JP2004219083A - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
JP2004219083A
JP2004219083A JP2003003153A JP2003003153A JP2004219083A JP 2004219083 A JP2004219083 A JP 2004219083A JP 2003003153 A JP2003003153 A JP 2003003153A JP 2003003153 A JP2003003153 A JP 2003003153A JP 2004219083 A JP2004219083 A JP 2004219083A
Authority
JP
Japan
Prior art keywords
magnetic pole
side magnetic
vibration generator
copper
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003153A
Other languages
Japanese (ja)
Inventor
Taigo Senkoshi
太吾 千光士
Kazuyuki Suzuki
一幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Corp
Original Assignee
Akashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Corp filed Critical Akashi Corp
Priority to JP2003003153A priority Critical patent/JP2004219083A/en
Publication of JP2004219083A publication Critical patent/JP2004219083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material with high electric conductivity to a gap in a high adhesiveness state. <P>SOLUTION: The vibration generator 10 is provided with an inner side magnetic pole 1 magnetized in a space formed with a direct current magnetic field, and an outer side magnetic pole 2 provided in an outer side of the inner side magnetic pole 1 and magnetized in a magnetic pole different from the inner side magnetic pole 1. Substantially whole areas of surfaces of the inner side magnetic pole 1 and the outer side magnetic pole 2 are plated by a conductor material C having higher electric conductivity than electric conductivity of a material forming the inner side magnetic pole 1 and the outer side magnetic pole 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、振動発生機に関する。
【0002】
【従来の技術】
従来、図2に示すように、試験体Sの振動試験を行う振動発生機100は、鉄等からなる外側磁極101、内側磁極102を備え、外側磁極101と内側磁極102との間に形成されるギャップGに直流磁界が形成され、このギャップGに試験体Sを載せる振動台103の下端部に設けられた可動コイル104が配置されている。そして、電源105から可動コイル104に交流電流を供給することにより、可動コイル104に力が発生し、これによって振動台103上の試験体Sを振動させて振動試験を行っている。このとき、ギャップGを形成する外側磁極101及び内側磁極102の壁面には、磁極よりも電気伝導度の高い銅リング106等が溶接されており、可動コイル104の回路内のインピーダンスを低下させて電源105の負荷を低減する工夫が一般的になされている(例えば、特許文献1)。
【0003】
【特許文献1】
特開平11−142283号公報
【0004】
【発明が解決しようとする課題】
ところで、ギャップGを形成する外側磁極101及び内側磁極102の壁面に溶接される銅リング106は、変動磁界中にあるため、力が生じて振動しようとする。そのため、銅リング106の外側磁極101及び内側磁極102への密着性が要求されるが、銅リング106を溶接するときには、ろう材を用いるため、銅リング106と磁極との間に空隙が形成されるおそれがあり、高い密着性を得ることは困難であった。
また、振動中に発生する熱によりろう材が軟化することにより密着性が更に劣化するおそれもあった。
【0005】
そこで、本発明の課題は、ギャップに電気伝導度の高い材料を高い密着性で設けることができる振動発生機を提供することにある。
【0006】
【課題を解決するための手段】
以上の課題を解決するため、請求項1に記載の発明は、例えば、図1に示すように、直流磁界が形成された空間内で磁化される内側磁極(1)と、内側磁極(1)の外側に設けられ、内側磁極(1)と異なる磁極に磁化される外側磁極(2)と、を備えた振動発生機(10)において、内側磁極(1)及び外側磁極(2)の表面の略全域を、内側磁極(1)及び外側磁極(2)を形成する材料の電気伝導度よりも高い電気伝導度を有する導体物質(C)でメッキ処理を施したことを特徴とする
【0007】
請求項1に記載の発明によれば、内側磁極及び外側磁極に導体物質でメッキ処理を施したので、磁極と導体物質との間に空隙が形成されることがなく、導体を高い密着性で磁極に設けることができる。また、磁極の表面全域に導体を設けたので、放熱性を高めることができる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態における振動発生機について詳細に説明する。
図1に示すように、振動発生機10は、一方の磁極に磁化される内側磁極1、他方の磁極に磁化される外側磁極2、磁界を形成する励磁コイル3、励磁コイル3が形成する磁界中に配置された可動コイル4、可動コイル4に取り付けられるとともに試験体Sを取り付ける振動台5、振動台5を、空気バネ7を介して支持する振動台支持部6等を備えている。
【0009】
内側磁極1は、振動台支持部6及び空気バネ7を介して振動台5を支持するものであり、励磁コイル3によって外側磁極2と異なる磁極に磁化される磁性体である。また、内側磁極1の表面全域にわたって、導体物質としての銅がメッキされ、銅メッキ部Cが形成されている。
外側磁極2は、内側磁極1の外側に設けられ、励磁コイル3によって磁化される磁性体である。また、外側磁極2の表面全域にわたって、導体物質としての銅がメッキされ、銅メッキ部Cが形成されている。
なお、銅メッキ処理は、例えば、溶融した銅中に内側磁極1及び外側磁極2を浸漬させることに行っても良いし、或いは化学蒸着や物理蒸着などでもよい。
【0010】
励磁コイル3は、外側磁極2の内側に外周を囲まれるように格納され、外側磁極2の壁面に円周に沿って形成された突部2aを挟んで上下方向に2層に設けられている。この励磁コイル3は、直流電源8に接続され、直流電流を流すことにより、磁性体である外側磁極2の突部2aと内側磁極1との間のギャップGには、可動コイル4を横切る直流磁界が形成される。
【0011】
可動コイル4は、交流電流を供給可能な電源9と接続され、この電源9から交流電流が供給されると、可動コイル4には、上方向或いは下方向に作用する力が発生して振動台5が基準位置に戻されるとともに、可動コイル4は、ギャップGに形成された直流磁界中を交流電流の周波数に基づく振動数で振動する。これにより、振動台5に取り付けられた試験体Sを振動させることができる。
【0012】
この可動コイル4は、内側磁極1の上面に取り付けられた空気ばね7によって支持される振動台5の下端部に固定されており、可動コイル4が振動することによって振動台5が振動する。更に、振動台5には試験体Sが取り付けられており、振動台5の振動に伴って試験体Sが振動し、この時の振動特性を図示しない加速度計などにより測定できるようになっている。
【0013】
本実施の形態の振動発生機10によれば、内側磁極1及び外側磁極2に銅メッキ部Cを形成したので、従来のように銅リングを各磁極1,2にろう材を用いて溶接した場合と異なり、各磁極1,2と銅との間の密着性が高まることとなって、可動コイル4が直流磁界中で振動したとしても、銅メッキ部Cが変動磁界による影響を受けて振動してしまうことがない。
また、銅メッキ部Cは各磁極1,2の表面全域にわたって形成されているので、ギャップG付近で発生した熱は、銅メッキ部Cを伝って外側磁極2の外部で放熱される。よって、振動発生機10の放熱性を高めることができる。
また、各磁極1,2の表面全域に銅メッキ部Cを形成したので、各磁極1,2の錆を防止するほか、振動発生機10の美観を向上させることができる。
また、銅は銀に次いで電気伝導度が高く、銀に比べて安価であるため、製造コストを低く抑えることができる。よって、回路のインピーダンスを低下させる導体としての性能と製造コストとのバランスに優れた導体物質として好適であり、利用価値が高い。
【0014】
なお、本発明は、上記実施の形態に限定されるものではない。例えば、各磁極1,2の表面に銅メッキを施したが、電気伝導度が各磁極1,2より高いものであり、各磁極1,2へのメッキが可能なものであれば、その材料は問わない。例えば、銀メッキは、銅メッキよりも高い電気伝導度を有するので、メッキをする表面積が小さい場合には大いに利用可能である。その他、発明の要旨を逸脱しない範囲内で変更可能である。
【0015】
【発明の効果】
請求項1に記載の発明によれば、内側磁極及び外側磁極に導体物質でメッキ処理を施したので、磁極と導体物質との間に空隙が形成されることがなく、導体を高い密着性で磁極に設けることができる。また、磁極の表面全域に導体を設けたので、放熱性を高めることができる。
【図面の簡単な説明】
【図1】本実施の形態における振動発生機の断面図である。
【図2】従来技術における振動発生機の断面図である。
【符号の説明】
1 内側磁極
2 外側磁極
10 振動発生機
C 銅メッキ部(導体物質)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration generator.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as shown in FIG. 2, a vibration generator 100 for performing a vibration test on a specimen S has an outer magnetic pole 101 and an inner magnetic pole 102 made of iron or the like, and is formed between the outer magnetic pole 101 and the inner magnetic pole 102. A DC magnetic field is formed in the gap G, and a movable coil 104 provided at the lower end of the vibration table 103 on which the test sample S is placed is disposed in the gap G. When an alternating current is supplied from the power supply 105 to the movable coil 104, a force is generated in the movable coil 104, whereby the test object S on the vibration table 103 is vibrated to perform a vibration test. At this time, a copper ring 106 having higher electric conductivity than the magnetic poles is welded to the wall surfaces of the outer magnetic pole 101 and the inner magnetic pole 102 forming the gap G, thereby lowering the impedance of the movable coil 104 in the circuit. A device for reducing the load on the power supply 105 is generally used (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-11-142283
[Problems to be solved by the invention]
By the way, the copper ring 106 welded to the wall surfaces of the outer magnetic pole 101 and the inner magnetic pole 102 forming the gap G is in a fluctuating magnetic field, and thus tends to vibrate due to the generation of force. Therefore, adhesion of the copper ring 106 to the outer magnetic pole 101 and the inner magnetic pole 102 is required. However, when the copper ring 106 is welded, since a brazing material is used, a gap is formed between the copper ring 106 and the magnetic pole. And it was difficult to obtain high adhesion.
In addition, there is a possibility that the adhesion is further deteriorated due to the softening of the brazing material due to the heat generated during the vibration.
[0005]
Therefore, an object of the present invention is to provide a vibration generator capable of providing a material having high electrical conductivity in a gap with high adhesion.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 includes, for example, as shown in FIG. 1, an inner magnetic pole (1) magnetized in a space where a DC magnetic field is formed, and an inner magnetic pole (1). And an outer magnetic pole (2) magnetized to a different magnetic pole from the inner magnetic pole (1), the vibration generator (10) having the surface of the inner magnetic pole (1) and the outer magnetic pole (2). A substantially entire region is plated with a conductive material (C) having a higher electrical conductivity than the material forming the inner magnetic pole (1) and the outer magnetic pole (2).
According to the first aspect of the present invention, since the inner magnetic pole and the outer magnetic pole are plated with the conductive material, no gap is formed between the magnetic pole and the conductive material, and the conductor is formed with high adhesion. It can be provided on the magnetic pole. In addition, since the conductor is provided on the entire surface of the magnetic pole, heat dissipation can be improved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a vibration generator according to an embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, a vibration generator 10 includes an inner magnetic pole 1 magnetized by one magnetic pole, an outer magnetic pole 2 magnetized by the other magnetic pole, an exciting coil 3 forming a magnetic field, and a magnetic field formed by the exciting coil 3. A movable coil 4 disposed therein, a vibrating table 5 attached to the moving coil 4 and mounting a test object S, a vibrating table support 6 for supporting the vibrating table 5 via an air spring 7 and the like are provided.
[0009]
The inner magnetic pole 1 supports the shaking table 5 via the shaking table support 6 and the air spring 7, and is a magnetic material magnetized by the excitation coil 3 to a magnetic pole different from the outer magnetic pole 2. Further, copper as a conductive material is plated over the entire surface of the inner magnetic pole 1 to form a copper plated portion C.
The outer magnetic pole 2 is a magnetic body provided outside the inner magnetic pole 1 and magnetized by the exciting coil 3. Further, copper as a conductive material is plated over the entire surface of the outer magnetic pole 2 to form a copper plated portion C.
The copper plating may be performed, for example, by dipping the inner magnetic pole 1 and the outer magnetic pole 2 in molten copper, or may be performed by chemical vapor deposition or physical vapor deposition.
[0010]
The excitation coil 3 is housed inside the outer magnetic pole 2 so as to surround the outer periphery, and is provided in two layers in the vertical direction with a protrusion 2 a formed along the circumference on the wall surface of the outer magnetic pole 2. . The exciting coil 3 is connected to a DC power supply 8 and, when a DC current is passed, a DC current crossing the movable coil 4 is provided in a gap G between the protrusion 2a of the outer magnetic pole 2 and the inner magnetic pole 1 which is a magnetic material. A magnetic field is formed.
[0011]
The movable coil 4 is connected to a power supply 9 capable of supplying an alternating current. When the alternating current is supplied from the power supply 9, a force acting on the movable coil 4 in an upward or downward direction is generated, and 5 is returned to the reference position, and the movable coil 4 vibrates in the DC magnetic field formed in the gap G at a frequency based on the frequency of the AC current. Thereby, the test body S attached to the shaking table 5 can be vibrated.
[0012]
The movable coil 4 is fixed to a lower end of a vibrating table 5 supported by an air spring 7 attached to the upper surface of the inner magnetic pole 1, and the vibrating table 5 vibrates when the movable coil 4 vibrates. Further, a test piece S is attached to the shaking table 5, and the test piece S vibrates with the vibration of the shaking table 5, and the vibration characteristics at this time can be measured by an accelerometer or the like (not shown). .
[0013]
According to the vibration generator 10 of the present embodiment, since the copper plating portion C is formed on the inner magnetic pole 1 and the outer magnetic pole 2, a copper ring is welded to each of the magnetic poles 1 and 2 using a brazing material as in the related art. Unlike the case, the adhesion between each of the magnetic poles 1 and 2 and copper increases, and even if the movable coil 4 vibrates in the DC magnetic field, the copper plating portion C is affected by the fluctuating magnetic field and vibrates. I will not do it.
Further, since the copper plated portion C is formed over the entire surface of each of the magnetic poles 1 and 2, heat generated near the gap G is radiated outside the outer magnetic pole 2 through the copper plated portion C. Therefore, the heat radiation of the vibration generator 10 can be improved.
Further, since the copper plating portion C is formed on the entire surface of each of the magnetic poles 1 and 2, rust of the magnetic poles 1 and 2 can be prevented, and the appearance of the vibration generator 10 can be improved.
Further, copper has the second highest electrical conductivity next to silver and is inexpensive compared to silver, so that the manufacturing cost can be reduced. Therefore, it is suitable as a conductor material having an excellent balance between performance as a conductor for lowering the impedance of a circuit and manufacturing cost, and has high utility value.
[0014]
Note that the present invention is not limited to the above embodiment. For example, the surface of each of the magnetic poles 1 and 2 is plated with copper. If the electric conductivity is higher than that of each of the magnetic poles 1 and 2 and the plating on each of the magnetic poles 1 and 2 is possible, the material is used. Does not matter. For example, silver plating has a higher electrical conductivity than copper plating, and is therefore very useful when the surface area to be plated is small. In addition, changes can be made without departing from the spirit of the invention.
[0015]
【The invention's effect】
According to the first aspect of the present invention, since the inner magnetic pole and the outer magnetic pole are plated with the conductive material, no gap is formed between the magnetic pole and the conductive material, and the conductor is formed with high adhesion. It can be provided on the magnetic pole. In addition, since the conductor is provided over the entire surface of the magnetic pole, heat radiation can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vibration generator according to the present embodiment.
FIG. 2 is a sectional view of a conventional vibration generator.
[Explanation of symbols]
1 Inner magnetic pole 2 Outer magnetic pole 10 Vibration generator C Copper plated part (conductor material)

Claims (1)

直流磁界が形成された空間内で磁化される内側磁極と、
前記内側磁極の外側に設けられ、前記内側磁極と異なる磁極に磁化される外側磁極と、を備えた振動発生機において、
前記内側磁極及び前記外側磁極の表面の略全域を、前記内側磁極及び前記外側磁極を形成する材料の電気伝導度よりも高い電気伝導度を有する導体物質でメッキ処理を施したことを特徴とする振動発生機。
An inner magnetic pole magnetized in the space where the DC magnetic field is formed,
An outer magnetic pole provided outside the inner magnetic pole and magnetized to a magnetic pole different from the inner magnetic pole,
Substantially the entire surface of the inner magnetic pole and the outer magnetic pole is plated with a conductive material having an electric conductivity higher than that of a material forming the inner magnetic pole and the outer magnetic pole. Vibration generator.
JP2003003153A 2003-01-09 2003-01-09 Vibration generator Pending JP2004219083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003153A JP2004219083A (en) 2003-01-09 2003-01-09 Vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003153A JP2004219083A (en) 2003-01-09 2003-01-09 Vibration generator

Publications (1)

Publication Number Publication Date
JP2004219083A true JP2004219083A (en) 2004-08-05

Family

ID=32894501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003153A Pending JP2004219083A (en) 2003-01-09 2003-01-09 Vibration generator

Country Status (1)

Country Link
JP (1) JP2004219083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026584A1 (en) 2004-07-27 2009-02-18 Fujitsu Microelectronics Limited Motion estimation and compensation device with motion vector correction based on vertical component values
JP2014074612A (en) * 2012-10-03 2014-04-24 Emitsuku Kk Vibration generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026584A1 (en) 2004-07-27 2009-02-18 Fujitsu Microelectronics Limited Motion estimation and compensation device with motion vector correction based on vertical component values
JP2014074612A (en) * 2012-10-03 2014-04-24 Emitsuku Kk Vibration generator

Similar Documents

Publication Publication Date Title
US8624449B2 (en) Linear vibration motor
US7038335B2 (en) Vertical vibrator
RU2367114C2 (en) Magnetic circuit with double magnet, loud-speaker and device for generating oscillations using such magnetic circuit
KR100568315B1 (en) Device for Generating Multi-Mode Vibration for Communication Terminal
US9025796B2 (en) Vibration generator
JP2003154315A (en) Vibratory linear actuator
CN106878886B (en) Moving-magnetic type loudspeaker
US20130342034A1 (en) Linear vibrator
KR20130015721A (en) Linear vibration device
CN1714946A (en) Pattern coil type vertical vibrator
CN106169855B (en) Extensional vibration motor
KR101388816B1 (en) Linear vibrator
WO2021088937A1 (en) Sound generation device
US20170272865A1 (en) Voice coil wire, voice coil manufactured by winding the same, loudspeaker and vibration motor
JP2007020269A (en) Power generator
CN207021883U (en) Vibrating motor
JP2004219083A (en) Vibration generator
CN206023536U (en) Extensional vibration motor
CN111629308A (en) Loudspeaker and earphone
CN202218144U (en) Linear vibration motor
TW201218581A (en) Electromagnetic vibration-based generator
CN211352009U (en) Vibration exciter and electronic equipment
JP3979083B2 (en) Induction heating cooker
CN208971794U (en) Bone conduction vibrator and earphone
CN220798538U (en) Vortex induction type loudspeaker