JP2004219107A - Inundation detector and inundation detection method - Google Patents

Inundation detector and inundation detection method Download PDF

Info

Publication number
JP2004219107A
JP2004219107A JP2003003509A JP2003003509A JP2004219107A JP 2004219107 A JP2004219107 A JP 2004219107A JP 2003003509 A JP2003003509 A JP 2003003509A JP 2003003509 A JP2003003509 A JP 2003003509A JP 2004219107 A JP2004219107 A JP 2004219107A
Authority
JP
Japan
Prior art keywords
inundation
light
detection
detecting
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003509A
Other languages
Japanese (ja)
Inventor
Takeshi Iwamoto
健 岩本
Toshio Hinenoya
俊男 日根野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003003509A priority Critical patent/JP2004219107A/en
Publication of JP2004219107A publication Critical patent/JP2004219107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inundation detector for detecting an inundation state automatically and accurately. <P>SOLUTION: Near infrared rays are projected to an inundation detection region by a light source 2, the reflection light of the projected near infrared rays is received and photographed by a photographing camera 3, and an inundation state in the inundation detection region is detected, based on the photographing image, thus directly and automatically detecting the inundation state of the inundation detection region. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、河川敷などの浸水状態を検出する浸水検出装置及び浸水検出方法に関するものである。
【0002】
【従来の技術】
従来、河川敷などの浸水状態を検出する手法としては、例えば、河川内に設置した水位計の計測値に基づいて洪水敷への浸水状態を予測する方法や河川に設置した撮影カメラの撮影映像を監視して浸水の発見を行うなどの方法が採られていた。
【0003】
【発明が解決しようとする課題】
しかし、水位計の計測値に基づいて浸水状態を予測する方法では、浸水状態を直接検出できないため、浸水状態を正確に把握することができない。また、撮影カメラの映像を監視する方法では、監視員の監視負担が大きく、自動的に浸水を検出することができない。
【0004】
そこで本発明は、このような問題点を解消する為になされたものであり、浸水状態を自動的に正確に検出できる浸水検出装置及び浸水検出方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するために、本発明に係る浸水検出装置は、浸水を検出すべき浸水検出領域に近赤外光を投光する投光手段と、投光された近赤外光の浸水検出領域での反射光を受光する受光手段と、その受光手段の出力に基づいて浸水検出領域における浸水状態を検出する検出手段とを備えて構成されている。
【0006】
この発明によれば、浸水検出領域で反射する反射光を受光してその受光出力に基づいて浸水状態を検出することにより、浸水検出領域の浸水状態を直接かつ自動的に検出することできる。また、浸水検出領域に近赤外光を投光することにより、可視光の照射や発光を行わず、浸水検出が可能となる。このため、可視光の照射や発光が好ましくない場所やそれらが禁じられている場所でも、浸水検出が行える。
【0007】
また本発明に係る浸水検出装置は、近赤外光の照射位置に設置され表面を反射低減処理してなる浸水検知板を備え、受光手段が浸水検知板で反射する反射光を受光することを特徴とする。
【0008】
この発明によれば、浸水検知板の表面を反射低減処理することにより、浸水検出領域に浸水がないときの近赤外光の反射量を小さくすることができる。このため、浸水がある時と浸水がない時の近赤外光の反射量の差を大きくすることができ、浸水の検出精度を向上させることができる。
【0009】
また本発明に係る浸水検出装置は、近赤外光の照射位置に水平に対し傾けて設置される深度検知板を備え、受光手段が深度検知板を撮影する撮影カメラであり、検出手段が撮影カメラの撮影画像に基づいて浸水検出領域における浸水の深度を検出することを特徴とする。
【0010】
この発明によれば、浸水検出領域に深度検知板を設置し、その深度検知板を撮影カメラで撮影することにより、その撮影画像に基づいて浸水検出領域における浸水の深度を直接かつ自動的に検出することができる。また本発明に係る浸水検出装置において、深度検知板の表面が反射低減処理されているが好ましい。
【0011】
また本発明に係る浸水検出装置において、投光手段と受光手段が同一の柱部材に取り付けられていることが好ましい。
【0012】
また本発明に係る浸水検出装置は、投光手段から投光される近赤外光の照射領域に対し外光の入射を防止するカバーを備えたことを特徴とする。
【0013】
この発明によれば、浸水検出領域に入射する外光を制限することができ、周囲環境の変化により浸水検出結果が影響を受けることを防止でき、浸水検出結果の信頼性を向上させることができる。
【0014】
また本発明に係る浸水検出方法は、浸水を検出すべき浸水検出領域に近赤外光を投光する投光する投光工程と、投光された近赤外光の浸水検出領域での反射光を受光手段で受光する受光工程と、受光手段の出力に基づいて浸水検出領域における浸水状態を検出する検出工程とを備えて構成されている。
【0015】
この発明によれば、浸水検出領域で反射する反射光を受光してその受光出力に基づいて浸水状態を検出することにより、浸水検出領域の浸水状態を直接かつ自動的に検出することできる。また、浸水検出領域に近赤外光を投光することにより、可視光の照射や発光を行わず、浸水検出が可能となる。このため、可視光の照射や発光が好ましくない場所やそれらが禁じられている場所でも、浸水検出が行える。
【0016】
この浸水検出方法において、近赤外光の照射位置に表面を反射低減処理してなる浸水検知板を設置し、受光手段により浸水検知板で反射する反射光を受光することが好ましい。
【0017】
また本発明に係る浸水検出方法は、近赤外光の照射位置に水平に対し傾けた深度検知板を設置し、受光工程にて深度検知板を撮影カメラで受光して撮影し、検出工程にて撮影カメラの撮影画像に基づいて浸水検出領域における浸水の深度を検出することを特徴とする。
【0018】
この発明によれば、浸水検出領域に深度検知板を設置し、その深度検知板を撮影カメラで撮影することにより、その撮影画像に基づいて浸水検出領域における浸水の深度を直接かつ自動的に検出することができる。
【0019】
【発明の実施の形態】
以下、添付図面に基づき、本発明の実施形態について説明する。尚、各図において同一要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0020】
図1に本実施形態に係る浸水検出装置の構成概要図を示す。
【0021】
図1に示すように、浸水検出装置1は、浸水を検出する装置であり、例えば河川敷、洪水敷などに設置される。浸水検出装置1は、近赤外光を投光する投光器2を備えている。投光器2は、浸水を検出すべき浸水検出領域に近赤外光を投光し照射させる投光手段であり、例えばLEDを光源として近赤外光を投光するものが用いられる。また、パルス光として断続的に近赤外光を発光するものを用いることが好ましい。この場合、消費電力の低減が図れる。なお、ここでいう近赤外光とは、波長780〜1500nmの光を意味する。
【0022】
また、浸水検出装置1は、撮影カメラ3を備えている。撮影カメラ3は、投光器2により投光された近赤外光の浸水検出領域での反射光を受光し撮影する受光手段として機能するものであり、例えばCCTV(Closed Circuit Television )カメラが用いられる。撮影カメラ3としては、近赤外光の波長領域において受光感度の高いものを用いることが好ましい。
【0023】
この撮影カメラ3と投光器2は、同一の支柱4に設置することが好ましい。例えば、支柱4の上部に撮影カメラ3と投光器2が取り付けられる。そして、撮影カメラ3の撮影方向と投光器2の投光方向は浸水検出領域に向けられている。撮影カメラ3と投光器2を同一の支柱4に設置することにより、複数の支柱などの設置によって河川の美観を損なうことを防止できる。
【0024】
投光器2と撮影カメラ3は、制御器5に接続されている。制御器5は、投光器2及び撮影カメラ3の作動制御を行っている。また、制御器5は、撮影カメラ3の出力映像に基づいて浸水検出領域における浸水状態を検出する検出手段として機能する。また、撮影カメラ3の出力映像に基づいて浸水検出領域における浸水の深度を検出する検出手段として機能する。
【0025】
浸水検出装置1の浸水検出領域には、浸水検知板6及び深度検知板7が設置されている。浸水検知板6は、浸水状態の検出を容易化するための板体であり、表面を反射低減処理され、浸水部分と非浸水部分との光反射量の差が出るようになっている。例えば、浸水検知板6の表面は、所定以上の粗さの粗目状に処理されている。この反射低減処理により、非浸水時に投光器2の近赤外光が照射されても乱反射により、光反射量が低減される。
【0026】
浸水検知板6は、水平より所定角度傾けて設置することが望ましい。例えば、例えば浸水検知板6の傾斜角度θ6は、水平より5〜20度傾けて設置される。図2に示すように、浸水が無いときには投光器2からの近赤外光Lが浸水検知板6の表面で乱反射して反射量は少ない。図3に示すように、浸水が少しあるときには浸水検知板6上の水膜又は水滴に近赤外光Lが反射して反射量はやや多い。図4に示すように、浸水が多いときには浸水検知板6上に浸水の水面Wが来るので、図3の場合と比べ反射角度が異なり、反射量が多くなる。
【0027】
図1に示すように、深度検知板7、浸水の深度の検出を容易化するための板体であり、表面を反射低減処理され、浸水部分と非浸水部分との光反射量の差が出るようになっている。
【0028】
深度検知板7は、水平より所定角度傾けて設置される。例えば、深度検知板7の傾斜角度θ7は、水平より30〜70度傾けて設置するのが好ましい。
【0029】
次に、本実施形態に係る浸水検出装置の動作及び本実施形態に係る浸水検出方法について説明する。
【0030】
図1において、投光器2により近赤外光を投光し、浸水検出領域に設置される浸水検知板6及び深度検知板7に近赤外光を照射させる。投光器2の投光は、制御器5から出力される制御信号に基づいて行われ、パルス光となるように断続的に行われる。
【0031】
そして、撮影カメラ3を作動させて、近赤外光が照射される浸水検知板6及び深度検知板7を撮影する。浸水検出領域に浸水がない時には、図5に示すように、撮影カメラ3の撮影画像に浸水検知板6及び深度検知板7が映される。このとき、浸水検知板6の表面には水滴や水面などがないので、近赤外光がその表面で乱反射するのみであり、近赤外光の反射量はごく少ない。
【0032】
そして、浸水検出領域に少し浸水がある時には、図6に示すように、浸水検知板6の表面の一部が濡れた状態となる(図6中の符号61)。このため、濡れた部分61では近赤外光が正反射し、撮影カメラ2の近赤外光の受光量が多くなる。しかし、図3に示すように浸水検知板6の表面に対して反射し、その反射光の反射方向が撮影カメラ2をそれるため、受光量はあまり多くならない。
【0033】
そして、更に浸水量が多くなると、図7に示すように、浸水検知板6上に水面Wがくる。このため、水面Wで近赤外光が正反射し、撮影カメラ2の近赤外光の受光量が多くなる。その際、図4に示すように、傾いた浸水検知板6の表面でなく、水平な水面Wに対して近赤外光が反射するので、その反射光の反射方向が撮影カメラ2に近くなり、受光量は多くなる。
【0034】
このように、浸水程度によって、撮影カメラ3が反射光を受ける光量が変化する。従って、撮影カメラ3の撮影映像に基づいて近赤外光の受光量を検出することにより、浸水検出領域における浸水状態を検出することができる。
【0035】
ところで、図7の浸水状態から更に浸水量が多くなると、図8に示すように、深度検知板7に浸水の水面Wが上がってくる。このとき、浸水の深度が深くなるにつれて水面Wの位置が深度検知板7の上方に移動してくる(図8中の矢印参照)。従って、深度検知板7における水面Wの位置を計測することにより、浸水の深度を検出することができる。
【0036】
この浸水の深度の検出は、撮影カメラ3の撮影画像を画像処理して深度検知板7における水面Wの位置を算出して行われる。例えば、撮影画像をエッジ処理して、深度検知板7における水面Wの位置を検出し、その位置を算出する。これにより、撮影カメラ3の撮影映像に基づいて浸水の深度の検出が可能となる。
【0037】
以上のように、本実施形態に係る浸水検出装置及び浸水検出方法によれば、浸水検出領域で反射する反射光を受光してその受光出力に基づいて浸水状態を検出することにより、浸水検出領域の浸水状態を直接かつ自動的に検出することできる。また、浸水検出領域に近赤外光Lを投光することにより、可視光の照射や発光を行わず、浸水検出が可能となる。このため、可視光の照射や発光が好ましくない場所やそれらが禁じられている場所でも、浸水検出が行える。
【0038】
また、投光器2から投光される近赤外光Lの照射位置に表面を反射低減処理した浸水検知板6を設置することにより、浸水検出領域に浸水がないときの近赤外光の反射量を小さくすることができる。このため、浸水がある時と浸水がない時の近赤外光の反射量の差を大きくすることができ、浸水の検出精度を向上させることができる。
【0039】
また、浸水検出領域に深度検知板7を設置し、その深度検知板7を撮影カメラ3で撮影することにより、その撮影画像に基づいて浸水検出領域における浸水の深度を直接に自動検出することができる。
【0040】
なお、本実施形態では近赤外光Lの照射領域を覆うカバーを設けていないが、その照射領域に対し外光の入射を防止するカバーを設けることが好ましい。例えば、図9に示すように、カバー8を浸水検知板6及び深度検知板7を覆うようにして設け、太陽光などの外光の入射を防止する。これにより、浸水検出領域に入射する光を制限することができ、周囲環境の変化により浸水検出結果が影響を受けることを防止でき、浸水検出結果の信頼性を向上させることができる。
【0041】
また、本実施形態では外部情報を入力しその外部情報を浸水検出結果に反映させることをしていないが、外部情報を用いて浸水検出結果の信頼性を向上させてもよい。例えば、図10に示すように、外部情報として河川の水位データの情報を入力し、その水位データを浸水検出結果に反映させる。具体的には、河川の水位が所定の値以上であり、かつ、撮影カメラ3の撮影データに基づいて浸水ありと判断されたときには、河川増水による浸水と判断する。一方、河川の水位が所定の値以上でなく、かつ、撮影カメラ3の撮影データに基づいて浸水ありと判断されたときには、雨水による浸水と判断する。このように水位データを浸水検出結果に反映させることにより、浸水原因の特定、判断が可能となる。
【0042】
【発明の効果】
以上詳細に説明したように本発明によれば、浸水状態を自動的に正確に検出できる浸水検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る浸水検出装置の構成概要図である。
【図2】図1の浸水検出装置における浸水時の近赤外光の反射状態の説明図である。
【図3】図1の浸水検出装置における浸水時の近赤外光の反射状態の説明図である。
【図4】図1の浸水検出装置における浸水時の近赤外光の反射状態の説明図である。
【図5】図1の浸水検出装置の作動時における撮影画像の説明図である。
【図6】図1の浸水検出装置の作動時における撮影画像の説明図である。
【図7】図1の浸水検出装置の作動時における撮影画像の説明図である。
【図8】図1の浸水検出装置の作動時における撮影画像の説明図である。
【図9】本実施形態に係る浸水検出装置の変形例の説明図である。
【図10】本実施形態に係る浸水検出装置の変形例の説明図である。
【符号の説明】
1…浸水検出装置、2…投光器(投光手段)、3…監視カメラ(受光手段)、4…支柱、5…制御器(検出手段)、6…浸水検知板、7…深度検知板、L…近赤外光。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inundation detection device and an inundation detection method for detecting an inundation state of a riverbed or the like.
[0002]
[Prior art]
Conventionally, as a method of detecting the inundation state of a riverbed or the like, for example, a method of predicting the inundation state of a floodbed based on a measurement value of a water level gauge installed in the river or a method of capturing an image taken by a camera installed in the river. Methods such as monitoring and detecting inundation were employed.
[0003]
[Problems to be solved by the invention]
However, in the method of estimating the inundation state based on the measurement value of the water level gauge, the inundation state cannot be directly detected, and therefore, the inundation state cannot be accurately grasped. Further, in the method of monitoring the image of the photographing camera, the monitoring burden on the observer is large, and it is not possible to automatically detect inundation.
[0004]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a flood detection device and a flood detection method capable of automatically and accurately detecting a flood condition.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, a flood detection device according to the present invention includes a floodlight unit that projects near-infrared light to a flood detection area where flooding should be detected, and a flooded near-infrared light beam. The apparatus is provided with light receiving means for receiving the reflected light in the flood detection area, and detection means for detecting the state of flooding in the flood detection area based on the output of the light receiving means.
[0006]
According to the present invention, it is possible to directly and automatically detect the inundation state of the inundation detection area by receiving the reflected light reflected in the inundation detection area and detecting the inundation state based on the received light output. In addition, by projecting near-infrared light to the waterlogging detection area, waterlogging detection becomes possible without irradiating or emitting visible light. For this reason, even in a place where irradiation or emission of visible light is not preferable or where such irradiation is prohibited, inundation detection can be performed.
[0007]
Further, the waterlogging detection device according to the present invention includes a waterlogging detection plate which is provided at a near-infrared light irradiation position and has a surface subjected to reflection reduction processing, wherein the light receiving unit receives reflected light reflected by the waterlogging detection plate. Features.
[0008]
According to this invention, the reflection amount of the near-infrared light when there is no water in the water detection area can be reduced by performing the reflection reduction processing on the surface of the water detection plate. For this reason, the difference in the amount of reflection of near-infrared light between when there is water and when there is no water can be increased, and the detection accuracy of water can be improved.
[0009]
Further, the inundation detection device according to the present invention includes a depth detection plate that is installed at a position irradiated with near-infrared light at an angle to the horizontal, and a light receiving unit is a photographing camera that photographs the depth detection plate. The present invention is characterized in that a depth of inundation in an inundation detection area is detected based on an image captured by a camera.
[0010]
According to the present invention, the depth detection plate is installed in the inundation detection area, and the depth detection plate is photographed by the photographing camera, thereby directly and automatically detecting the inundation depth in the inundation detection area based on the photographed image. can do. In the waterlogging detection device according to the present invention, it is preferable that the surface of the depth detection plate is subjected to reflection reduction processing.
[0011]
Further, in the waterlogging detection device according to the present invention, it is preferable that the light projecting means and the light receiving means are attached to the same column member.
[0012]
Further, the immersion detecting device according to the present invention is characterized in that the immersion detecting device is provided with a cover for preventing external light from entering an irradiation area of near-infrared light projected from the light projecting means.
[0013]
ADVANTAGE OF THE INVENTION According to this invention, the external light which injects into an inundation detection area | region can be restricted, it can prevent that an inundation detection result is influenced by the change of surrounding environment, and the reliability of an inundation detection result can be improved. .
[0014]
The flood detection method according to the present invention further includes a floodlight step of projecting near-infrared light to a flood detection area where flooding is to be detected, and a reflection of the projected near-infrared light in the flood detection area. The method includes a light receiving step of receiving light with the light receiving means, and a detecting step of detecting a flooded state in the flooded detection area based on an output of the light receiving means.
[0015]
According to the present invention, it is possible to directly and automatically detect the inundation state of the inundation detection area by receiving the reflected light reflected in the inundation detection area and detecting the inundation state based on the received light output. In addition, by projecting near-infrared light to the waterlogging detection area, waterlogging detection becomes possible without irradiating or emitting visible light. For this reason, even in a place where irradiation or emission of visible light is not preferable or where such irradiation is prohibited, inundation detection can be performed.
[0016]
In this waterlogging detection method, it is preferable to install a waterlogging detection plate whose surface has been subjected to reflection reduction processing at the irradiation position of near-infrared light, and to receive light reflected by the waterlogging detection plate by a light receiving unit.
[0017]
In addition, in the method for detecting inundation according to the present invention, a depth detection plate that is inclined with respect to the horizontal is installed at the irradiation position of near-infrared light, and the depth detection plate is received and photographed by a photographing camera in a light receiving step, and the detection step And detecting the depth of inundation in the inundation detection area based on an image captured by the imaging camera.
[0018]
According to the present invention, the depth detection plate is installed in the inundation detection area, and the depth detection plate is photographed by the photographing camera, thereby directly and automatically detecting the inundation depth in the inundation detection area based on the photographed image. can do.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In each of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted. Also, the dimensional ratios in the drawings do not always match those described.
[0020]
FIG. 1 shows a schematic configuration diagram of a water intrusion detection device according to the present embodiment.
[0021]
As shown in FIG. 1, an inundation detection device 1 is a device that detects inundation, and is installed on a riverbed, a floodbed, and the like, for example. The flood detection device 1 includes a light projector 2 that emits near-infrared light. The light projector 2 is a light projecting unit that projects and irradiates near-infrared light to an inundation detection area where water is to be detected. For example, a device that emits near-infrared light using an LED as a light source is used. Further, it is preferable to use a pulse light that emits near-infrared light intermittently. In this case, power consumption can be reduced. Here, the near-infrared light means light having a wavelength of 780 to 1500 nm.
[0022]
Further, the immersion detecting device 1 includes a photographing camera 3. The imaging camera 3 functions as a light receiving unit that receives the reflected light of the near-infrared light emitted by the light projector 2 in the inundation detection area and shoots the image. For example, a CCTV (Closed Circuit Television) camera is used. As the photographing camera 3, it is preferable to use a camera having high light-receiving sensitivity in the near-infrared light wavelength region.
[0023]
It is preferable that the photographing camera 3 and the projector 2 be installed on the same support 4. For example, the photographing camera 3 and the projector 2 are attached to the upper part of the support 4. Then, the photographing direction of the photographing camera 3 and the light projecting direction of the light projector 2 are directed to the flood detection area. By installing the photographing camera 3 and the floodlight 2 on the same column 4, it is possible to prevent the installation of a plurality of columns from impairing the beauty of the river.
[0024]
The projector 2 and the photographing camera 3 are connected to a controller 5. The controller 5 controls the operation of the projector 2 and the photographing camera 3. Further, the controller 5 functions as detecting means for detecting a flooded state in the flooded detection area based on the output image of the photographing camera 3. In addition, it functions as a detection unit that detects the depth of inundation in the inundation detection area based on the output image of the photographing camera 3.
[0025]
In the inundation detection area of the inundation detection device 1, an inundation detection plate 6 and a depth detection plate 7 are provided. The immersion detection plate 6 is a plate for facilitating detection of a immersion state, and has a surface subjected to reflection reduction processing so that a difference in the amount of light reflection between an immersion portion and a non-immersion portion is obtained. For example, the surface of the immersion detecting plate 6 is processed into a coarse shape having a predetermined roughness or more. By this reflection reduction processing, even when near-infrared light of the light projector 2 is irradiated during non-water immersion, the amount of light reflection is reduced due to irregular reflection.
[0026]
It is desirable that the immersion detecting plate 6 be installed at a predetermined angle from horizontal. For example, the inclination angle θ6 of the immersion detecting plate 6 is set to be inclined at 5 to 20 degrees from the horizontal. As shown in FIG. 2, when there is no water intrusion, the near infrared light L from the projector 2 is irregularly reflected on the surface of the water intrusion detection plate 6 and the amount of reflection is small. As shown in FIG. 3, when the water is slightly flooded, the near-infrared light L is reflected on the water film or the water droplet on the water immersion detecting plate 6 and the reflection amount is slightly large. As shown in FIG. 4, when there is a lot of flooding, the flooded water surface W comes on the flooding detection plate 6, so that the reflection angle is different from that in the case of FIG.
[0027]
As shown in FIG. 1, a depth detecting plate 7 is a plate body for facilitating detection of the depth of flooding. The surface of the plate is subjected to reflection reduction processing, and a difference in light reflection amount between a flooded portion and a non-flooded portion is obtained. It has become.
[0028]
The depth detection plate 7 is installed at a predetermined angle from horizontal. For example, it is preferable that the inclination angle θ7 of the depth detection plate 7 is set to be inclined by 30 to 70 degrees from horizontal.
[0029]
Next, the operation of the flood detection device according to the present embodiment and the flood detection method according to the present embodiment will be described.
[0030]
In FIG. 1, near-infrared light is projected by the light projector 2, and the near-infrared light is applied to the inundation detection plate 6 and the depth detection plate 7 installed in the inundation detection area. The light projection of the light projector 2 is performed based on a control signal output from the controller 5, and is performed intermittently so as to be pulsed light.
[0031]
Then, the photographing camera 3 is operated to photograph the immersion detecting plate 6 and the depth detecting plate 7 to which the near-infrared light is irradiated. When there is no inundation in the inundation detection area, as shown in FIG. 5, the inundation detection plate 6 and the depth detection plate 7 are projected on the image captured by the imaging camera 3. At this time, since there is no water droplet or water surface on the surface of the immersion detecting plate 6, near-infrared light is only irregularly reflected on the surface, and the amount of reflected near-infrared light is very small.
[0032]
Then, when there is a little water in the water detection area, a part of the surface of the water detection plate 6 is wet as shown in FIG. 6 (reference numeral 61 in FIG. 6). For this reason, near-infrared light is specularly reflected at the wet portion 61, and the amount of the near-infrared light received by the photographing camera 2 increases. However, as shown in FIG. 3, the reflected light is reflected on the surface of the immersion detecting plate 6 and the reflected light is deflected in the direction of the photographing camera 2, so that the amount of received light is not so large.
[0033]
When the amount of flooding further increases, a water surface W comes on the flooding detection plate 6 as shown in FIG. For this reason, near-infrared light is specularly reflected on the water surface W, and the amount of near-infrared light received by the photographing camera 2 increases. At that time, as shown in FIG. 4, the near-infrared light is reflected not on the inclined surface of the inundation detection plate 6 but on the horizontal water surface W, so that the reflection direction of the reflected light becomes closer to the photographing camera 2. , The amount of received light increases.
[0034]
As described above, the amount of light that the photographing camera 3 receives the reflected light changes depending on the degree of flooding. Therefore, by detecting the amount of received near-infrared light based on the image captured by the imaging camera 3, the state of inundation in the inundation detection area can be detected.
[0035]
By the way, when the amount of inundation further increases from the inundation state of FIG. 7, the water surface W of the inundation rises on the depth detection plate 7 as shown in FIG. At this time, as the depth of inundation increases, the position of the water surface W moves above the depth detection plate 7 (see the arrow in FIG. 8). Therefore, by measuring the position of the water surface W on the depth detection plate 7, the depth of the inundation can be detected.
[0036]
The detection of the depth of the inundation is performed by performing image processing on an image captured by the imaging camera 3 and calculating the position of the water surface W on the depth detection plate 7. For example, the captured image is subjected to edge processing, the position of the water surface W on the depth detection plate 7 is detected, and the position is calculated. This makes it possible to detect the depth of flooding based on the image captured by the camera 3.
[0037]
As described above, according to the inundation detection device and the inundation detection method according to the present embodiment, the inundation detection area is detected by receiving the reflected light reflected by the inundation detection area and detecting the inundation state based on the received light output. Can be detected directly and automatically. Further, by projecting the near-infrared light L to the waterlogging detection area, waterlogging can be detected without irradiating or emitting visible light. For this reason, even in a place where irradiation or emission of visible light is not preferable or where such irradiation is prohibited, inundation detection can be performed.
[0038]
In addition, by installing the flood detection plate 6 whose surface has been subjected to reflection reduction processing at the irradiation position of the near infrared light L projected from the floodlight 2, the reflection amount of the near infrared light when there is no flood in the flood detection area. Can be reduced. For this reason, the difference in the amount of reflection of near-infrared light between when there is water and when there is no water can be increased, and the detection accuracy of water can be improved.
[0039]
Further, by installing the depth detection plate 7 in the inundation detection area and photographing the depth detection plate 7 with the photographing camera 3, it is possible to automatically automatically detect the inundation depth in the inundation detection area based on the photographed image. it can.
[0040]
In the present embodiment, a cover that covers the irradiation area of the near-infrared light L is not provided, but it is preferable to provide a cover that prevents external light from entering the irradiation area. For example, as shown in FIG. 9, a cover 8 is provided so as to cover the immersion detecting plate 6 and the depth detecting plate 7 to prevent external light such as sunlight from entering. This makes it possible to limit the light incident on the inundation detection area, prevent the inundation detection result from being affected by a change in the surrounding environment, and improve the reliability of the inundation detection result.
[0041]
In the present embodiment, the external information is not input and the external information is reflected in the inundation detection result. However, the reliability of the inundation detection result may be improved by using the external information. For example, as shown in FIG. 10, information on river water level data is input as external information, and the water level data is reflected in the inundation detection result. Specifically, when the water level of the river is equal to or higher than a predetermined value and it is determined that the river is flooded based on the photographing data of the photographing camera 3, it is determined that the river is flooded. On the other hand, when the water level of the river is not equal to or more than the predetermined value and it is determined that there is water intrusion based on the photographing data of the photographing camera 3, it is determined that the water is flooded by rainwater. By reflecting the water level data in the inundation detection result in this way, the cause of inundation can be specified and determined.
[0042]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a waterlogging detection device capable of automatically and accurately detecting a waterlogged state.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water intrusion detection device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a reflection state of near-infrared light at the time of flooding in the flood detection device of FIG.
FIG. 3 is an explanatory diagram of a reflection state of near-infrared light at the time of flooding in the flood detection device of FIG. 1;
FIG. 4 is an explanatory diagram of a reflection state of near-infrared light at the time of flooding in the flood detection device of FIG. 1;
FIG. 5 is an explanatory diagram of a photographed image when the water intrusion detection device of FIG. 1 is operated.
FIG. 6 is an explanatory diagram of a captured image when the water intrusion detection device of FIG. 1 operates.
FIG. 7 is an explanatory diagram of a captured image when the inundation detection device of FIG. 1 is operated.
FIG. 8 is an explanatory diagram of a photographed image when the inundation detection device of FIG. 1 is operated.
FIG. 9 is an explanatory diagram of a modified example of the water intrusion detection device according to the present embodiment.
FIG. 10 is an explanatory diagram of a modified example of the water intrusion detection device according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inundation detection apparatus, 2 ... Light projector (light emitting means), 3 ... Surveillance camera (light receiving means), 4 ... Post, 5 ... Controller (detection means), 6 ... Inundation detection board, 7 ... Depth detection board, L ... Near infrared light.

Claims (8)

浸水を検出すべき浸水検出領域に近赤外光を投光する投光手段と、
投光された近赤外光の前記浸水検出領域での反射光を受光する受光手段と、
前記受光手段の出力に基づいて前記浸水検出領域における浸水状態を検出する検出手段と、
を備えた浸水検出装置。
Light emitting means for emitting near-infrared light to an inundation detection area to detect inundation,
Light receiving means for receiving the reflected light of the projected near-infrared light in the immersion detection area,
Detecting means for detecting a flood condition in the flood detection area based on an output of the light receiving means,
Immersion detection device equipped with
前記近赤外光の照射位置に設置され表面を反射低減処理してなる浸水検知板を備え、
前記受光手段は、前記浸水検知板で反射する反射光を受光すること、
を特徴とする請求項1に記載の浸水検出装置。
A flood detection plate is provided at the irradiation position of the near-infrared light and has a surface whose reflection is reduced.
The light receiving unit receives the reflected light reflected by the immersion detection plate,
The inundation detection device according to claim 1, wherein:
前記近赤外光の照射位置に水平に対し傾けて設置される深度検知板を備え、
前記受光手段が前記深度検知板を撮影する撮影カメラであり、
前記検出手段が前記撮影カメラの撮影画像に基づいて前記浸水検出領域における浸水の深度を検出すること、
を特徴とする請求項1に記載の浸水検出装置。
A depth detection plate that is installed at an irradiation position of the near-infrared light and is inclined with respect to the horizontal,
The light receiving means is a photographing camera for photographing the depth detection plate,
The detecting means detects a depth of inundation in the inundation detection area based on an image captured by the imaging camera,
The inundation detection device according to claim 1, wherein:
前記深度検知板の表面が反射低減処理されていることを特徴とする請求項3に記載の浸水検出装置。The inundation detection device according to claim 3, wherein the surface of the depth detection plate is subjected to reflection reduction processing. 前記投光手段と前記受光手段が同一の柱部材に取り付けられていることを特徴とする請求項1〜4のいずれかに記載の浸水検出装置。The flood detector according to any one of claims 1 to 4, wherein the light projecting means and the light receiving means are mounted on the same column member. 前記投光手段から投光される近赤外光の照射領域に対し外光の入射を防止するカバーを備えたことを特徴とする請求項1〜5のいずれかに記載の浸水検出装置。The inundation detection device according to any one of claims 1 to 5, further comprising a cover for preventing external light from being incident on an irradiation area of near-infrared light emitted from the light emitting means. 浸水を検出すべき浸水検出領域に近赤外光を投光する投光する投光工程と、
投光された近赤外光の前記浸水検出領域での反射光を受光手段で受光する受光工程と、
前記受光手段の出力に基づいて前記浸水検出領域における浸水状態を検出する検出工程と、
を備えた浸水検出方法。
A floodlight step of projecting near-infrared light to a flood detection area where flooding should be detected,
A light receiving step of receiving reflected light of the projected near-infrared light in the water intrusion detection region by light receiving means,
A detection step of detecting a waterlogging state in the waterlogging detection area based on an output of the light receiving unit;
Infiltration detection method provided with.
前記近赤外光の照射位置に水平に対し傾けた深度検知板を設置し、
前記受光工程にて、前記深度検知板を撮影カメラで撮影し、
前記検出工程にて、前記撮影カメラの撮影画像に基づいて前記浸水検出領域における浸水の深度を検出すること、
を特徴とする請求項7に記載の浸水検出方法。
Install a depth detection plate inclined to the horizontal at the irradiation position of the near infrared light,
In the light receiving step, the depth detection plate is photographed with a photographing camera,
In the detecting step, detecting a depth of inundation in the inundation detection area based on a captured image of the imaging camera,
The method of detecting inundation according to claim 7, wherein:
JP2003003509A 2003-01-09 2003-01-09 Inundation detector and inundation detection method Pending JP2004219107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003509A JP2004219107A (en) 2003-01-09 2003-01-09 Inundation detector and inundation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003509A JP2004219107A (en) 2003-01-09 2003-01-09 Inundation detector and inundation detection method

Publications (1)

Publication Number Publication Date
JP2004219107A true JP2004219107A (en) 2004-08-05

Family

ID=32894754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003509A Pending JP2004219107A (en) 2003-01-09 2003-01-09 Inundation detector and inundation detection method

Country Status (1)

Country Link
JP (1) JP2004219107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404117A (en) * 2016-09-05 2017-02-15 深圳市中科智诚科技有限公司 Intelligent flood control monitoring device for flood control engineering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404117A (en) * 2016-09-05 2017-02-15 深圳市中科智诚科技有限公司 Intelligent flood control monitoring device for flood control engineering
CN106404117B (en) * 2016-09-05 2019-06-18 国家电网有限公司 A kind of intelligence flood control monitoring device for flood control works

Similar Documents

Publication Publication Date Title
KR101705220B1 (en) Particle Detection
CN205809294U (en) Distance sensing device
JPS5931933A (en) Photographic exposure controller
CN111694064A (en) Processing system
JPS5598842A (en) Position detection system
JP2008206740A (en) Radiation imaging system, radiation imaging method and program
KR101955213B1 (en) Water Level Measurement Device using Ultrasonic sensor and Optic Camera
KR20050030067A (en) Displacement measuring system
JP2004219107A (en) Inundation detector and inundation detection method
JP2014066602A (en) Image processing apparatus, ambient environment estimation method, and ambient environment estimation program
JP2006323652A (en) Crime prevention sensor
US4707094A (en) Apparatus and method of submarine optical recording
JPH1188870A (en) Monitoring system
US5737645A (en) Distance measuring apparatus and method of measuring distance
KR101575895B1 (en) Apparatus and method for inspecting wafer using light
JP3067285B2 (en) Fire detection device using image processing
JP5332767B2 (en) Origin detection method, origin detection apparatus, and surveillance camera apparatus
JP7236193B2 (en) Anomaly detection device, anomaly detection method, program
JP3137559B2 (en) Distance measuring device
JP3823547B2 (en) Flash emission confirmation device and camera
JP2007166142A (en) Imaging apparatus
JPS59129838A (en) Automatic focus photographing device
JP2007101394A (en) Method and apparatus for simply determining azimuth of crystal plane
JP2002156577A (en) Range-finder
RU171726U1 (en) DIGITAL HOLOGRAPHIC DISDROMETER