JP2004219129A - Satellite-loaded environment observation system - Google Patents

Satellite-loaded environment observation system Download PDF

Info

Publication number
JP2004219129A
JP2004219129A JP2003004021A JP2003004021A JP2004219129A JP 2004219129 A JP2004219129 A JP 2004219129A JP 2003004021 A JP2003004021 A JP 2003004021A JP 2003004021 A JP2003004021 A JP 2003004021A JP 2004219129 A JP2004219129 A JP 2004219129A
Authority
JP
Japan
Prior art keywords
light
optical system
laser
condensing
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003004021A
Other languages
Japanese (ja)
Other versions
JP4066814B2 (en
Inventor
Shinichi Ueno
信一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003004021A priority Critical patent/JP4066814B2/en
Publication of JP2004219129A publication Critical patent/JP2004219129A/en
Application granted granted Critical
Publication of JP4066814B2 publication Critical patent/JP4066814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve absolute quantity measurement accuracy in a satellite-loaded hyper-spectral type earth observation system. <P>SOLUTION: A laser radar system is loaded on the same satellite, which comprises a condensing optical system for condensing observation light from the ground surface, a spectral optical system wherein a plurality of spectrally-diffracted wavelength regions are approximately continuous, a detection part for performing photoelectric conversion of light introduced from the spectral optical system, an optical sensor comprising a signal processing circuit for processing an electric signal outputted from the detection part, a laser transmission part for emitting pulse laser light, a laser transmission optical system for adjusting the emission direction of the pulse laser light, a laser receiving optical system for observing back-scattering light of the laser light emitted from the laser transmission optical system, and a laser light detection part for performing photoelectric conversion of the laser light introduced from the laser receiving optical system. The device is constituted so that a laser transmission visual field and a reception visual field of the laser radar are overlapped on a condensing optical reception visual field of the optical sensor on the earth. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
人工衛星に光学センサを搭載し地球の画像を取得し、地球表面の短期的、長期的環境変動を検出する環境観測装置に関するものである。
【0002】
【従来の技術】
人工衛星搭載光学センサを用いた地球の環境観測に関しては、全地球的規模という広域の観測が可能であること、衛星が地球を周回することにより周期性のある観測が可能であること、人工衛星に搭載された同一センサにより均一かつ継続性のある観測が可能であること、などから既に多くの人工衛星搭載光学センサが打ち上げられ観測データが取得されていることは周知のところである。
【0003】
地表上にある土壌・岩石・植生・水などの物質毎に異なる太陽光の反射・吸収・透過特性を示す。この特性を得るため、人工衛星搭載光学センサでは光を複数の波長帯域に分けるすなわち分光を行い、それぞれの波長帯での光の強度を観測している。このような光学センサの分光方法として、可視近赤外波長領域を連続かつ狭波長領域の超多バンドに分光して観測するいわゆるハイパースペクトルセンサがある(例えば、非特許文献1参照。)。
【0004】
【非特許文献1】
Thomas M. Lillesand and Ralph W. Kiefer著「REMOTE SENSING AND IMAGE INTERPRETATION」,third edition,John Wiley & Sons, Inc, p.413−422
【0005】
【発明が解決しようとする課題】
従来までのハイパースペクトル型環境観測装置においては、太陽光の地表での反射光を測定するため、地表輝度が測定できないため、定量的に測定できないという問題があった。
【0006】
また、従来までのハイパースペクトル型環境観測装置においては、太陽光の地表での反射光を測定するため、地表が太陽光に照らされていない夜間は測定できないという問題があった。
【0007】
本発明は上記課題を解決するためになされたものであり、ハイパースペクトル型地球観測装置における絶対量測定の精度向上を目的とする。
【0008】
【課題を解決するための手段】
この発明に係わる環境観測装置は、地表からの観測光を集光する集光光学系と、前記集光光学系から導かれた観測光を可視近赤外領域において複数の狭波長領域に分光し、かつ前記分光された複数の波長領域が略連続である分光光学系と、前記分光光学系から導かれた光を光電変換する検出部と、前記検出部から出力された電気信号を処理する信号処理回路からなる光学センサと、パルスレーザ光を出射するレーザ送信部と、前記パルスレーザ光の出射方向を調整するレーザ送信光学系と、前記レーザ送信光学系から出射されたレーザ光の後方散乱光を観測するレーザ受信光学系と、前記レーザ受信光学系から導かれたレーザ光を光電変換するレーザ光検出部と、からなるレーザレーダ装置を、同一の人工衛星に搭載し、レーザレーダのレーザ送信視野及び受信視野と光学センサの集光光学受信視野を地球上で重ねる構成とした。
【0009】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1による環境観測装置の構成を示すものである。
光学センサ10とレーザレーダ装置20は同一の人工衛星30に搭載されている。光学センサ10は地球50から放射光または反射光を集光する光学センサ集光光学系1、光学センサ集光光学系1で集光された光を複数の狭波長帯域のバンドにかつバンドがほぼ連続した光に分光する光学センサ分光光学系2、光学センサ分光光学系1で分光された光を光電変換する光学センサ検出部3、光学センサ検出部3の出力電気信号を処理する光学センサ信号処理回路4から構成されている。光学センサ信号処理部4の出力電気信号は人工衛星30を経由して地球50に設置された受信局に伝送される。レーザレーダ装置15は、送信レーザ光を発生させ、かつその強度をモニタする機能を持ったレーザ送信部11、レーザ送信部11で発生した光を所望の方向に出射させるレーザ送信光学系12、レーザ送信部12から出射されたレーザ光の後方散乱光及び反射光を集光するレーザ受信光学系13、レーザ受信光学系13で集光された光のうち出射したレーザ光付近の光を透過させるレーザレーダ分光光学系14、レーザレーダ分光光学系14で分光された光を光電変換するレーザレーダ検出部15、レーザレーダ検出部15の出力電気信号を処理するレーザレーダ信号処理部16から構成されている。レーザレーダ信号処理部16からの出力電気信号は人工衛星30を経由して地球50に設置された受信局に伝送される。また光学センサ10の光学センサ観測光受信視野21及び、レーザレーダ装置20の送信視野22及び受信視野23を地球50上で重ねることで、ほぼ同一の地球50上の場所を観測する構成となっている。
【0010】
次に、動作について説明する。
レーザレーダ装置20が送信するレーザ光は地球上の観測対象の吸収波長帯域とほぼ同一の波長(例えば光合成I系クロロフィルの二量体を観測するのであれば波長700nm付近、光合成II系クロロフィルaを観測するのであれば、波長680nm付近)に設定してある。そのためレーザレーダ装置を出射したレーザ光が地球50に照射されると、地上に観測物がある場合はレーザ光の一部が吸収される。観測対象に吸収された光は一定時間後に、蛍光と呼ばれる光を放出する。この蛍光は空間を伝搬し、光学センサ10の光学センサ集光光学系1により集光され、光学センサ分光光学系2を経由し光学センサ検出部3により電気信号として検出される。このとき光学センサ分光光学系2を経由するため、観測対象の蛍光のスペクトル分布を各波長帯毎の電気信号強度として観測する。
【0011】
図2で示すように、蛍光は吸収光の波長より一般的に長波長(クロロフィルaであれば685nm付近)にピークを持つスペクトル分布を持つ光となる。蛍光量は吸収により変化するが、本実施例1ではレーザ送信部12にて出射レーザ光強度が測定されているため、レーザ光強度と蛍光強度を定量的に観測することができる。このため、観測対象の状態(たとえば観測対象が植物に含まれるためクロロフィルaであれば、植物の生育状況)を定量的に知ることができる。
【0012】
前述したように、レーザ光の波長は観測物に応じて変更する必要がある。観測対象が複数の場合は、レーザ発振波長の異なる複数のレーザ送信部をレーザレーダ装置20に搭載してもよいし、またTi:サファイアレーザに代表される可視波長領域波長帯で連続的に波長を変更できる波長可変レーザを搭載しても構わない。
【0013】
また、蛍光強度スペクトル分布を得るためには、分光方式として狭帯域かつ連続的に分光できる方法が必要である。このような分光方式として、プリズム分光方式、回折格子分光方式、楔ガラス分光方式などがある。
【0014】
本実施の形態によれば、太陽光吸収による蛍光測定のように太陽光強度が不明ではなく、出射強度が明確なレーザ光強度および観測対象の蛍光強度を観測することにより、観測対象の状態を高精度かつ定量的に観測することが可能である。
【0015】
また、実施の形態1によれば、太陽光の反射光ではなく、自ら出射するレーザ光を用いて観測するため、夜間でも観測可能という利点もある。
【0016】
また、昼間時に置いてはレーザレーダ装置20が持つエアロゾル観測、測距機能及び光学センサの持つ地表観測機能を有することはいうまでもない。
【0017】
また、レーザレーダ装置20の出射レーザ強度と受信レーザ強度の測定が可能である。レーザ光と蛍光の波長はほぼ同じであるため、蛍光の大気中での減衰を高精度に算出できるという利点もある。
【0018】
実施の形態2.
図3は実施の形態2による環境観測装置の構成を示すものである。なお、実施の形態1と同一の要素には同一の符号を付し、説明を省略する。
【0019】
実施の形態1では光学センサ10とレーザレーダ装置20は同一の人工衛星30に搭載されていたが、図3の実施の形態2では光学センサ10及びレーザレーダ装置20がそれぞれ別個の人工衛星30a, 人工衛星30bに搭載されている。
【0020】
観測対象の蛍光は等方的に放射されるため、光学センサ10とレーザレーダ装置20を別個の人工衛星30a, 人工衛星30bに搭載し、別個の方向から観測しても地表のほぼ同一点を観測するかぎり、実施の形態1と同様な効果が期待できる。加えて、レーザレーダ装置20のレーザ光送信視野22と光学センサ観測光受信視野21の光軸方向を変えることにより、光学センサ10に入射するレーザレーダ装置20の出射レーザ光の地表面での正反射成分の寄与が低減でき、光学センサ10で観測する蛍光強度の精度を上げることが可能となる。
【0021】
実施の形態3.
図4は実施の形態3による環境観測装置の構成を示すものである。なお、実施の形態1と同一の要素には同一の符号を付し、説明を省略する。
【0022】
実施の形態1では光学センサ10とレーザレーダ装置20は単一の人工衛星30に搭載されていたが、実施の形態3では光学センサ10とレーザレーダ装置20を同一の人工衛星30に搭載した複数の人工衛星30a, 人工衛星30bに搭載されている。
【0023】
実施の形態3によれば、実施の形態1及び2と同様な効果が得られることは言うまでもない。加えて、一方人工衛星30に搭載された光学センサ10またはレーザレーダ装置20が故障しても、他方の人工衛星が健全であれば、実施の形態2の効果が得られるという利点がある。
【0024】
【発明の効果】
この発明による環境観測装置では、以上で述べたように、自ら出射するレーザ光を用いて観測するため、夜間でも観測可能であるとともに、太陽光吸収による蛍光測定のように太陽光強度が不明ではなく、出射強度が明確なレーザ光強度および観測対象の蛍光強度を観測することにより、観測対象の状態を高精度かつ定量的に観測することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示す図である。
【図2】観測対象の吸収光及ぶ蛍光の関係を示す図である。
【図3】本発明の実施の形態2を示す図である。
【図4】本発明の実施の形態3を示す図である。
【符号の説明】
1 光学センサ集光光学系、 2 光学センサ分光光学系、 3 光学センサ検出部、 4 光学センサ信号処理部、 10 光学センサ、 11 レーザ送信部、 12 レーザ送信光学系、 13 レーザ受信光学系、 14 レーザレーダ分光光学系、 15 レーザレーダ検出部、 16 レーザレーダ信号処理部、 20 レーザレーダ装置、 21 光学センサ観測光受信視野、 22レーザレーダ装置送信視野、 23 レーザレーダ装置受信視野、 30 人工衛星、 50 地球
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an environment observation device that mounts an optical sensor on an artificial satellite, acquires an image of the earth, and detects short-term and long-term environmental changes on the earth's surface.
[0002]
[Prior art]
Regarding environmental observations of the earth using optical sensors mounted on satellites, it is necessary to be able to observe a wide area on a global scale, to be able to perform periodic observations by orbiting the satellite, It is well known that many artificial satellite-mounted optical sensors have already been launched and observation data has been obtained because of the fact that uniform and continuous observation is possible with the same sensor mounted on the satellite.
[0003]
It shows different reflection, absorption, and transmission characteristics of sunlight for each substance such as soil, rock, vegetation, and water on the ground surface. In order to obtain this characteristic, the optical sensor mounted on the artificial satellite divides the light into a plurality of wavelength bands, that is, performs spectroscopy, and observes the light intensity in each wavelength band. As a spectroscopic method of such an optical sensor, there is a so-called hyper-spectral sensor that spectroscopically observes a visible and near-infrared wavelength region into a super-multiband in a continuous and narrow wavelength region and observes it (for example, see Non-Patent Document 1).
[0004]
[Non-patent document 1]
Thomas M.S. Lillesand and Ralph W.C. Kiefer, "REMOTE SENSING AND IMAGE INTERPRETRATION", third edition, John Wiley & Sons, Inc., p. 413-422
[0005]
[Problems to be solved by the invention]
The conventional hyperspectral environment observation device has a problem in that it cannot measure the ground surface luminance because it measures the reflected light of sunlight on the ground surface, and thus cannot quantitatively measure it.
[0006]
In addition, in the conventional hyperspectral environment observation device, since the reflected light of the sunlight on the ground surface is measured, there is a problem that the measurement cannot be performed at night when the ground surface is not illuminated by the sunlight.
[0007]
The present invention has been made to solve the above problems, and has as its object to improve the accuracy of absolute amount measurement in a hyperspectral earth observation device.
[0008]
[Means for Solving the Problems]
An environment observation apparatus according to the present invention includes a condensing optical system that condenses observation light from the surface of the earth, and splits observation light guided from the condensing optical system into a plurality of narrow wavelength regions in a visible and near-infrared region. And a spectroscopic optical system in which the plurality of wavelength regions that have been split are substantially continuous; a detection unit that photoelectrically converts light guided from the spectroscopic optical system; and a signal that processes an electric signal output from the detection unit. An optical sensor including a processing circuit, a laser transmission unit that emits pulsed laser light, a laser transmission optical system that adjusts the emission direction of the pulsed laser light, and backscattered light of the laser light emitted from the laser transmission optical system A laser radar device comprising: a laser receiving optical system for observing a laser beam; and a laser light detecting unit for photoelectrically converting a laser beam guided from the laser receiving optical system, are mounted on the same artificial satellite, The transmission field and the reception field converging optical receiver field of view of the optical sensor and configured to overlap on earth.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 shows the configuration of the environment observation device according to the first embodiment.
The optical sensor 10 and the laser radar device 20 are mounted on the same artificial satellite 30. The optical sensor 10 is an optical sensor condensing optical system 1 for condensing radiated light or reflected light from the earth 50, and the light condensed by the optical sensor condensing optical system 1 is divided into a plurality of narrow wavelength bands and the band is substantially An optical sensor spectral optical system 2 that splits light into continuous light, an optical sensor detecting unit 3 that photoelectrically converts light split by the optical sensor spectral optical system 1, and an optical sensor signal processing that processes an output electric signal of the optical sensor detecting unit 3. It comprises a circuit 4. The output electric signal of the optical sensor signal processing unit 4 is transmitted to a receiving station installed on the earth 50 via the artificial satellite 30. The laser radar device 15 includes a laser transmission unit 11 having a function of generating a transmission laser beam and monitoring the intensity thereof, a laser transmission optical system 12 for emitting the light generated by the laser transmission unit 11 in a desired direction, and a laser. A laser receiving optical system 13 that collects backscattered light and reflected light of the laser light emitted from the transmitting unit 12, and a laser that transmits light near the emitted laser light among the light collected by the laser receiving optical system 13. It is composed of a radar spectroscopic optical system 14, a laser radar detecting unit 15 for photoelectrically converting light split by the laser radar spectroscopic optical system 14, and a laser radar signal processing unit 16 for processing an output electric signal of the laser radar detecting unit 15. . An output electric signal from the laser radar signal processing unit 16 is transmitted to a receiving station installed on the earth 50 via the artificial satellite 30. Further, by superimposing the optical sensor observation light receiving visual field 21 of the optical sensor 10 and the transmitting visual field 22 and the receiving visual field 23 of the laser radar device 20 on the earth 50, it is possible to observe almost the same place on the earth 50. I have.
[0010]
Next, the operation will be described.
The laser beam transmitted by the laser radar device 20 has a wavelength substantially the same as the absorption wavelength band of the observation object on the earth (for example, when observing a dimer of photosynthetic I-chlorophyll, the wavelength is around 700 nm, and the wavelength of the photosynthetic II chlorophyll a is For observation, the wavelength is set to around 680 nm). Therefore, when the earth 50 is irradiated with the laser light emitted from the laser radar device, a part of the laser light is absorbed when there is an observation object on the ground. The light absorbed by the observation target emits light called fluorescence after a certain period of time. The fluorescent light propagates in the space, is collected by the optical sensor condensing optical system 1 of the optical sensor 10, passes through the optical sensor spectral optical system 2, and is detected as an electric signal by the optical sensor detecting unit 3. At this time, since the light passes through the optical sensor spectral optical system 2, the spectral distribution of the fluorescence to be observed is observed as the electric signal intensity for each wavelength band.
[0011]
As shown in FIG. 2, the fluorescence is light having a spectral distribution having a peak generally at a longer wavelength than that of the absorbed light (in the case of chlorophyll a, around 685 nm). Although the amount of fluorescent light changes due to absorption, in the first embodiment, the laser transmitting section 12 measures the intensity of the emitted laser light, so that the laser light intensity and the fluorescent light intensity can be quantitatively observed. Therefore, the state of the observation target (for example, the growth state of the plant if the observation target is chlorophyll a because it is contained in a plant) can be known quantitatively.
[0012]
As described above, the wavelength of the laser light needs to be changed according to the observation object. When there are a plurality of observation targets, a plurality of laser transmitters having different laser oscillation wavelengths may be mounted on the laser radar device 20, or the wavelengths may be continuously changed in a visible wavelength region represented by Ti: sapphire laser. A tunable laser that can change the wavelength may be mounted.
[0013]
Further, in order to obtain a fluorescence intensity spectrum distribution, a method capable of narrow-band and continuous spectrum is required as a spectral method. Such a spectral method includes a prism spectral method, a diffraction grating spectral method, a wedge glass spectral method, and the like.
[0014]
According to the present embodiment, the state of the observation target is observed by observing the laser light intensity and the fluorescence intensity of the observation target in which the sunlight intensity is not unknown and the emission intensity is clear as in the fluorescence measurement by sunlight absorption. High-precision and quantitative observation is possible.
[0015]
In addition, according to the first embodiment, since observation is performed using laser light emitted by itself instead of reflected light of sunlight, there is an advantage that observation is possible even at night.
[0016]
It is needless to say that the laser radar device 20 has an aerosol observation and distance measurement function of the laser radar device 20 and a surface observation function of the optical sensor in the daytime.
[0017]
Further, it is possible to measure the emission laser intensity and the reception laser intensity of the laser radar device 20. Since the wavelengths of the laser light and the fluorescence are almost the same, there is an advantage that the attenuation of the fluorescence in the atmosphere can be calculated with high accuracy.
[0018]
Embodiment 2 FIG.
FIG. 3 shows the configuration of the environment observation device according to the second embodiment. The same elements as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0019]
In the first embodiment, the optical sensor 10 and the laser radar device 20 are mounted on the same artificial satellite 30. However, in the second embodiment of FIG. 3, the optical sensor 10 and the laser radar device 20 are separate artificial satellites 30a, 30a, respectively. It is mounted on the artificial satellite 30b.
[0020]
Since the fluorescence of the observation target is radiated isotropically, the optical sensor 10 and the laser radar device 20 are mounted on separate artificial satellites 30a and 30b, and even if observed from different directions, almost the same point on the surface of the earth is observed. As long as observation is made, the same effect as in the first embodiment can be expected. In addition, by changing the optical axis direction of the laser light transmission visual field 22 of the laser radar device 20 and the optical sensor observation light reception visual field 21, the laser beam emitted from the laser radar device 20 incident on the optical sensor 10 at the ground surface is positive. The contribution of the reflection component can be reduced, and the accuracy of the fluorescence intensity observed by the optical sensor 10 can be improved.
[0021]
Embodiment 3 FIG.
FIG. 4 shows the configuration of the environment observation device according to the third embodiment. The same elements as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0022]
In the first embodiment, the optical sensor 10 and the laser radar device 20 are mounted on a single artificial satellite 30, but in the third embodiment, a plurality of optical sensors 10 and the laser radar device 20 are mounted on the same artificial satellite 30. Are mounted on the artificial satellites 30a and 30b.
[0023]
According to the third embodiment, it goes without saying that effects similar to those of the first and second embodiments can be obtained. In addition, even if the optical sensor 10 or the laser radar device 20 mounted on one artificial satellite 30 fails, there is an advantage that the effect of the second embodiment can be obtained if the other artificial satellite is sound.
[0024]
【The invention's effect】
In the environment observation device according to the present invention, as described above, since observation is performed using laser light emitted by itself, observation is possible even at night, and sunlight intensity is unknown as in fluorescence measurement by sunlight absorption. In addition, by observing the laser beam intensity and the fluorescence intensity of the observation target whose emission intensity is clear, it is possible to observe the state of the observation target with high precision and quantitatively.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between absorption light and fluorescence of an observation target.
FIG. 3 is a diagram showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 1 optical sensor condensing optical system, 2 optical sensor spectral optical system, 3 optical sensor detecting unit, 4 optical sensor signal processing unit, 10 optical sensor, 11 laser transmitting unit, 12 laser transmitting optical system, 13 laser receiving optical system, 14 Laser radar spectroscopic optical system, 15 laser radar detection unit, 16 laser radar signal processing unit, 20 laser radar device, 21 optical sensor observation light reception field of view, 22 laser radar device transmission field of view, 23 laser radar device reception field of view, 30 satellite, 50 Earth

Claims (9)

地球表面から放射された光を集光する集光光学系、前記集光光学系で集光された光を複数の狭波長帯域バンドに分光しかつ前記バンドがほぼ波長領域で連続した分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理回路から構成されている光学センサと、
レーザ光を発生させかつ前記レーザ光強度をモニタする機能を持ったレーザ送信部、前記レーザ送信部で発生した光を所望の方向に出射させる送信光学系、前記送信光学系から出射されたレーザ光の後方散乱光及び反射光を集光する受信光学系、前記受信光学系で集光された光のうち出射したレーザ光付近の光を透過させるレーザ分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理部から構成されるレーザレーダ装置とを、同一の人工衛星に搭載し、
かつ、前記光学センサの観測光受信視野、及び前記レーザレーダ装置の送信視野及び受信視野を地球上で重ね、ほぼ同一の地球上の場所を観測することを特徴とする人工衛星搭載環境観測装置。
A condensing optical system for condensing light emitted from the earth's surface, a spectroscopic optical system for dispersing the light condensed by the condensing optical system into a plurality of narrow wavelength band bands, and the band is continuous in a substantially wavelength region. A detection unit that photoelectrically converts the light separated by the spectral optical system, an optical sensor including a signal processing circuit that processes an output electric signal of the detection unit,
A laser transmission unit having a function of generating laser light and monitoring the intensity of the laser light, a transmission optical system for emitting light generated by the laser transmission unit in a desired direction, and a laser light emitted from the transmission optical system A receiving optical system for condensing the backscattered light and the reflected light, a laser spectral optical system for transmitting light near the emitted laser light among the light condensed by the receiving optical system, A detection unit for photoelectrically converting light, a laser radar device including a signal processing unit for processing an output electric signal of the detection unit, mounted on the same artificial satellite,
In addition, an observation environment of a satellite mounted environment is characterized in that an observation light reception field of view of the optical sensor and a transmission field of view and a reception field of view of the laser radar device are superimposed on the earth to observe almost the same place on the earth.
地球表面から放射された光を集光する集光光学系、前記集光光学系で集光された光を複数の狭波長帯域のバンドに分光しかつ前記バンドがほぼ波長領域で連続した分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理回路から構成されている光学センサを搭載した人工衛星と、
レーザ光を発生させかつ前記レーザ光強度をモニタする機能を持ったレーザ送信部、前記レーザ送信部で発生した光を所望の方向に出射させる送信光学系、前記送信光学系から出射されたレーザ光の後方散乱光及び反射光を集光する受信光学系、前記受信光学系で集光された光のうち出射したレーザ光付近の光を透過させるレーザ分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理部から構成される前記レーザレーダ装置を搭載した人工衛星と、から構成され、
前記人工衛星搭載光学センサの観測光受信視野、及び前記人工衛星搭載レーザレーダ装置の送信視野及び受信視野を地球上でほぼ重ね、ほぼ同一の地球上の場所を観測することを特徴とする人工衛星搭載環境観測装置。
A condensing optical system for condensing light emitted from the earth's surface, a spectroscopic optical system for dispersing the light condensed by the condensing optical system into a plurality of narrow wavelength band bands, and the bands are continuous in a substantially wavelength region. System, a detection unit that photoelectrically converts the light separated by the spectral optical system, an artificial satellite equipped with an optical sensor including a signal processing circuit that processes an output electric signal of the detection unit,
A laser transmission unit having a function of generating laser light and monitoring the intensity of the laser light, a transmission optical system for emitting light generated by the laser transmission unit in a desired direction, and a laser light emitted from the transmission optical system A receiving optical system for condensing the backscattered light and the reflected light, a laser spectral optical system for transmitting light near the emitted laser light among the light condensed by the receiving optical system, A detection unit for photoelectrically converting light, and an artificial satellite equipped with the laser radar device including a signal processing unit for processing an output electric signal of the detection unit,
An artificial satellite characterized in that the observation light reception field of view of the artificial satellite-mounted optical sensor, and the transmission field of view and the reception field of view of the artificial satellite-mounted laser radar device are almost superimposed on the earth, thereby observing almost the same place on the earth. On-board environment observation device.
地球表面から放射された光を集光する集光光学系、前記集光光学系で集光された光を複数の狭波長帯域のバンドに分光しかつ前記バンドがほぼ波長領域で連続した分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理回路から構成されている光学センサと、
レーザ光を発生させかつその強度をモニタする機能を持ったレーザ送信部、前記レーザ送信部で発生した光を所望の方向に出射させる送信光学系、前記送信光学系から出射されたレーザ光の後方散乱光及び反射光を集光する受信光学系、前記受信光学系で集光された光のうち出射したレーザ光付近の光を透過させるレーザ分光光学系、前記分光光学系で分光された光を光電変換する検出部、前記検出部の出力電気信号を処理する信号処理部から構成されるレーザレーダ装置とを、同一の人工衛星に搭載した複数の人工衛星から構成され、
かつ、少なくとも1つの人工衛星に搭載された前記光学センサの観測光受信視野、及び前記レーザレーダ装置の送信視野及び受信視野を地球上で重ね、ほぼ同一の地球上の場所を観測することを特徴とする人工衛星搭載環境観測装置。
A condensing optical system for condensing light emitted from the earth's surface, a spectroscopic optical system for dispersing the light condensed by the condensing optical system into a plurality of narrow wavelength band bands, and the bands are continuous in a substantially wavelength region. System, a detection unit that photoelectrically converts light split by the spectral optical system, an optical sensor including a signal processing circuit that processes an output electric signal of the detection unit,
A laser transmitting unit having a function of generating laser light and monitoring the intensity thereof, a transmitting optical system for emitting light generated by the laser transmitting unit in a desired direction, and a rear side of the laser light emitted from the transmitting optical system. A receiving optical system that collects scattered light and reflected light, a laser spectral optical system that transmits light near the emitted laser light among the light collected by the receiving optical system, and a light that is spectrally separated by the spectral optical system. A detection unit that performs photoelectric conversion, and a laser radar device that includes a signal processing unit that processes an output electric signal of the detection unit, include a plurality of artificial satellites mounted on the same artificial satellite,
In addition, the observation light reception field of view of the optical sensor mounted on at least one artificial satellite and the transmission field of view and the reception field of view of the laser radar device are superimposed on the earth, and substantially the same location on the earth is observed. Environmental observation equipment onboard artificial satellites.
前記レーザ送信部のレーザ発振波長が複数であり、かつ発振波長の切り替えが可能であることを特徴とする請求項1項から3項のいづれか1項記載の人工衛星搭載環境観測装置。4. The environment observation system according to claim 1, wherein the laser transmission unit has a plurality of laser oscillation wavelengths, and the oscillation wavelength can be switched. 5. 前記レーザ送信部のレーザ発振波長として680nmを含むことを特徴とする請求項1項から4項のいづれか1項記載の人工衛星搭載環境観測装置。The environment observation device according to any one of claims 1 to 4, wherein the laser oscillation wavelength of the laser transmission unit includes 680 nm. 前記レーザ送信部のレーザ発振波長として700nmを含むことを特徴とする請求項1項から4項のいづれか1項記載の人工衛星搭載環境観測装置。The environment observation device according to any one of claims 1 to 4, wherein the laser transmission unit includes a laser oscillation wavelength of 700 nm. 前記光学センサの分光光学系としてプリズム分光方式を用いたことを特徴とする請求項1項から6項のいづれか1項記載の人工衛星搭載環境観測装置。The artificial satellite-mounted environment observation device according to any one of claims 1 to 6, wherein a prism spectral system is used as a spectral optical system of the optical sensor. 前記光学センサの分光光学系として回折格子分光方式を用いたことを特徴とする請求項1項から6項のいづれか1項記載の人工衛星搭載環境観測装置。7. The environment observation device according to claim 1, wherein a diffraction grating spectroscopy system is used as a spectral optical system of the optical sensor. 前記光学センサの分光光学系として楔ガラス分光方式を用いたことを特徴とする請求項1項から6項のいづれか1項記載の人工衛星搭載環境観測装置。7. The environment observation device mounted on a satellite according to claim 1, wherein a wedge glass spectroscopy system is used as a spectral optical system of the optical sensor.
JP2003004021A 2003-01-10 2003-01-10 Satellite-mounted environment observation device Expired - Fee Related JP4066814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004021A JP4066814B2 (en) 2003-01-10 2003-01-10 Satellite-mounted environment observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004021A JP4066814B2 (en) 2003-01-10 2003-01-10 Satellite-mounted environment observation device

Publications (2)

Publication Number Publication Date
JP2004219129A true JP2004219129A (en) 2004-08-05
JP4066814B2 JP4066814B2 (en) 2008-03-26

Family

ID=32895116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004021A Expired - Fee Related JP4066814B2 (en) 2003-01-10 2003-01-10 Satellite-mounted environment observation device

Country Status (1)

Country Link
JP (1) JP4066814B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505099A (en) * 2005-08-18 2009-02-05 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Multi-sensor and differential absorption LIDAR data fusion
JP2011017570A (en) * 2009-07-08 2011-01-27 Graduate School For The Creation Of New Photonics Industries Ripeness measurement apparatus of fruit and ripeness measurement method
JP2013108840A (en) * 2011-11-21 2013-06-06 Mitsubishi Electric Corp Laser radar device
WO2020068694A1 (en) * 2018-09-25 2020-04-02 Urugus S.A. Transducing agents and devices for remote sensing
CN111965608A (en) * 2020-07-16 2020-11-20 自然资源部第二海洋研究所 Satellite-borne marine laser radar detection capability evaluation method based on water body chlorophyll concentration
CN113595635A (en) * 2021-09-15 2021-11-02 中国电子科技集团公司第三十四研究所 Ground debugging method for satellite-borne laser communication equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505099A (en) * 2005-08-18 2009-02-05 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Multi-sensor and differential absorption LIDAR data fusion
JP2011017570A (en) * 2009-07-08 2011-01-27 Graduate School For The Creation Of New Photonics Industries Ripeness measurement apparatus of fruit and ripeness measurement method
JP2013108840A (en) * 2011-11-21 2013-06-06 Mitsubishi Electric Corp Laser radar device
WO2020068694A1 (en) * 2018-09-25 2020-04-02 Urugus S.A. Transducing agents and devices for remote sensing
CN111965608A (en) * 2020-07-16 2020-11-20 自然资源部第二海洋研究所 Satellite-borne marine laser radar detection capability evaluation method based on water body chlorophyll concentration
CN111965608B (en) * 2020-07-16 2024-01-12 自然资源部第二海洋研究所 Satellite-borne ocean laser radar detection capability assessment method based on chlorophyll concentration of water body
CN113595635A (en) * 2021-09-15 2021-11-02 中国电子科技集团公司第三十四研究所 Ground debugging method for satellite-borne laser communication equipment
CN113595635B (en) * 2021-09-15 2022-06-24 中国电子科技集团公司第三十四研究所 Ground debugging method for satellite-borne laser communication equipment

Also Published As

Publication number Publication date
JP4066814B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
US8269971B1 (en) System and method for simultaneous detection of a gas using a mode-locked based transmitter
CA2702660C (en) Polarimetric hyperspectral imager
RU2411503C2 (en) Laser system with adjustment on multiple lines and method of operating laser system
EP2294447B1 (en) Remote sensing system
CN102830107B (en) Laser radar detection method and system for measuring contents of solid water and liquid water in cloud
US7339670B2 (en) Wavelength normalized depolarization ratio lidar
JP2002539446A (en) Passive remote sensor for chemicals
US11169272B2 (en) High spectral resolution Scheimpflug LIDAR
US5214484A (en) Apparatus for measuring meteorological parameters
US11480681B2 (en) Lidar system for detection of small flying objects
Yan et al. Development of a mobile Doppler lidar system for wind and temperature measurements at 30–70 km
JP4066814B2 (en) Satellite-mounted environment observation device
CN102822663A (en) Apparatus and method for detecting skin cancer using THz radiation
Ruiz-Llata et al. Remote optical sensor for real-time residual salt monitoring on road surfaces
WO2018213212A1 (en) Standoff trace chemical detection with active infrared spectroscopy
US11933898B2 (en) System and method of dynamic light source control
AU2011217442A1 (en) Target detection apparatus and method
JP6833105B2 (en) How to provide a detection signal to an object to be detected
US11041754B2 (en) Standoff trace chemical detection with active infrared spectroscopy
KR101337087B1 (en) Doppler lidar apparatus and method for operating doppler lidar apparatus
SE541185C2 (en) High Spectral Resolution Scheimpflug Lidar
US11280884B2 (en) LIDAR instrument and method for operating a LIDAR instrument
Pawelko et al. Multiwavelength lidar node development and simulation for a regional tropospheric aerosol monitoring network
Richter et al. Fiducial Reference Measurements for Ground-Based DOAS Air-Quality Observations FRM 4 DOAS
Peckham Instrumentation and measurement in atmospheric remote sensing

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees