms at the intersection of the straight line 96 and the straight line 97 is calculated.
[0041]
(Equation 6)
Figure 2004219288
[0042]
Therefore, when the current Irms_N is equal to or greater than the linear intersection point Irms, the first primary straight line 96 is used,
Phase_Irms_N = A1_Phase_Irms × Irms_N + B1_Phase_Irms
When the current Irms_N is smaller than the linear intersection point Irms, the second primary straight line 97 is used,
Phase_Irms_N = A2_Phase_Irms × Irms_N + B2_Phase_Irms
And
In this manner, the measurement of the power-related amount can be performed with higher accuracy as in the case of the phase error 98 shown in FIG. 7B.
It goes without saying that more straight lines may be used in accordance with the curve of the characteristic 95.
[0043]
【The invention's effect】
The power-related amount measuring apparatus according to the present invention is characterized in that the characteristics of the voltage signal input means, the current signal input means, and the AD converter according to the magnitude and frequency of the voltage and current to be detected and the temperature of the AD converter being calculated are Even if it changes, it can be corrected at high speed with a small amount of calculation and a small memory capacity and can always be measured with high accuracy, so that the power-related amount can be measured with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a power-related amount measuring device according to a first embodiment of the present invention.
FIG. 2 is a partial detailed view of FIG.
FIG. 3 is a vector diagram of power before and after correction.
FIG. 4 is a diagram showing a correction flow.
FIG. 5 is a characteristic diagram illustrating a relationship between a frequency and a phase and a correction straight line in CT current sensing.
FIG. 6 is a diagram illustrating a correction straight line.
FIG. 7 is a diagram illustrating a relationship between a frequency and a phase and a correction straight line in CT current sensing according to the fifth embodiment of the present invention.
[Explanation of symbols]
101,103 voltage signal,
121,123,221,223 Delta-sigma AD converter,
141, 143, 241, 243 effective value voltage calculating means,
161,163,261,263 Effective value current calculating means,
191, 193, 291, 293 Hilbert conversion means,
201, 203 current signal, 301, 303 multiplication means,
321,323 digital low-pass filter means,
341 and 343 multiplication means,
361, 363 digital low-pass filter means,
54 power supply frequency calculating means, 56 temperature measuring means,
W_in_N power before correction, W_out_N power after correction,
var_in_N reactive power before correction, var_out_N reactive power after correction,
Vrms_1, Vrms_3 RMS voltage, Irm_1, Irm_3 RMS current,
Freq Power frequency, Temp temperature.

Claims (6)

電力線に装架された電流センサ及び電圧センサにより検出された電流信号および電圧信号を夫々ディジタル変換するAD変換回路、
前記電圧信号の周波数を求めるとともに、前記AD変換回路の出力に基づいて前記電力線の電力関連量を演算する電力関連量演算部、
前記電圧信号、電流信号、周波数のうち少なくともいずれか一つを助変数として、上記電力関連量を補正する補正手段を備えたことを特徴とする電力関連量計測装置。
An AD conversion circuit for digitally converting the current signal and the voltage signal detected by the current sensor and the voltage sensor mounted on the power line, respectively.
A power-related amount calculating unit that calculates a frequency of the voltage signal and calculates a power-related amount of the power line based on an output of the AD conversion circuit;
A power-related amount measuring device, comprising: a correction unit that corrects the power-related amount using at least one of the voltage signal, the current signal, and the frequency as an auxiliary variable.
電力線に装架された電流センサ及び電圧センサにより検出された電流信号および電圧信号を夫々ディジタル変換するAD変換回路、
前記AD変換回路の温度を検出する温度検出器、
前記電圧信号の周波数を求めるとともに、前記AD変換回路の出力に基づいて前記電力線の電力関連量を演算する電力関連量演算部、
前記温度を助変数として、上記電力関連量を補正する補正手段を備えたことを特徴とする電力関連量計測装置。
An AD conversion circuit for digitally converting the current signal and the voltage signal detected by the current sensor and the voltage sensor mounted on the power line, respectively.
A temperature detector for detecting a temperature of the AD conversion circuit,
A power-related amount calculating unit that calculates a frequency of the voltage signal and calculates a power-related amount of the power line based on an output of the AD conversion circuit;
A power-related quantity measuring device, comprising: a correction unit that corrects the power-related quantity using the temperature as an auxiliary variable.
前記補正手段は、前記電力関連量の振幅または位相を補正するものであることを特徴とする請求項1または2に記載の電力関連量計測装置。The power-related amount measuring device according to claim 1, wherein the correction unit corrects an amplitude or a phase of the power-related amount. 前記補正手段による前記電力関連量の位相の補正は、初期調整時の振幅、位相補正行列にもとづいて、回転行列の演算で示した次式によることを特徴とする請求項3に記載の電力関連量計測装置。
Figure 2004219288
4. The power-related amount according to claim 3, wherein the correction of the phase of the power-related amount by the correction unit is based on the following expression expressed by calculating a rotation matrix based on an amplitude and phase correction matrix at the time of initial adjustment. 5. Quantity measuring device.
Figure 2004219288
電力関連量演算部は、前記AD変換回路の出力した前記電流信号と電圧信号から有効電力を求める有効電力演算手段、
前記電流信号に対する前記電圧信号、または前記電圧信号に対する前記電流信号の位相を90度位相変換する90度位相変換手段、
前記90度位相変換手段により変換された位相出力により無効電力を求める無効電力演算手段を備えたことを特徴とする請求項1または2記載の電力関連量計測装置。
A power-related amount calculating unit, an active power calculating unit that obtains active power from the current signal and the voltage signal output from the AD conversion circuit;
90-degree phase conversion means for performing a 90-degree phase conversion on the voltage signal with respect to the current signal, or the phase of the current signal with respect to the voltage signal by 90 degrees;
3. The power-related quantity measuring device according to claim 1, further comprising: a reactive power calculating unit that obtains a reactive power from the phase output converted by the 90-degree phase converting unit.
前記補正式は、前記助変数の予め定めた所定の範囲ごとに定めたことを特徴とする請求項4記載の電力関連量演算装置。The power-related-amount calculating device according to claim 4, wherein the correction formula is determined for each predetermined range of the auxiliary variable.
JP2003007778A 2003-01-16 2003-01-16 Electric power related quantity measuring device Expired - Lifetime JP4310113B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003007778A JP4310113B2 (en) 2003-01-16 2003-01-16 Electric power related quantity measuring device
AU2003204811A AU2003204811B2 (en) 2003-01-16 2003-06-17 Power-related amount measurement device
CN 03157783 CN1249443C (en) 2003-01-16 2003-08-29 Power relevance quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007778A JP4310113B2 (en) 2003-01-16 2003-01-16 Electric power related quantity measuring device

Publications (2)

Publication Number Publication Date
JP2004219288A true JP2004219288A (en) 2004-08-05
JP4310113B2 JP4310113B2 (en) 2009-08-05

Family

ID=32897772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007778A Expired - Lifetime JP4310113B2 (en) 2003-01-16 2003-01-16 Electric power related quantity measuring device

Country Status (3)

Country Link
JP (1) JP4310113B2 (en)
CN (1) CN1249443C (en)
AU (1) AU2003204811B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133352B1 (en) 2010-12-22 2012-04-19 한국전력공사 Electronic watt-hour meter and method of calculating watt-hour
JP2016223993A (en) * 2015-06-03 2016-12-28 大崎電気工業株式会社 Phase adjustment system for power measurement
JP2017173049A (en) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 Power measurement system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925373B (en) * 2005-09-02 2011-07-13 中兴通讯股份有限公司 Radio-frequency RMS power detecting device and method
JP5487084B2 (en) * 2010-11-19 2014-05-07 株式会社メガチップス Power supply
EP2884294A1 (en) * 2013-12-13 2015-06-17 Siemens Aktiengesellschaft Method for determining the supply voltages of a consumer and consumer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994735A (en) * 1988-05-16 1991-02-19 Leedy Glenn J Flexible tester surface for testing integrated circuits
JPH0595030A (en) * 1991-10-02 1993-04-16 Nec Corp Automatic tester
JPH09105761A (en) * 1995-10-09 1997-04-22 Nitto Denko Corp Manufacture of probe structure and, circuit board used therefor
JPH10335401A (en) * 1997-06-05 1998-12-18 Nec Corp Semiconductor device and method of mounting the same
US6392251B1 (en) * 2000-10-17 2002-05-21 Advanced Micro Devices, Inc. Test structures for identifying open contacts and methods of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133352B1 (en) 2010-12-22 2012-04-19 한국전력공사 Electronic watt-hour meter and method of calculating watt-hour
JP2016223993A (en) * 2015-06-03 2016-12-28 大崎電気工業株式会社 Phase adjustment system for power measurement
JP2017173049A (en) * 2016-03-22 2017-09-28 パナソニックIpマネジメント株式会社 Power measurement system

Also Published As

Publication number Publication date
JP4310113B2 (en) 2009-08-05
CN1249443C (en) 2006-04-05
AU2003204811B2 (en) 2004-12-02
CN1517715A (en) 2004-08-04
AU2003204811A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3611862B2 (en) Digital quadrature modulation and demodulation method, digital quadrature modulator and demodulator
JP4727514B2 (en) Electricity meter
ES2282634T3 (en) COMPENSATION OF THE INCREASED UNBALANCE OF A SQUARE MODULATOR.
ES2393505T3 (en) Procedure and system for determining the amplitude and / or phase of the output signal of a transmission member based on the amplitude of the input signal
JP2007033286A (en) Method and device for measuring impedance
NO864053L (en) CIRCUIT FOR CREATING A MULTIPLE PHASE SINUS SHAPED OUTPUT.
JPH10311741A (en) Output signal processing device of encoder
JP4310113B2 (en) Electric power related quantity measuring device
JP2001016867A (en) System interconnecting inverter
CN100365896C (en) Digital directional relay
JP4193697B2 (en) Electronic energy meter and power calculation circuit
JP4127676B2 (en) Electronic watt-hour meter and power-related quantity calculation circuit
JPH08101045A (en) Position detector
KR100669886B1 (en) A method for calculating instantaneous power for parallel operation of single-phase inverters and apparatus thereof, and an apparatus for driving electrical load incorporating the same method and method thereof
JP2002300036A (en) Method and device for measuring ratio of amplification factor of signal standard unit
JP2002228488A (en) Apparatus and method for automatically adjusting output signal from encoder
JP3030481B2 (en) Frequency detector
JP2004170097A (en) Wattmeter and motor evaluation device using the same
CN110824247A (en) Power system frequency measurement method, bus voltage correction method and device
JP7009113B2 (en) AC signal generator
JPH05172859A (en) Electric power measurement device
JP5779022B2 (en) Signal detection device
KR100189937B1 (en) Rotation angle estimation device and method using sinusoidal wave
KR100417114B1 (en) Apparatus and method to measure high frequency power
JP2000151731A (en) Wide band iq splitter device and proofreading method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R151 Written notification of patent or utility model registration

Ref document number: 4310113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term