JP2004219110A - Oscillatory wave determining device - Google Patents

Oscillatory wave determining device Download PDF

Info

Publication number
JP2004219110A
JP2004219110A JP2003003578A JP2003003578A JP2004219110A JP 2004219110 A JP2004219110 A JP 2004219110A JP 2003003578 A JP2003003578 A JP 2003003578A JP 2003003578 A JP2003003578 A JP 2003003578A JP 2004219110 A JP2004219110 A JP 2004219110A
Authority
JP
Japan
Prior art keywords
sound
series signal
vibration wave
time
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003578A
Other languages
Japanese (ja)
Inventor
Takashi Anmen
隆史 安面
Katsuyuki Iwata
勝行 岩田
Tsutomu Hirota
勉 廣田
Keiji Akagi
桂二 赤木
Takashi Murozaki
隆 室崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003003578A priority Critical patent/JP2004219110A/en
Publication of JP2004219110A publication Critical patent/JP2004219110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillatory wave determining device capable of improving determination accuracy by allowing setting of a highly accurate threshold. <P>SOLUTION: The oscillatory wave determining device is provided with an oscillatory wave inputting means 2 for detecting and inputting an oscillatory wave generated during operation of an object, a frequency separation means 6 for forming a first time series signal per each predetermined frequency band by carrying out frequency separation on the inputted oscillatory wave, a signal processing means 7 for extracting a second time series signal per each predetermined frequency band with a target operation noise showing a predetermined operating state of the object from the first time series signal, a determining means 9 for determining a state of the object on the basis of a threshold and sound pressure information of the target operation noise determined from the second time series signal, and a correcting means 20 for correcting the threshold in response to a determination result of the determining means 9. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば組付作動など対象物の作動時に生ずる振動波に基いて、対象物の状態、例えば嵌合状態の良否を判定する振動波判定装置に関する。
【0002】
【従来の技術】
従来、例えば特許文献1には、対象物をハンマーなどで軽くたたき、そのとき発生する音または振動をウエーブレット変換演算手段により周波数分離して、周波数帯域毎の時系列信号を形成し、この時系列信号の音圧レベルの判定に基いて、対象物の内容の判別、構造物の割れの検査などを行う技術が記載されている。なお、本明細書では、音と振動を総称して振動波という。
【0003】
【特許文献1】
特開平10−300730号公報
【0004】
【発明が解決しようとする課題】
この種の判定装置において、例えば対象物の状態の良否を精度良く判定しようとするような場合には、時系列信号の音圧レベルに対する閾値を高精度に設定する必要がある。しかしながら、そもそも不良状態の発生頻度の少ない検査対象物の場合には、不良状態となって発生する音圧情報自体が少ないため、判定のための閾値を高精度に設定することは難しいことが分かってきた。
【0005】
本発明は、上記点に鑑みてなされたものであって、精度の高い閾値を設定可能にすることで判定精度を向上させることが可能な振動波判定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1ないし請求項12に記載の技術的手段を採用する。
【0007】
請求項1記載の発明によれば、対象物の作動時に生ずる振動波を検出入力する振動波入力手段と、入力された振動波を周波数分離して予め定めた周波数帯域毎の第1の時系列信号を形成する周波数分離手段と、第1の時系列信号から、対象物の所定作動状態を示す目的作動音が生じる予め定めた周波数帯域毎の第2の時系列信号を取出す信号処理手段と、第2の時系列信号より求まる目的作動音の音圧情報と閾値とに基いて対象物の状態を判定する判定手段と、この判定手段の判定結果に応じて閾値を修正する修正手段とを備えることを特徴とする。
【0008】
それにより、判定手段に用いる閾値を固定せずに、その判定結果に応じて閾値を修正することで対象物の状態に合わせた閾値を設定可能になり、判定精度を向上させることが可能になる。
【0009】
請求項2記載の発明によれば、判定手段で用いる閾値が記憶された書換え可能な閾値テーブル手段を備えることで、請求項1の効果に加えて閾値の修正が容易になる。
【0010】
請求項3記載の発明によれば、対象物の不良状態を仮設定して得られる振動波に基いて、対象物の音圧レベルの不良分布を求める音検査手段を設け、判定手段で用いる閾値には、音検査手段で求めた不良分布の範囲を上回る音圧レベルが初期閾値として設定されることを特徴とする。
【0011】
それにより、対象物の仮想的不良分布を求めて事前に初期閾値を設定可能となり、不良状態の発生頻度の少ない検査対象物の場合であっても任意の頻度で不良情報を入手でき、判定のための閾値をより高精度に設定することが可能になる。
【0012】
請求項4記載の発明によれば、修正手段は、判定手段による良否判定結果別に、そのときの第2の時系列信号より求まる目的作動音の音圧情報を収集して統計処理し、求めた良判定結果のOK分布情報と否判定結果のNG分布情報とに基いて判定手段に用いる閾値を修正することで、両分布状態に応じた音圧レベルに閾値を設定可能となり、判定精度を高めることが可能になる。
【0013】
請求項5記載の発明によれば、修正手段は、判定手段の良否判定結果に応じて、対象物の良状態のときの音圧情報を記憶するOKデータメモリと、対象物の不良状態のときの音圧情報を記憶するNGデータメモリと、OKデータメモリに記憶されたOKデータを統計処理しOK分布を求める第1の統計処理手段と、NGデータメモリに記憶されたNGデータを統計処理しNG分布を求める第2の統計処理手段と、第1、第2の統計処理手段の統計処理の結果に基いて新たな閾値を求め、判定手段で用いる閾値を修正する閾値算出手段とを有することを特徴とする。
【0014】
それにより、請求項5記載の発明の効果に加えて、対象物の良状態のときの音圧情報と不良状態のときの音圧情報とを別々のメモリに記憶することで、両状態毎に異なる記憶処理方法の設定が可能となり、通常発生頻度の少ない不良状態情報への対応がし易くなる。また両音圧情報を別々のメモリに記憶することで、NG分布とOK分布を取りやすく、閾値の算出がし易くなる。
【0015】
請求項6記載の発明によれば、信号処理手段は、第1の時系列信号のレベルを補正して第2の時系列信号を形成する補正手段と、この補正手段で用いる補正係数が記憶された補正テーブル手段とを有することで、対象物の所定作動状態を示す目的作動音以外の信号を縮小もしくはカットして、判定処理の精度を向上させることが可能となる。
【0016】
請求項7記載の発明によれば、外部より選択操作可能な入力装置を設け、閾値テーブル手段は、この入力装置にて指示された選択指令信号に応じて判定手段で用いる閾値を選択することで、外部からの選択指令に応じて補正係数を連続的に選択可能となり、異なる対象物を連続して判定することが可能となる。
【0017】
請求項8記載の発明によれば、外部より選択操作可能な入力装置を設け、補正テーブル手段は、入力装置にて指示された選択指令信号に応じて補正手段で用いる補正係数を選択することで、請求項7記載の発明と同様の効果を有する。
【0018】
請求項9記載の発明によれば、信号処理手段は、第1の時系列信号のノイズ除去した時系列信号を補正手段に与えるフィルタ処理手段を有することで、対象物の所定作動状態を示す目的作動音以外の信号を縮小もしくはカットして、判定処理の精度を向上させることが可能となる。
【0019】
請求項10記載の発明によれば、判定手段は、予め定めた周波数帯域毎の第2の時系列信号の波形形状に基く面積相当値を加算して音圧情報を求める音量算出手段を有し、音圧情報の音圧レベルに基いて、対象物より生じる目的作動音の個数を判定している。それにより、対象物の作動環境が異なり目的作動音の生じ方がばらつく場合でも、加算した値、つまりトータル音量を用いることで判定精度を向上させることが可能となる。特に、対象物の複数箇所より生じる目的作動音の判定処理に有効である。
【0020】
請求項11記載の発明によれば、音量算出手段は、第2の時系列信号の包絡線もしくはピーク値に従って、第2の時系列信号の波形形状に基く面積相当値を求めることで、目的作動音のトータル音量をより正確に検出し、判定精度の向上に繋げることが可能になる。
【0021】
請求項12記載の発明によれば、対象物の不良状態を仮設定して得られる振動波に基いて、対象物の音圧レベルの不良分布を求める音検査手段を設け、OKデータメモリおよびNGデータメモリには、当初は音検査手段で求めた初期データが記憶されており、その後第2の時系列信号より求まる目的作動音の最新の音圧情報に順次書換えられ、かつ第1、第2の統計処理手段および閾値算出手段は、当初は初期データに基いて初期閾値を求め判定手段の閾値として与えることを特徴とする。
【0022】
それにより、判定開始当初より比較的精度のよい初期閾値を用いて目的作動音の判定精度を確保可能となり、しかも時間とともに最新のNGデータやOKデータに書換えることで、より現状に合った閾値に修正し、判定精度をさらに向上させることが可能になる。
【0023】
【発明の実施の形態】
本発明の一実施形態について図を用いて説明する。
【0024】
以下の説明では、対象物として部品(もしくは製品)の組付作業時に発生する組付音(嵌合音)を検出することにより部品の組付(嵌合)不良を判定する例について説明する。しかしながら、本発明の振動波判定装置100は、この用途に限定されず、その他の用途にも適用可能である。また、音の代わりに振動の検出にも適用できる。
【0025】
図1は、本発明の一実施形態におけるシステム構成を示す。
【0026】
ここで、対象物1として本例では樹脂製部品の自動組付、特に組付時に大きな音が生じる例として、図2、3に示すようなスナップフィット機構を用い、図示してない組付設備等により両部品110、120を組付ける作業工程からの音発生例を挙げている。図2は、有底筒状上蓋部品110における複数の嵌合部101に開けた各孔部102に、有底筒状下蓋部品120における複数の嵌合部103に設けた各突部104を嵌合させる状態を示している。この場合、下蓋部品120が上蓋部品110内に挿入されると共に、各突部104が各孔部102内に略同時に嵌合し、スナップフィット機構により固定されることになる。
【0027】
図3(a)、(b)、(c)は、両部品110、120の組付時に発生する振動波の一例であり、(a)が組付け動作状態を示し、(b)が組付け良好時、(c)が組付け不良時の振動波を示す。図3(b)、(c)中の組付け音レベルから分かるように組付良否に応じて嵌合音の音圧レベルが変化する。
【0028】
組付時の音発生の特徴として、組付設備等の動きに伴なう機械作動音と嵌合状況を伝える嵌合音(つまり判定したい目的作動音)とが発生し、両音は部品の組付スピード等の大きさに応じた音圧レベルを有すると共に、両音の音圧レベルは互いに相関して変化することである。
【0029】
マイクロホン2は、振動波判定の対象物1に発生した振動を音波として検出して電気信号に変換する。マイクロホン2から入力された音圧の電気信号は、振動波判定装置100の増幅器3に入力されて、A/D変換器4に出力される。このA/D変換器4では音圧信号をデジタル信号に変換して、後段の記憶装置5に出力され記憶処理される。
【0030】
ウエーブレット変換(Wavelet Transform)演算器6は、周波数分離手段を構成し、所定のタイミングにて記憶装置5に記憶されたデジタル音圧信号S0を取込み、このデジタル音圧信号S0を、予め設定された周波数帯域毎に分離し、時系列信号S1に変換する。一般にウエーブレット変換演算器6は、基底関数(ウエーブレット関数)を拡大あるいは縮小することにより、デジタル音圧信号S0を各周波数帯域毎の時系列信号S1に分離する演算器である。本例では、組付音として1つ以上のスナップフィット機構より発生する目的作動音である嵌合音に合わせた周波数帯域が予め設定されている。なお、この周波数帯域は、対象とする嵌合音の特性に応じてそれぞれ1つまたは複数の周波数帯域の集合帯域からなる。
【0031】
信号処理手段7は、フィルタ処理器71と補正器72を有し、時系列信号S1から目的作動音である嵌合音に相当する周波数帯域の時系列信号S2を取出す機能を有する。
【0032】
そのうち、フィルタ処理器71は、周波数帯域毎の時系列信号S1から嵌合音以外の周波数帯域の信号を縮小もしくはカットした時系列信号を出力する。なお、フィルタ処理器71を省略し、ウエーブレット変換演算器6の時系列信号S1を直接補正器72に与えるようにし、この補正器72に与える予め定めた周波数帯域毎の補正係数を工夫することで、嵌合音以外の周波数帯域の信号を縮小もしくはカットすることも可能である。
【0033】
補正器72は、フィルタ処理器71から出力される時系列信号を入力とする通常1つ以上の補正器72a、72b・・・の集合体である。各補正器72a、72bは、補正テーブル8から予め定めた周波数帯域毎に設定された補正係数(もしくは補正量か、ゲイン)を受けて、周波数帯域毎の時系列信号の重み付けを行い時系列信号S2を形成する。これは予め想定した嵌合音以外の周波数帯域の時系列信号S1はノイズと見なしてレベルを下げ、他方、嵌合音の中でもノイズの少ない周波数帯域を増幅してS/N比を向上させる。
【0034】
判定器9は、対象物1内の複数の嵌合箇所から生じる各嵌合音(目的作動音)が時間軸上で重なったり、あるいは僅かに遅れたりした場合にも、全ての嵌合箇所が正しく嵌合されている良状態か、もしくは1ヶ所以上嵌合不良が生じている不良状態かを判定する必要がある。そのために、嵌合箇所が重なった場合の重なり個数に応じた音圧信号の基準値(これは音圧信号レベルと発生期間の積による面積相当値を予め定めた周波数帯域毎に加算した値、いわゆる音量相当値)を予め求め、閾値テーブル10に、良状態と不良状態を区分する音量相当値を閾値として設定してある。本例では図2に示すように嵌合箇所が3ヶ所あるため、3ヶ所が嵌合した場合と2ヶ所が嵌合した場合とを判別できる閾値が設定される。
【0035】
なお、時系列信号S2部分の波形形状に基く面積相当値を求めるには、時系列信号S2の包絡線もしくは各ピーク値を検出して音圧信号レベルを把握し、この音圧信号レベルと時系列信号S2の発生期間の積による面積相当値に換算する。この処理を嵌合音が存在する周波数帯域毎に実施し、合計値を求める。
【0036】
判定器9の一例としては、補正器72より生じる周波数帯域毎の時系列信号S2部分の面積相当値、もしくは複数の周波数帯域に嵌合音が存在する場合には、各時系列信号S2部分の面積相当値の合計値を求める嵌合音音量算出手段91と、これらの値S3(嵌合音音量値)と閾値テーブル10に設定される所定の閾値との比較により嵌合音の良否を判定する判定処理手段92とを備えている。
【0037】
ここで複数の嵌合音が重なる場合の嵌合良否の判定要領について説明する。マイクロホン2が捕らえる振動波(音圧信号)には予め想定された嵌合音の他に、組付設備等の動きに伴なう機械作動音や設備周囲音等が含まれる。そこで、予め想定された嵌合音以外の音をカットした振動波(音圧信号)とすれば、重なった嵌合音の個数に応じて音圧レベルが変化する。その変化の仕方は、マイクロホン2の位置と各嵌合個所の環境その他が同じであれば重なった嵌合音の個数に比例して音圧レベルが高くなる。
【0038】
また、各時系列信号S1の信号レベルとその発生期間の積による面積相当値の合計値は、嵌合音のトータル音量、もしくは嵌合音の重なり個数に相関している。
【0039】
そこで、補正器72にて補正した各時系列信号S2の波形形状に基く面積相当値の合計値(嵌合音音量値S3)と閾値とを比較することで、対象物より生ずる嵌合音の重なり個数、即ち嵌合良否を判定することができる。
【0040】
判定器9は、全ての嵌合が適切になされた場合には正常(OK、合格)と判定し、嵌合されないものがある場合には異常(NG、不合格)と判定し、表示器30に判定結果を表示させる。また異常(NG、不合格)の場合には警報器40にも出力し警報を発生させる。
【0041】
次に、閾値テーブル10の閾値を修正する修正手段20について説明する。
【0042】
NGデータメモリ22、OKデータメモリ24は、書換え可能なメモリで構成され、予め実験等により求めた嵌合不良状態を示すNGデータ(嵌合音音量値)、嵌合良状態を示すOKデータ(嵌合音音量値)がそれぞれ所定個数Nだけ記憶されている。NG更新範囲設定手段21、OK更新範囲設定手段23は、実際に判定処理している期間中も、判定処理手段92の良否判定結果に応じて、NGデータメモリ22、もしくはOKデータメモリ24に対し、更新条件(つまり、目的に応じて更新有無や更新速度等が設定され、例えば記憶されたデータを1つずつ更新するか、複数データを同時に更新する等)を決めた上で、嵌合音音量値S3を更新記憶させている。
【0043】
NGデータ統計処理手段25は、NGデータメモリ22に記憶されたN個のNGデータの統計処理、例えば正規分布化処理を行い、平均値Xngi、分散値σngiを算出する。OKデータ統計処理手段26も同様に、OKデータメモリ24に記憶されたN個のOKデータを統計処理、例えば正規分布化処理を行い、平均値Xoki、分散値σokiを算出する。
【0044】
閾値算出手段27は、両統計処理手段25、26で求めた平均値Xngi、Xoki、分散値σngi、σokiに基いて新たな閾値を求め、閾値テーブル10に更新記憶させる。ここでは、NG分布とOK分布の間にあってかつNG分布を上回る音圧レベルが新たな閾値として求められる。算出例を示すと、まず両分布の平均値から一番遠くなる分散の係数mは、m=(Xoki−Xngi)/(σoki+σngi)となる。新たな閾値Lは、L=Xoki−m・σoki、もしくはXngi+m・σngiとして求められる。
【0045】
なお、良否判定精度を高めるために、4σの安全サイドを取る場合には、係数mが4以上であれば、Xoki−4・σokiとし、係数mが4未満であれば、Xngi+4・σngiとするのが望ましい。
【0046】
ここで、判定処理手段92で用いる閾値テーブル10に設定記憶された閾値の初期値設定要領について説明する。通常、この閾値は、事前に対象物である部品の組付け動作を行わせてその時発生する嵌合音を収集し、その音圧レベルの分布情報に基いて算出される。その際、嵌合良状態と嵌合不良状態の両方の音圧レベルの分布情報が必要であるが、嵌合不良状態の発生頻度は嵌合良状態のそれと比べて低いため、十分な個数の情報を入手しにくい。
【0047】
そこで、本例では、図7、図8に示すように、対象物1内の全嵌合箇所3ヶ所が良好に嵌合する良状態を示すOK音圧信号をOKデータベース320にN個以上収集、記憶するとともに、突部の切除や肉盛加工等によって嵌合箇所の1ヶ所から音が発生しないようにして仮想の不良対象物1を設定することにより、その嵌合不良状態を示す仮想NG音圧信号をNGデータベース310にN個以上収集、記憶するようにした。
【0048】
従って、音検査装置100Aでは、図1に示す装置100と同様にして、NGデータベース310、OKデータベース320に収集された仮想NG音圧信号、OK音圧信号から、周波数分離して嵌合音を抽出しその音圧レベルを統計処理することで、仮想NG分布、OK分布を求め、両者の平均値および分散値より閾値L0を求めた。この閾値L0が初期閾値として閾値テーブル10に初期設定されると共に、NGデータメモリ22には上記閾値L0の算出に用いた仮想NGデータ(嵌合音データ)が、またOKデータメモリ24にはOKデータ(嵌合音データ)がN個ずつ記憶設定されている。
【0049】
なお、入力装置50Aは、例えば図2に示す部品110、120の樹脂成形型の種類を選択指令として入力する装置であり、両データベース310、320に記憶されるデータの種別を付加するために利用される。
【0050】
次に、上記構成からなる振動波判定装置100の判定フローをまとめると、図4に示すとおりである。図5は振動波の信号波形図、図6は閾値の修正状況を示す説明図である。
【0051】
装置100に判定開始が指示されると、図示していない記憶装置より、予め音検査装置100Aにより求めた初期閾値L0、N個のOKデータおよび仮想NGデータが読み出され、閾値テーブル10や、OKデータメモリ24およびNGデータメモリ22に記憶設定される(ステップ201)。もちろん、事前にテーブル10やメモリ24、22に必要データを記憶設定しておいてもよい。
【0052】
判定準備が完了すると、まず対象物1から発生する振動波を、マイクロホン2〜記憶装置5によりデジタル音圧信号S0(図5(a))として録音(ステップ202)する。ウエーブレット変換演算器6では、このデジタル音圧信号S0を目的作動音である嵌合音に合わせた周波数帯域(図5(b))をもつ時系列信号S1に分離、抽出(ステップ203)する。
【0053】
図5の例では、デジタル音圧信号S0のサンプリング周波数を44KHzとし、周波数帯域11が11〜22KHz、周波数帯域10が5.5〜11KHz、周波数帯域9が2.8〜5.5KHzで嵌合音が顕著に表れている。また機械作動音は2.8KHzから下の周波数帯域8〜6で現れており、周波数帯域毎のデータを区別することで分離が可能なことが分かる。
【0054】
次に信号処理手段7のフィルタ処理器71で、これらの時系列信号S1から嵌合音以外の周波数帯域を縮小もしくはカットし、嵌合音を抽出する(ステップ204)。続いて補正器72で、補正テーブル8に記憶されている所定周波数帯域毎に設定された補正係数を用いて、時系列信号の重み付けを行い時系列信号S2を形成し、嵌合音に対応する時系列信号のS/N比を向上させる(ステップ205)。図6(c)は嵌合音以外の周波数帯域の信号をフィルタリングかつ補正処理した時系列信号S2を示す。
【0055】
次に判定器9で、補正した時系列信号S2の波形形状に基く面積相当値を求めると共に、この処理を嵌合音が存在する周波数帯域毎に実施して合計値(つまり嵌合音の体積値となるトータル音量、嵌合音音量値S3)を求め(ステップ206)、その値S3と閾値テーブル10で予め設定した閾値L(当初は初期閾値L0)と比較することにより、対象物1から生じる嵌合音個数を求め、部品110、120の組付(嵌合)良否を判定する(ステップ207)。
【0056】
嵌合音音量値S3が閾値L以上であれば、表示器30にて合格表示(全数嵌合良好)させる(ステップ208)。続いて、OK更新範囲設定手段23は、OKデータメモリ24に記憶されたデータを1つずつ更新して最新のN個のデータを収集する更新条件に設定されている。その更新条件に従って、判定処理手段92の良判定結果が生じる毎にその時の嵌合音音量値S3がOKデータメモリ24に更新記憶される(ステップ209)。そして最新のN個のOKデータの統計処理が実施されOK分布(平均値Xoki、分散値σoki)が算出され、OK分布情報として記憶される(ステップ210、211)。
【0057】
他方、嵌合音音量値S3が閾値Lより小であれば、表示器30にて不合格表示(嵌合不良あり)させると共に警報器40にて警報を行わせる(ステップ212)。
【0058】
続いて、NG更新範囲設定手段21は、NGデータメモリ22に記憶されたデータを順次更新して最新のN個のデータを収集する更新条件に設定されている。とりわけ、このNGデータメモリ22には、当初は音検査装置100Aで求めた仮想NGデータがN個記憶されており、初期閾値L0はより安全サイド(つまり不良品を確実に除外する高い音圧レベル)の閾値が設定されていて無駄が多い。
【0059】
そこで、できる限り速やかに実際のNGデータに置き換えることで、初期閾値L0を修正して閾値Lの精度を高める必要がある。本例では判定処理手段92より得られるNGデータ(嵌合音音量値S3)数KがN/2に達するまでの間は、求めたNGデータの2倍の仮想NGデータ数について置き換えるようにし、NGデータ数KがN/2以上になると同数のデータについて置き換えるようにし、閾値Lの修正速度を高めている(ステップ213〜216)。なお、閾値の早期有効化のために3倍以上にデータ置換速度を高くすることも可能である。
【0060】
その更新条件に従って、判定処理手段92の不良判定結果が生じる毎にその時の嵌合音音量値S3がNGデータメモリ22に更新記憶される。NGデータ統計処理手段25では、最新のN個のNGデータの統計処理が実施され、NG分布情報としてNG分布(平均値Xngi、分散値σngi)が算出される(ステップ217)。算出した平均値Xngiが前回値Xngi−1以上に大きくなっている、つまり新たな閾値Lが大きくなる方向の安全サイドにあるときには、求めたNG分布(平均値Xngi、分散値σngi)が閾値算出のために記憶される(ステップ218、219)。
【0061】
他方、算出した平均値Xngiが前回値Xngi−1より小さくなっている、つまり新たな閾値Lが小さくなる方向の危険サイドにあるときには、求めたNG分布(平均値Xngi、分散値σngi)は記憶されず、前回値(平均値Xngi−1、分散値σngi−1)のままである(ステップ218、220、221)。但し、NGデータ数Kが十分に大きくなった(K≧K1)後には、NGデータの精度が高いと判断できるため、閾値Lを小さくする修正を許可するようにしている(ステップ218、220、219)。
【0062】
次に、閾値算出手段27では、ステップ211、219、221で求めたOK分布情報(平均値Xoki、分散値σoki)およびNG分布情報(平均値Xngi、分散値σngi)に基いて、両分布の平均値から一番遠くなる分散の係数mは、m=(Xoki−Xngi)/(σoki+σngi)となる。新たな閾値Lは、L=Xoki−m・σoki、もしくはXngi+m・σngiとして求められる(ステップ222)。この新たな閾値Lは閾値テーブル10に更新記憶される(ステップ223)。
【0063】
従って、閾値テーブル10に設定記憶される閾値Lは、判定器9が嵌合音音量値S3を検出する毎に、当初の初期閾値L0から修正されることになる。閾値Lの大きくする上方修正はすぐに実施されるが、図6に示すようにNG分布が低くなる方向に変化するときには、NGデータ数(サンプル数)Kが少ないときは修正せず初期閾値L0のままとし、NGデータ数Kが所定数K1以上になると、閾値Lの下方修正を開始することで、安易な修正を抑制して嵌合音の良否判定精度を確保している。
【0064】
(他の実施形態)
本例は、複数種類の対象物1の組付け嵌合判定に際し、対象物1に応じて補正係数や閾値を変更することにより、複数種類の対象物1を判定処理可能にする、もしくは連続的に判定処理可能にする判定装置100の例である。図9は他の実施形態のシステム構成を示し、図1とは組付け嵌合する対象物1の種類を選択指示する入力装置50を設けた点と、補正テーブル8として複数種類の補正係数を用意して入力装置50により選択できるようにした点と、閾値テーブル10として複数種類の閾値を用意して入力装置50により選択できるようにした点が異なる。
【0065】
入力装置50は、例えば図2に示す部品110、120の樹脂成形型の種類を選択指令として入力する装置であり、両部品110、120の内外径、真円度、寸法、形状、材質などによって複数種類に分けられている。これは、両部品110、120のばらつきが主に樹脂成形型毎に異なる分布をもつことが分かったためである。
【0066】
補正テーブル8は、図10(a)に示すように振動波の判定に使用される樹脂成形型の組合せ種類だけ個別補正テーブル(Da1、Da2・・・)82が設定してあり、その1つ(例えばDa1)が図10(b)に示す個別補正テーブルを構成している。なお、図10(a)中のA、B、C、Dが部品110の種類を示し、1、2、3、4が部品120の種類を示す。そこで、テーブル選択手段81は、入力装置50の選択指令信号に応じて選択された個別補正テーブル82から、予め定めた周波数帯域毎に設定された補正係数a11、b11、・・・を読出し、各補正器72a、72b・・・に提供する。
【0067】
また、閾値テーブル10は、図10(c)に示すように、補正テーブル8と同様にして樹脂成形型の組合せ種類だけ閾値L(La1、La2、・・・)が設定してある。図中A、B、C、Dと1、2、3、4は図10(a)と同じく各部品110、120の種類を示している。
【0068】
なお、修正手段20のNGデータメモリ22、OKデータメモリ24には、判定する対象物1の種類毎に区別してNGデータ、OKデータが記憶されており、NG分布やOK分布の算出処理は上記実施形態と同様である。
【0069】
上記装置の作動は入力装置50により補正係数および閾値を選択する部分以外は図1に示す実施形態の作動と同様なため、作動説明を省略する。
【図面の簡単な説明】
【図1】本発明の一実施形態のシステム構成を示す構成図である。
【図2】図1の部品の組付工程の一部を示す説明図である。
【図3】(a)は図2の部品の組付工程の要部を示す説明図である。(b)、(c)は部品の組付工程において検出される音圧波形を示す図である。
【図4】図1に示す振動波判定装置100の処理フローを示すフローチャートである。
【図5】図1に示す振動波判定装置100の信号波形図である。
【図6】図1に示す振動波判定装置100の閾値Lの修正状況を示す説明図である。
【図7】音検査装置により初期閾値L0を求めるための説明図である。
【図8】図7に示す音検査装置による初期閾値L0の算出概要を示す説明図である。
【図9】本発明の他の実施形態のシステム構成を示す構成図である。
【図10】(a)、(b)は個別補正テーブル82の内容を示す図、(c)は閾値テーブル10の内容を示す図である。
【符号の説明】
1 対象物
2 マイクロホン(振動波入力手段)
6 ウエーブレット変換演算器(周波数分離手段)
7 信号処理手段
71 フィルタ処理器(フィルタ処理手段)
72 補正器(補正手段)
8 補正テーブル(補正テーブル手段)
9 判定器(判定手段)
91 嵌合音音量算出手段(音量算出手段)
92 判定処理手段
10 閾値テーブル(閾値テーブル手段)
20 修正手段
22 NGデータメモリ
24 OKデータメモリ
25 NGデータ統計処理手段(第1の統計処理手段)
26 OKデータ統計処理手段(第2の統計処理手段)
27 閾値算出手段
50 入力装置
100A 音検査装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration wave determination device that determines a state of a target object, for example, whether a fitting state is good or not, based on a vibration wave generated at the time of operation of the target object such as an assembly operation.
[0002]
[Prior art]
Conventionally, for example, in Patent Document 1, an object is lightly hit with a hammer or the like, and the sound or vibration generated at that time is frequency-separated by a wavelet transform operation means to form a time-series signal for each frequency band. A technique is described in which the content of an object is determined and the structure is inspected for cracks based on the determination of the sound pressure level of the series signal. In this specification, sound and vibration are collectively referred to as a vibration wave.
[0003]
[Patent Document 1]
JP-A-10-300730
[0004]
[Problems to be solved by the invention]
In this type of determination device, for example, when it is desired to accurately determine the quality of the state of an object, it is necessary to set a threshold value for the sound pressure level of the time-series signal with high accuracy. However, in the case of an inspection object having a low frequency of occurrence of a defective state, it is difficult to set a threshold value for determination with high accuracy because the sound pressure information itself generated in a defective state is small. Have been.
[0005]
The present invention has been made in view of the above point, and an object of the present invention is to provide a vibration wave determination device that can improve determination accuracy by enabling setting of a highly accurate threshold value.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the technical means described in claims 1 to 12 is adopted.
[0007]
According to the first aspect of the present invention, the vibration wave input means for detecting and inputting the vibration wave generated when the object is operated, and the first time series for each predetermined frequency band by separating the frequency of the input vibration wave. Frequency separation means for forming a signal, signal processing means for extracting, from the first time-series signal, a second time-series signal for each predetermined frequency band in which a target operation sound indicating a predetermined operation state of the object is generated, A determination unit configured to determine the state of the target object based on the sound pressure information of the target operation sound obtained from the second time-series signal and the threshold value; and a correction unit configured to correct the threshold value according to the determination result of the determination unit. It is characterized by the following.
[0008]
Thereby, it is possible to set a threshold value in accordance with the state of the target object by fixing the threshold value according to the determination result without fixing the threshold value used for the determination unit, thereby improving the determination accuracy. .
[0009]
According to the second aspect of the present invention, the rewritable threshold table storing the threshold used by the determination unit is provided, so that the threshold can be easily corrected in addition to the effect of the first aspect.
[0010]
According to the third aspect of the present invention, there is provided a sound inspection means for obtaining a sound pressure level defect distribution of the object based on the vibration wave obtained by temporarily setting the defect state of the object, and a threshold value used in the judgment means. Is characterized in that a sound pressure level exceeding a range of the defect distribution obtained by the sound inspection means is set as an initial threshold value.
[0011]
This makes it possible to set an initial threshold value in advance by obtaining a virtual failure distribution of the object, and to obtain failure information at an arbitrary frequency even in the case of an inspection object with a low frequency of occurrence of a failure state. Can be set with higher accuracy.
[0012]
According to the fourth aspect of the present invention, the correcting means collects sound pressure information of the target operating sound obtained from the second time-series signal at that time for each of the pass / fail judgment results by the judging means, statistically processes and obtains the sound pressure information. By modifying the threshold value used for the determination means based on the OK distribution information of the good determination result and the NG distribution information of the negative determination result, it is possible to set a threshold value for the sound pressure level according to both distribution states, thereby improving the determination accuracy. It becomes possible.
[0013]
According to the fifth aspect of the present invention, the correction means includes an OK data memory for storing sound pressure information when the object is in a good state, and an OK data memory when the object is in a bad state, according to the quality determination result of the determination means. NG data memory for storing the sound pressure information of the above, first statistical processing means for statistically processing the OK data stored in the OK data memory to obtain an OK distribution, and statistically processing the NG data stored in the NG data memory. Second statistical processing means for obtaining an NG distribution, and threshold calculating means for obtaining a new threshold based on the result of the statistical processing of the first and second statistical processing means and correcting the threshold used in the determining means It is characterized by.
[0014]
Thereby, in addition to the effect of the invention described in claim 5, the sound pressure information when the object is in the good state and the sound pressure information when the object is in the bad state are stored in separate memories. It is possible to set different storage processing methods, and it is easy to deal with defect status information that usually occurs less frequently. By storing both sound pressure information in separate memories, it is easy to obtain an NG distribution and an OK distribution, and it is easy to calculate a threshold.
[0015]
According to the invention described in claim 6, the signal processing means stores the correction means for correcting the level of the first time-series signal to form the second time-series signal, and the correction coefficient used by the correction means. With the correction table means, it is possible to reduce or cut a signal other than the target operation sound indicating the predetermined operation state of the target object, thereby improving the accuracy of the determination processing.
[0016]
According to the seventh aspect of the present invention, an input device that can be selected from the outside is provided, and the threshold value table means selects a threshold value used by the determination means in accordance with a selection command signal instructed by the input device. , The correction coefficient can be continuously selected according to an external selection command, and different objects can be determined continuously.
[0017]
According to the eighth aspect of the present invention, an input device which can be selected and operated from the outside is provided, and the correction table means selects a correction coefficient used by the correction means according to a selection command signal instructed by the input device. This has the same effect as the seventh aspect of the present invention.
[0018]
According to the ninth aspect of the present invention, the signal processing means has a filter processing means for providing the noise-removed time-series signal of the first time-series signal to the correction means, thereby indicating a predetermined operation state of the object. It is possible to reduce or cut a signal other than the operation sound to improve the accuracy of the determination processing.
[0019]
According to the tenth aspect of the present invention, the determining means includes a sound volume calculating means for obtaining sound pressure information by adding an area equivalent value based on the waveform shape of the second time series signal for each predetermined frequency band. The number of target operation sounds generated from the target object is determined based on the sound pressure level of the sound pressure information. As a result, even when the operating environment of the target object is different and the manner in which the target operation sound is generated varies, it is possible to improve the determination accuracy by using the added value, that is, the total volume. In particular, the present invention is effective for a process of determining a target operation sound generated from a plurality of locations on an object.
[0020]
According to the eleventh aspect of the present invention, the volume calculating means obtains an area equivalent value based on the waveform shape of the second time-series signal according to an envelope or a peak value of the second time-series signal, thereby achieving the desired operation. This makes it possible to more accurately detect the total volume of the sound and to improve the determination accuracy.
[0021]
According to the twelfth aspect of the present invention, there is provided a sound inspection means for obtaining a sound pressure level defect distribution of the object based on the vibration wave obtained by temporarily setting the defect state of the object, and the OK data memory and the NG Initially, the data memory initially stores the initial data obtained by the sound inspection means, and thereafter is sequentially rewritten with the latest sound pressure information of the target operation sound obtained from the second time-series signal, and The statistical processing means and the threshold value calculating means initially determine an initial threshold value based on the initial data and give the initial threshold value as the threshold value of the determining means.
[0022]
As a result, it is possible to ensure the accuracy of the determination of the target operation sound by using the relatively accurate initial threshold value from the beginning of the determination, and to rewrite the latest NG data or OK data with time to obtain a threshold value that is more suitable for the current situation. To make it possible to further improve the determination accuracy.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0024]
In the following description, an example will be described in which an assembling sound (fitting sound) generated at the time of assembling a component (or product) as an object is detected to determine a component assembling (fitting) defect. However, the vibration wave determination device 100 of the present invention is not limited to this use, and can be applied to other uses. Further, the present invention can be applied to detection of vibration instead of sound.
[0025]
FIG. 1 shows a system configuration according to an embodiment of the present invention.
[0026]
Here, as an example of the automatic assembly of resin parts as the target object 1 in this example, particularly a case where a loud noise is generated at the time of assembly, a snap-fit mechanism as shown in FIGS. Thus, an example of sound generation from a work process of assembling both parts 110 and 120 is given. FIG. 2 shows each projection 102 provided in each of the plurality of fitting portions 103 of the bottomed cylindrical lower lid component 120 in each hole 102 formed in the plurality of fitting portions 101 of the bottomed cylindrical upper lid component 110. The state of fitting is shown. In this case, the lower lid part 120 is inserted into the upper lid part 110, and the respective projections 104 are fitted into the respective holes 102 substantially simultaneously, and are fixed by the snap-fit mechanism.
[0027]
3A, 3B, and 3C are examples of vibration waves generated when assembling the two parts 110 and 120. FIG. 3A illustrates an assembling operation state, and FIG. (C) shows the vibration wave at the time of good, and at the time of poor assembly. As can be seen from the assembled sound levels in FIGS. 3B and 3C, the sound pressure level of the fitting sound changes according to the quality of the assembly.
[0028]
As a feature of sound generation at the time of assembly, a mechanical operation sound accompanying the movement of the assembly equipment and the like and a fitting sound that conveys the fitting state (that is, a target operating sound to be determined) are generated. In addition to having a sound pressure level corresponding to the magnitude of the assembling speed and the like, the sound pressure levels of both sounds change in correlation with each other.
[0029]
The microphone 2 detects a vibration generated in the object 1 for the vibration wave determination as a sound wave and converts the vibration into an electric signal. The electric signal of the sound pressure input from the microphone 2 is input to the amplifier 3 of the vibration wave determination device 100 and output to the A / D converter 4. The A / D converter 4 converts the sound pressure signal into a digital signal, and outputs the digital signal to the storage device 5 at the subsequent stage for storage processing.
[0030]
The wavelet transform (wavelet transform) calculator 6 constitutes a frequency separating means, takes in the digital sound pressure signal S0 stored in the storage device 5 at a predetermined timing, and converts the digital sound pressure signal S0 into a predetermined value. And separates them into time-series signals S1. In general, the wavelet transform calculator 6 is a calculator that separates the digital sound pressure signal S0 into a time series signal S1 for each frequency band by expanding or reducing a basis function (wavelet function). In this example, a frequency band that matches the fitting sound that is the target operation sound generated by one or more snap-fit mechanisms is set in advance as the assembling sound. This frequency band is composed of one or a plurality of frequency bands according to the characteristics of the target fitting sound.
[0031]
The signal processing means 7 has a filter processor 71 and a corrector 72, and has a function of extracting a time-series signal S2 in a frequency band corresponding to a fitting sound as a target operation sound from the time-series signal S1.
[0032]
The filter processor 71 outputs a time-series signal obtained by reducing or cutting a signal in a frequency band other than the fitting sound from the time-series signal S1 for each frequency band. It is to be noted that the filter processor 71 is omitted, and the time series signal S1 of the wavelet transform calculator 6 is directly supplied to the corrector 72, and a correction coefficient for each predetermined frequency band to be supplied to the corrector 72 is devised. Thus, it is also possible to reduce or cut a signal in a frequency band other than the fitting sound.
[0033]
The corrector 72 is an aggregate of one or more correctors 72a, 72b,... Which normally receives a time-series signal output from the filter processor 71. Each of the correctors 72a and 72b receives a correction coefficient (or a correction amount or a gain) set for each predetermined frequency band from the correction table 8, weights the time-series signal for each frequency band, and performs time-series signal Form S2. This is because the time-series signal S1 in a frequency band other than the fitting sound assumed in advance is regarded as noise and the level is lowered, and on the other hand, the frequency band with less noise in the fitting sound is amplified to improve the S / N ratio.
[0034]
The judging device 9 determines that all the fitting locations are the same even when the fitting sounds (target operating sounds) generated from the plurality of fitting locations in the object 1 overlap or slightly delay on the time axis. It is necessary to determine whether it is in a good state in which it is properly fitted, or in a defective state in which one or more places have a poor fitting. Therefore, the reference value of the sound pressure signal according to the number of overlaps when the fitting points overlap (this is a value obtained by adding an area equivalent value by the product of the sound pressure signal level and the generation period for each predetermined frequency band, A so-called sound volume equivalent value is obtained in advance, and a sound volume equivalent value for distinguishing between a good state and a bad state is set as a threshold value in the threshold table 10. In this example, as shown in FIG. 2, there are three fitting points, and therefore, a threshold value is set which can distinguish between a case where three places are fitted and a case where two places are fitted.
[0035]
In order to determine the area equivalent value based on the waveform shape of the time-series signal S2, the envelope or each peak value of the time-series signal S2 is detected, the sound pressure signal level is grasped, and this sound pressure signal level and time It is converted into an area equivalent value obtained by multiplying the generation period of the series signal S2. This processing is performed for each frequency band in which the fitting sound exists, and a total value is obtained.
[0036]
As an example of the determiner 9, as the area equivalent value of the time series signal S2 portion for each frequency band generated by the corrector 72, or when the fitting sound exists in a plurality of frequency bands, each time series signal S2 portion Fitting sound volume calculating means 91 for obtaining the sum of the area equivalent values, and comparing the value S3 (fitting sound volume value) with a predetermined threshold value set in the threshold value table 10 to determine the quality of the fitting sound. And a judgment processing means 92 for performing the judgment.
[0037]
Here, a description will be given of a procedure for determining the quality of fitting when a plurality of fitting sounds overlap. The vibration wave (sound pressure signal) captured by the microphone 2 includes, in addition to the fitting sound assumed in advance, a mechanical operation sound accompanying the movement of the assembling equipment, an ambient sound of the equipment, and the like. Therefore, if a vibration wave (sound pressure signal) is obtained by cutting a sound other than the fitting sound assumed in advance, the sound pressure level changes according to the number of overlapping fitting sounds. If the position of the microphone 2 and the environment and the like at each fitting location are the same, the sound pressure level increases in proportion to the number of overlapping fitting sounds.
[0038]
The total value of the area equivalent values obtained by multiplying the signal level of each time-series signal S1 and the generation period thereof is correlated with the total volume of fitting sounds or the number of overlapping fitting sounds.
[0039]
Therefore, by comparing the sum of the area equivalent values (fitting sound volume value S3) based on the waveform shape of each time-series signal S2 corrected by the corrector 72 with the threshold value, the fitting sound generated from the target object is compared. The number of overlaps, that is, the quality of fitting can be determined.
[0040]
The determination unit 9 determines that the connection is normal (OK, pass) when all the fittings are properly performed, and determines that the connection is abnormal (NG, rejection) when there is something that is not fitted. To display the judgment result. In the case of an abnormality (NG, reject), the alarm is also output to the alarm device 40 to generate an alarm.
[0041]
Next, the correcting means 20 for correcting the threshold value of the threshold value table 10 will be described.
[0042]
The NG data memory 22 and the OK data memory 24 are rewritable memories, and include NG data (fitting sound volume value) indicating an improper fitting state obtained in advance through experiments or the like, and OK data indicating a good fitting state ( The fitting sound volume value) is stored by a predetermined number N. The NG update range setting means 21 and the OK update range setting means 23 send the NG data memory 22 or the OK data memory 24 to the NG data memory 22 or the OK data memory 24 according to the quality judgment result of the judgment processing means 92 even during the actual judgment processing. After determining the update conditions (that is, whether or not to update and the update speed are set according to the purpose, for example, updating stored data one by one or updating a plurality of data simultaneously), the fitting sound is determined. The volume value S3 is updated and stored.
[0043]
The NG data statistical processing unit 25 performs a statistical process, for example, a normal distribution process on the N NG data stored in the NG data memory 22, and calculates an average value Xngi and a variance σngi. Similarly, the OK data statistical processing means 26 performs a statistical process, for example, a normal distribution process on the N pieces of OK data stored in the OK data memory 24, and calculates an average value Xoki and a variance value σoki.
[0044]
The threshold value calculating means 27 calculates a new threshold value based on the average values Xngi, Xoki and the variance values σngi, σoki obtained by the two statistical processing means 25, 26, and updates and stores the new threshold value in the threshold value table 10. Here, a sound pressure level between the NG distribution and the OK distribution and exceeding the NG distribution is obtained as a new threshold. As an example of calculation, first, the coefficient m of the variance that is farthest from the average value of both distributions is m = (Xoki−Xngi) / (σoki + σngi). The new threshold value L is obtained as L = Xoki−m · σoki or Xngi + m · σngi.
[0045]
In order to increase the accuracy of pass / fail judgment, when taking the safe side of 4σ, if the coefficient m is 4 or more, Xoki−4 · σoki, and if the coefficient m is less than 4, Xngi + 4 · σngi. It is desirable.
[0046]
Here, the procedure for setting the initial value of the threshold value set and stored in the threshold value table 10 used by the determination processing means 92 will be described. Normally, the threshold value is calculated based on distribution information of the sound pressure level by collecting a fitting sound generated at the time of performing an assembling operation of a component as an object in advance. At that time, the distribution information of the sound pressure level in both the good fitting state and the poor fitting state is necessary, but the occurrence frequency of the poor fitting state is lower than that in the good fitting state, so that a sufficient number of It is difficult to obtain information.
[0047]
Therefore, in this example, as shown in FIGS. 7 and 8, N or more OK sound pressure signals indicating a good state in which all three fitting points in the object 1 are properly fitted are collected in the OK database 320. By setting the virtual defective object 1 so that no sound is generated from one of the fitting positions due to the cutting of the protrusion or the overlaying, etc., the virtual NG indicating the poor fitting state is stored. N or more sound pressure signals are collected and stored in the NG database 310.
[0048]
Therefore, in the sound inspection apparatus 100A, the fitting sound is separated from the virtual NG sound pressure signal and the OK sound pressure signal collected in the NG database 310 and the OK database 320 in the same manner as the apparatus 100 shown in FIG. By extracting and statistically processing the sound pressure level, a virtual NG distribution and an OK distribution were obtained, and a threshold L0 was obtained from an average value and a variance value of both. The threshold value L0 is initially set as an initial threshold value in the threshold value table 10, the NG data memory 22 stores virtual NG data (fitting sound data) used for calculating the threshold value L0, and the OK data memory 24 stores OK. Data (fitting sound data) is stored and set for each N pieces.
[0049]
The input device 50A is a device for inputting, for example, the type of the resin molding die of the parts 110 and 120 shown in FIG. 2 as a selection command, and is used to add the type of data stored in both databases 310 and 320. Is done.
[0050]
Next, the determination flow of the vibration wave determination device 100 having the above configuration is summarized as shown in FIG. FIG. 5 is a signal waveform diagram of an oscillating wave, and FIG. 6 is an explanatory diagram showing a state of correction of a threshold.
[0051]
When the determination start is instructed to the apparatus 100, an initial threshold L0, N pieces of OK data and virtual NG data previously obtained by the sound inspection apparatus 100A are read from a storage device (not shown), and the threshold table 10, The storage is set in the OK data memory 24 and the NG data memory 22 (step 201). Needless to say, necessary data may be stored and set in the table 10 and the memories 24 and 22 in advance.
[0052]
When the preparation for determination is completed, first, a vibration wave generated from the object 1 is recorded by the microphone 2 to the storage device 5 as a digital sound pressure signal S0 (FIG. 5A) (Step 202). The wavelet transform calculator 6 separates and extracts the digital sound pressure signal S0 into a time-series signal S1 having a frequency band (FIG. 5B) that matches the fitting sound as the target operation sound (step 203). .
[0053]
In the example of FIG. 5, the sampling frequency of the digital sound pressure signal S0 is 44 KHz, the frequency band 11 is 11 to 22 KHz, the frequency band 10 is 5.5 to 11 KHz, and the frequency band 9 is 2.8 to 5.5 KHz. The sound is noticeable. Also, the machine operation noise appears in the frequency bands 8 to 6 below 2.8 KHz, and it can be seen that the data can be separated by distinguishing the data for each frequency band.
[0054]
Next, the filter processor 71 of the signal processing means 7 reduces or cuts the frequency band other than the fitting sound from these time-series signals S1, and extracts the fitting sound (step 204). Subsequently, the corrector 72 weights the time-series signal using the correction coefficient set for each predetermined frequency band stored in the correction table 8 to form a time-series signal S2, which corresponds to the fitting sound. The S / N ratio of the time series signal is improved (Step 205). FIG. 6C shows a time-series signal S2 obtained by filtering and correcting a signal in a frequency band other than the fitting sound.
[0055]
Next, the determiner 9 calculates an area equivalent value based on the corrected waveform shape of the time-series signal S2, and performs this processing for each frequency band in which the fitting sound exists, and calculates the total value (that is, the volume of the fitting sound). By calculating the total sound volume and the fitting sound volume value S3 which are values (step 206), and comparing the value S3 with a threshold value L (initial threshold value L0 initially) set in the threshold value table 10, the target object 1 is obtained. The number of generated fitting sounds is determined, and the quality of assembly (fitting) of the parts 110 and 120 is determined (step 207).
[0056]
If the fitting sound volume value S3 is equal to or greater than the threshold value L, a pass display (all pieces fit well) is displayed on the display 30 (step 208). Subsequently, the OK update range setting means 23 is set as an update condition for updating the data stored in the OK data memory 24 one by one and collecting the latest N data. Each time a good judgment result of the judgment processing means 92 is generated according to the update condition, the fitting sound volume value S3 at that time is updated and stored in the OK data memory 24 (step 209). Then, statistical processing of the latest N pieces of OK data is performed, and an OK distribution (average value Xoki, variance σoki) is calculated and stored as OK distribution information (steps 210 and 211).
[0057]
On the other hand, if the fitting sound volume value S3 is smaller than the threshold value L, a rejection display (improper fitting) is made on the display 30 and an alarm is given by the alarm 40 (step 212).
[0058]
Subsequently, the NG update range setting means 21 is set as an update condition for sequentially updating the data stored in the NG data memory 22 and collecting the latest N data. In particular, the NG data memory 22 initially stores N pieces of virtual NG data obtained by the sound inspection apparatus 100A, and the initial threshold value L0 is on the safer side (that is, a high sound pressure level that reliably excludes defective products). There is a lot of waste because the threshold value of ()) is set.
[0059]
Therefore, it is necessary to replace the actual NG data as soon as possible to correct the initial threshold value L0 and increase the accuracy of the threshold value L. In this example, until the number K of NG data (fitting sound volume value S3) obtained by the determination processing means 92 reaches N / 2, the number of virtual NG data twice as large as the obtained NG data is replaced. When the number K of NG data becomes N / 2 or more, the same number of data is replaced, and the correction speed of the threshold L is increased (steps 213 to 216). It is also possible to increase the data replacement speed three times or more for the early validation of the threshold value.
[0060]
In accordance with the update condition, the fitting sound volume value S3 at that time is updated and stored in the NG data memory 22 every time a failure determination result of the determination processing means 92 occurs. The NG data statistical processing means 25 performs statistical processing of the latest N pieces of NG data, and calculates an NG distribution (average value Xngi, variance σngi) as NG distribution information (step 217). When the calculated average value Xngi is greater than or equal to the previous value Xngi−1, that is, on the safe side in the direction in which the new threshold value L increases, the calculated NG distribution (average value Xngi, variance σngi) is used to calculate the threshold value. (Steps 218, 219).
[0061]
On the other hand, when the calculated average value Xngi is smaller than the previous value Xngi−1, that is, when the new threshold value L is on the danger side, the obtained NG distribution (average value Xngi, variance σngi) is stored. However, the previous values (average value Xngi-1 and variance value σngi-1) remain (steps 218, 220, 221). However, after the number of NG data K has become sufficiently large (K ≧ K1), it can be determined that the accuracy of the NG data is high, so that a correction to reduce the threshold L is permitted (steps 218, 220, 219).
[0062]
Next, the threshold value calculating means 27 calculates both distributions based on the OK distribution information (average value Xoki, variance value σoki) and the NG distribution information (average value Xngi, variance value σngi) obtained in steps 211, 219, and 221. The variance coefficient m that is the furthest from the average value is m = (Xoki−Xngi) / (σoki + σngi). A new threshold value L is obtained as L = Xoki−m · σoki or Xngi + m · σngi (step 222). The new threshold L is updated and stored in the threshold table 10 (step 223).
[0063]
Therefore, the threshold value L set and stored in the threshold value table 10 is corrected from the initial threshold value L0 each time the determiner 9 detects the fitting sound volume value S3. The upward correction for increasing the threshold value L is immediately performed, but when the NG distribution changes in a lowering direction as shown in FIG. 6, when the NG data number (sample number) K is small, the correction is not performed and the initial threshold value L0 is not changed. When the number K of NG data becomes equal to or larger than the predetermined number K1, the correction of the threshold L is started downward, thereby suppressing the easy correction and ensuring the accuracy of determining the quality of the fitting sound.
[0064]
(Other embodiments)
In the present example, when determining whether or not a plurality of types of objects 1 are assembled or fitted, the correction coefficient or the threshold value is changed according to the types of the objects 1 so that the plurality of types of the objects 1 can be subjected to the determination processing, or a continuous process can be performed. 1 is an example of a determination apparatus 100 that enables determination processing. FIG. 9 shows a system configuration of another embodiment. FIG. 9 differs from FIG. 1 in that an input device 50 for selecting and instructing the type of the object 1 to be assembled and fitted is provided. The difference is that the threshold value is prepared and can be selected by the input device 50, and that a plurality of types of threshold values are prepared as the threshold value table 10 and can be selected by the input device 50.
[0065]
The input device 50 is a device for inputting, for example, the type of the resin molding die of the parts 110 and 120 shown in FIG. 2 as a selection command, and depends on the inner and outer diameters, roundness, dimensions, shape, material, and the like of both parts 110 and 120. It is divided into several types. This is because it has been found that the dispersion of the two components 110 and 120 mainly has a different distribution for each resin mold.
[0066]
In the correction table 8, as shown in FIG. 10A, individual correction tables (Da1, Da2...) 82 are set only for the combination types of the resin molding dies used for the determination of the vibration wave. (For example, Da1) constitutes the individual correction table shown in FIG. In FIG. 10A, A, B, C, and D indicate types of the component 110, and 1, 2, 3, and 4 indicate types of the component 120. Therefore, the table selecting means 81 reads the correction coefficients a11, b11,... Set for each predetermined frequency band from the individual correction table 82 selected according to the selection command signal of the input device 50, and Are provided to the correctors 72a, 72b,...
[0067]
As shown in FIG. 10C, the threshold value L (La1, La2,...) Is set for the combination type of the resin molding dies in the threshold value table 10 as in the correction table 8. In the drawing, A, B, C, and D, 1, 2, 3, and 4 indicate the types of the components 110 and 120 as in FIG.
[0068]
Note that NG data and OK data are stored in the NG data memory 22 and the OK data memory 24 of the correcting means 20 for each type of the object 1 to be determined. This is the same as the embodiment.
[0069]
The operation of the above-described device is the same as the operation of the embodiment shown in FIG.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a system configuration according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing a part of a process of assembling the parts shown in FIG. 1;
FIG. 3A is an explanatory view showing a main part of an assembling process of the parts shown in FIG. 2; (B), (c) is a figure which shows the sound pressure waveform detected in the assembly | attachment process of components.
FIG. 4 is a flowchart showing a processing flow of the vibration wave determination device 100 shown in FIG.
FIG. 5 is a signal waveform diagram of the vibration wave determination device 100 shown in FIG.
FIG. 6 is an explanatory diagram showing a state of correction of a threshold value L of the vibration wave determination device 100 shown in FIG.
FIG. 7 is an explanatory diagram for obtaining an initial threshold value L0 by the sound inspection device.
8 is an explanatory diagram showing an outline of calculation of an initial threshold value L0 by the sound inspection device shown in FIG. 7;
FIG. 9 is a configuration diagram showing a system configuration of another embodiment of the present invention.
10A and 10B are diagrams showing the contents of an individual correction table 82, and FIG. 10C is a diagram showing the contents of a threshold value table 10.
[Explanation of symbols]
1 Object
2 microphone (vibration wave input means)
6 Wavelet transform calculator (frequency separation means)
7 Signal processing means
71 Filter processor (filter processing means)
72 Corrector (correction means)
8 Correction table (correction table means)
9 Judgment device (judgment means)
91 Fitting sound volume calculating means (volume calculating means)
92 Judgment processing means
10. Threshold table (threshold table means)
20 Correction means
22 NG data memory
24 OK data memory
25 NG data statistical processing means (first statistical processing means)
26 OK data statistical processing means (second statistical processing means)
27 Threshold calculation means
50 input device
100A sound inspection device

Claims (12)

対象物の作動時に生ずる振動波を検出入力する振動波入力手段と、
入力された前記振動波を周波数分離して予め定めた周波数帯域毎の第1の時系列信号を形成する周波数分離手段と、
前記第1の時系列信号から、前記対象物の所定作動状態を示す目的作動音が生じる予め定めた周波数帯域毎の第2の時系列信号を取出す信号処理手段と、
前記第2の時系列信号より求まる前記目的作動音の音圧情報と閾値とに基いて前記対象物の状態を判定する判定手段と、
前記判定手段の判定結果に応じて前記閾値を修正する修正手段とを備えることを特徴とする振動波判定装置。
Vibration wave input means for detecting and inputting a vibration wave generated when the object is operated;
Frequency separation means for frequency-separating the input vibration wave to form a first time-series signal for each predetermined frequency band;
Signal processing means for extracting, from the first time-series signal, a second time-series signal for each predetermined frequency band in which a target operation sound indicating a predetermined operation state of the object is generated;
Determining means for determining the state of the target object based on sound pressure information and a threshold value of the target operation sound obtained from the second time-series signal,
And a correcting means for correcting the threshold value according to a result of the determination by the determining means.
前記判定手段で用いる前記閾値が記憶された書換え可能な閾値テーブル手段を備えることを特徴とする請求項1に記載の振動波判定装置。The apparatus according to claim 1, further comprising a rewritable threshold table storing the threshold used in the determination. 前記対象物の不良状態を仮設定して得られる振動波に基いて、前記対象物の音圧レベルの不良分布を求める音検査手段を設け、
前記判定手段で用いる前記閾値には、前記音検査手段で求めた前記不良分布の範囲を上回る音圧レベルが初期閾値として設定されることを特徴とする請求項1に記載の振動波判定装置。
Sound inspection means for obtaining a defect distribution of the sound pressure level of the object based on the vibration wave obtained by temporarily setting the defect state of the object,
2. The vibration wave determination device according to claim 1, wherein a sound pressure level exceeding a range of the failure distribution obtained by the sound inspection means is set as the initial threshold as the threshold used by the determination means. 3.
前記修正手段は、前記判定手段による良否判定結果別に、そのときの前記第2の時系列信号より求まる前記目的作動音の音圧情報を収集して統計処理し、求めた良判定結果のOK分布情報と否判定結果のNG分布情報とに基いて前記判定手段に用いる前記閾値を修正することを特徴とする請求項1に記載の振動波判定装置。The correction means collects sound pressure information of the target operation sound obtained from the second time-series signal at that time for each of the pass / fail judgment results obtained by the judgment means, performs statistical processing, and performs an OK distribution of the obtained good judgment results. The vibration wave determination device according to claim 1, wherein the threshold used in the determination unit is corrected based on information and NG distribution information of a result of the determination. 前記修正手段は、前記判定手段の良否判定結果に応じて、前記対象物の良状態のときの前記音圧情報を記憶するOKデータメモリと、前記対象物の不良状態のときの前記音圧情報を記憶するNGデータメモリと、前記OKデータメモリに記憶されたOKデータを統計処理しOK分布を求める第1の統計処理手段と、前記NGデータメモリに記憶されたNGデータを統計処理しNG分布を求める第2の統計処理手段と、前記第1、第2の統計処理手段の統計処理の結果に基いて新たな閾値を求め、前記判定手段で用いる前記閾値を修正する閾値算出手段とを有することを特徴とする請求項1に記載の振動波判定装置。The correction means includes an OK data memory for storing the sound pressure information when the object is in a good state, and the sound pressure information when the object is in a bad state, in accordance with a good or bad judgment result of the judgment means. NG data memory, first statistical processing means for statistically processing the OK data stored in the OK data memory to obtain an OK distribution, and statistical processing of the NG data stored in the NG data memory to obtain an NG distribution And a threshold calculating unit that obtains a new threshold based on the result of the statistical processing of the first and second statistical processing units and corrects the threshold used by the determining unit. The vibration wave determination device according to claim 1, wherein: 前記信号処理手段は、前記第1の時系列信号のレベルを補正して前記第2の時系列信号を形成する補正手段と、前記補正手段で用いる補正係数が記憶された補正テーブル手段とを有することを特徴とする請求項1に記載の振動波判定装置。The signal processing unit includes a correction unit that corrects the level of the first time-series signal to form the second time-series signal, and a correction table that stores a correction coefficient used by the correction unit. The vibration wave determination device according to claim 1, wherein: 外部より選択操作可能な入力装置を設け、前記閾値テーブル手段は、この入力装置にて指示された選択指令信号に応じて前記判定手段で用いる前記閾値を選択することを特徴とする請求項2に記載の振動波判定装置。3. An input device which is selectable from outside is provided, and said threshold value table means selects said threshold value used by said determination means according to a selection command signal instructed by said input device. The vibration wave determination device as described in the above. 外部より選択操作可能な入力装置を設け、前記補正テーブル手段は、前記入力装置にて指示された選択指令信号に応じて前記補正手段で用いる前記補正係数を選択することを特徴とする請求項6に記載の振動波判定装置。7. An input device which can be selected from outside, wherein the correction table means selects the correction coefficient used by the correction means in accordance with a selection command signal instructed by the input device. 6. The vibration wave determination device according to 1. 前記信号処理手段は、前記第1の時系列信号のノイズ除去した時系列信号を前記補正手段に与えるフィルタ処理手段を有することを特徴とする請求項6または8に記載の振動波判定装置。9. The vibration wave determination device according to claim 6, wherein the signal processing unit includes a filter processing unit that supplies the time series signal obtained by removing noise of the first time series signal to the correction unit. 前記判定手段は、予め定めた周波数帯域毎の前記第2の時系列信号の波形形状に基く面積相当値を加算して前記音圧情報を求める音量算出手段を有し、前記音圧情報の音圧レベルに基いて、前記対象物より生じる目的作動音の個数を判定することを特徴とする請求項1に記載の振動波判定装置。The determining means includes a sound volume calculating means for obtaining the sound pressure information by adding an area equivalent value based on a waveform shape of the second time series signal for each predetermined frequency band, and a sound of the sound pressure information. The vibration wave determination device according to claim 1, wherein the number of target operation sounds generated from the object is determined based on the pressure level. 前記音量算出手段は、前記第2の時系列信号の包絡線もしくはピーク値に従って、前記第2の時系列信号の波形形状に基く前記面積相当値を求めることを特徴とする請求項10に記載の振動波判定装置。The said volume calculation means calculates | requires the said area equivalent value based on the waveform or shape of the said 2nd time series signal according to the envelope or peak value of the said 2nd time series signal, The claim of Claim 10 characterized by the above-mentioned. Vibration wave determination device. 前記対象物の不良状態を仮設定して得られる振動波に基いて、前記対象物の音圧レベルの不良分布を求める音検査手段を設け、
前記OKデータメモリおよび前記NGデータメモリには、当初は前記音検査手段で求めた初期データが記憶されており、その後前記第2の時系列信号より求まる前記目的作動音の最新の音圧情報に順次書換えられ、かつ前記第1、第2の統計処理手段および前記閾値算出手段は、当初は前記初期データに基いて初期閾値を求め前記判定手段の前記閾値として与えることを特徴とする請求項5に記載の振動波判定装置。
Sound inspection means for obtaining a defect distribution of the sound pressure level of the object based on the vibration wave obtained by temporarily setting the defect state of the object,
The OK data memory and the NG data memory initially store initial data obtained by the sound inspection means, and thereafter store the latest sound pressure information of the target operation sound obtained from the second time-series signal. 6. The method according to claim 5, wherein the first and second statistical processing means and the threshold value calculating means obtain an initial threshold value based on the initial data and give the initial threshold value as the threshold value of the determining means. 6. The vibration wave determination device according to 4.
JP2003003578A 2003-01-09 2003-01-09 Oscillatory wave determining device Pending JP2004219110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003578A JP2004219110A (en) 2003-01-09 2003-01-09 Oscillatory wave determining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003578A JP2004219110A (en) 2003-01-09 2003-01-09 Oscillatory wave determining device

Publications (1)

Publication Number Publication Date
JP2004219110A true JP2004219110A (en) 2004-08-05

Family

ID=32894802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003578A Pending JP2004219110A (en) 2003-01-09 2003-01-09 Oscillatory wave determining device

Country Status (1)

Country Link
JP (1) JP2004219110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333687A (en) * 2006-06-19 2007-12-27 Denso Corp Quality determination device and method for article using time-series signal
JP2009025162A (en) * 2007-07-19 2009-02-05 Denso Corp Method and device for detecting crack of component
JP2010230445A (en) * 2009-03-26 2010-10-14 Nec Personal Products Co Ltd Inspection device, inspection method and program
JP2017185606A (en) * 2016-04-08 2017-10-12 住友電気工業株式会社 Assembly quality determination device, assembly quality determination method and assembly quality determination program
JP2020169888A (en) * 2019-04-03 2020-10-15 株式会社フクダ Leakage inspection method
US11293902B2 (en) * 2019-03-25 2022-04-05 Kabushiki Kaisha Toshiba Inspection apparatus, inspection system, inspection method, and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333687A (en) * 2006-06-19 2007-12-27 Denso Corp Quality determination device and method for article using time-series signal
JP4635967B2 (en) * 2006-06-19 2011-02-23 株式会社デンソー Goods quality judgment device and quality judgment method using time series signal
JP2009025162A (en) * 2007-07-19 2009-02-05 Denso Corp Method and device for detecting crack of component
JP2010230445A (en) * 2009-03-26 2010-10-14 Nec Personal Products Co Ltd Inspection device, inspection method and program
JP2017185606A (en) * 2016-04-08 2017-10-12 住友電気工業株式会社 Assembly quality determination device, assembly quality determination method and assembly quality determination program
US11293902B2 (en) * 2019-03-25 2022-04-05 Kabushiki Kaisha Toshiba Inspection apparatus, inspection system, inspection method, and storage medium
JP2020169888A (en) * 2019-04-03 2020-10-15 株式会社フクダ Leakage inspection method
JP7353060B2 (en) 2019-04-03 2023-09-29 株式会社フクダ Leak test method

Similar Documents

Publication Publication Date Title
KR101678353B1 (en) Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method
JP5123319B2 (en) Speaker line inspection device
JP6818970B1 (en) Data creation device, machine learning system and machining state estimation system
CN104781862A (en) Real-time traffic detection
JP2004219110A (en) Oscillatory wave determining device
CN107645696A (en) One kind is uttered long and high-pitched sounds detection method and device
CN107756138A (en) Cutting tool state online test method and equipment
CN110248300A (en) A kind of chauvent&#39;s criterion method and sound reinforcement system based on autonomous learning
US7929933B2 (en) Noise suppression apparatus, FM receiving apparatus and FM receiving apparatus adjustment method
US11830518B2 (en) Sound data processing method, sound data processing device, and program
CN112700399B (en) Defect detection visualization method and system
CN114646665A (en) Arc welding defect real-time detection method and system
JP2010096547A (en) Device and method for determining abnormal noise
JP3598266B2 (en) Device abnormality diagnosis method and device
US7702476B2 (en) Method of controlling the quality of industrial processes and system therefor
JP2005283227A (en) Abnormal sound inspection method and its device
CN110739006A (en) Audio processing method and device, storage medium and electronic equipment
JP4052110B2 (en) Vibration wave determination device
JP2006300524A (en) Abnormal sound inspection method
JP5271771B2 (en) Abnormal sound inspection apparatus and abnormal sound inspection method
JP3922127B2 (en) Assembly failure judgment device
JP4747323B2 (en) Acoustic monitoring support device and acoustic monitoring support method
JP2004093480A (en) Oscillatory wave judging device
WO2018117171A1 (en) Bioacoustic analysis method, program, storage medium, and bioacoustic analysis device
JPH08320251A (en) Sound and vibration diagnostic method in equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050404

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Effective date: 20070731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A02