JP2004218065A - Slag, its preparation method, and fertilizer and soil conditioner both using slag - Google Patents

Slag, its preparation method, and fertilizer and soil conditioner both using slag Download PDF

Info

Publication number
JP2004218065A
JP2004218065A JP2003179367A JP2003179367A JP2004218065A JP 2004218065 A JP2004218065 A JP 2004218065A JP 2003179367 A JP2003179367 A JP 2003179367A JP 2003179367 A JP2003179367 A JP 2003179367A JP 2004218065 A JP2004218065 A JP 2004218065A
Authority
JP
Japan
Prior art keywords
slag
sio
cao
fertilizer
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003179367A
Other languages
Japanese (ja)
Other versions
JP4040542B2 (en
Inventor
Ryuji Nakao
隆二 中尾
Tsunehisa Furukawa
恒久 古川
Masashi Nosaka
雅司 野坂
Tadanori Matsunami
忠則 松並
Masao Igarashi
昌夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003179367A priority Critical patent/JP4040542B2/en
Publication of JP2004218065A publication Critical patent/JP2004218065A/en
Application granted granted Critical
Publication of JP4040542B2 publication Critical patent/JP4040542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil conditioner and a fertilizer both rich in silicic acid suitable for crops, especially for rice cropping, on which silicic acid in soil usefully works. <P>SOLUTION: Both the soil conditioner and the fertilizer contain slag of which the main ingredient comprises 40-60 mass% CaO, 25-40 mass% SiO<SB>2</SB>, and 5-15 mass% MgO, the ratio of CaO/SiO<SB>2</SB>being 1.4-2.0. The slag is produced in a refining process of stainless steel, followed by cooling and powdering. Since silicic acid dissolves in a large amount from the slag into soil, the slag suitably acts as a fertilizer. The action of the slag is made more useful by mixing coal ash in an amount of 2-15 mass% based on the slag into the slag in a molten state at 1,350°C or higher. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、土壌中にケイ酸分を必要とする稲作等に有用な土壌改良材並びに肥料(以下、資材ということもある)として用いることのできるスラグに関する。
【0002】
【従来の技術】
稲作に有用なケイ酸質肥料として、従来からケイカルおよびケイ酸カリ肥料が用いられている。ケイカルはスラグを原料として製造され、SiO、CaO、MgO、Alを主成分とし、主としてアルカリ分とケイ酸を補給するための土壌改質剤である。しかし、ケイカルは塩酸可溶性ケイ酸分が30質量%を超えるものの、実際の土壌のpHに近い5〜7程度の領域では溶出量が極端に減少し、ケイ酸分の供給源としては非常に効率の悪い資材と考えられる。
【0003】
従って、実際に使用する場合には、田んぼ10a当たり200kgと大量に施肥しなくてはならず、それに要する労力が農家の大きな負担になっている。
【0004】
ケイカルの欠点であるケイ酸溶出性を改善するために種々の試みがなされている。その中でケイ酸カリ肥料のケイ酸溶出性が比較的高いことに着目してカリウム成分を加える方法に基づいた、例えばケイ燐酸カリを主成分とする新規肥料組成物(特許文献1)や緩効性溶成ケイ酸カリ苦土肥料の製造方法(特許文献2)が開示されている。
【0005】
カリウム成分は、一般に組成物をガラス化し易くし、ケイ酸溶出性を改善する。しかし、その反面、カリ原料が高価であるため得られた製品も高価になり、また、十分に高いケイ酸溶出性を確保するにはカリ含有量を高くしなければならず不経済である。また、カリウムが強アルカリであるため製造設備の炉材を浸食し、さらには、カリウムを加えると溶融物の粘度が上昇するため操業し難く、粘度を下げようとして温度を上げるとカリが揮散する等の欠点を有している。
【0006】
ケイカルは肥料の三要素のいずれをも含まない資材であるために、他の肥料と混合して使用するのが一般的であり、例えば、ようりん40kgをケイカル200kgと混合して散布する方法が広く用いられている処方である。ようりんは中性に近いpH域でケイ酸分溶出性が高いことが知られており、燐酸質肥料であると同時にケイ酸質の供給源となっていることが確認されている。
【0007】
一方、ケイ酸カリ肥料のケイ酸溶出性は、ケイカルに比べると高いことが確認されているが、ようりんと比べるとpH5〜7では劣っており十分とは言えない。ケイ酸カリ肥料も、ケイカルの場合と同様に、ようりんと混合して施肥されることが多く、ここでもようりんがケイ酸質の供給源としての役割を果たしている。
【0008】
ようりんに含まれるケイ酸分は溶出性が高く、また、植物吸収性が高いことが知られている。市販されているようりんに含まれるSiOは20〜25質量%程度であるが、ケイ酸含有量を増やすとその溶出率が低下することが知られている。すなわち、溶成燐肥の一般的な原料配合にケイ石を加えて加熱溶融・急冷して、2%クエン酸水溶液へのケイ酸溶出性を測定した試験例(非特許文献1)によれば、2%クエン酸溶液(pHの初期値が2)へのケイ酸溶出量は30質量%程度で頭打ちになると記載されている。
【0009】
これらの課題を解決する肥料として、特許文献3に肥料と土壌改良剤が提案されている。この肥料などは主成分がMgO、SiO、CaOからなり、MgOを1〜20mass%、SiOを30〜50mass%含有し、かつ非晶質であることを特徴している。しかし、該肥料は土壌中における中性域でのケイ酸溶出性を高めるために非晶質としている。その結果、原料を所望組成に配合し、加熱溶融して得られる溶融物を急冷処理する特別な処理が必要であり、経済的に有用な肥料とはなっていない。
【0010】
【特許文献1】
特公平1−24759号公報
【特許文献2】
特公平2−23514号公報
【特許文献3】
特開2000−34481号公報
【非特許文献1】
工業化学雑誌第60巻1109頁1957年
【0011】
【発明が解決しようとする課題】
本発明は、土壌のpH5〜7付近でのケイ酸溶出性が高く、そのため少量の施肥で有効であり、特に土壌中にケイ酸分を必要とする稲作等に用いられるケイ酸質肥料並びに土壌改良剤を提供することを目的とする。さらに、鉄鋼製錬の工程で発生するスラグをそのまま活用すること、或いはスラグの溶融状態で簡易な処理を行うだけで、特殊な処理を必要としないので安価に製造できるケイ酸質肥料並びに土壌改良剤を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0であることを特徴とするスラグである。
【0013】
また、本発明は、主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0であるスラグに、石炭灰が混合されていることを特徴とするスラグである。
【0014】
本発明は前記スラグがステンレス鋼の精錬工程で発生するスラグであることを特徴とし、さらに前記スラグが冷却後、粉末状であることを特徴とする。
【0015】
また、本発明は前記スラグを含有することを特徴とする肥料、または土壌改質剤である。
【0016】
本発明は 主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0である溶融スラグに、石炭灰を該スラグに対し、2〜15mass%混合することを特徴とするスラグの製造方法である。
【0017】
また、本発明は、スラグの温度が1350℃以上で石炭灰を混合することを特徴とし、さらに 混合する石炭灰はSiOを60mass%以上含むことを特徴とするスラグの製造方法である。
【0018】
【発明の実施の形態】
本発明者らは、pH=5以上の高いpH域で高い溶出性を持つSiOを含む組成を探求した結果、非晶質ではなく、結晶質であるスラグを構成する鉱物相の中にケイ酸溶出性が高い鉱物相が存在し、特にダイカルシウムシリケート(2CaO・SiO)が高いケイ酸溶出性を示すことを見出すことにより本発明をなしたものである。
【0019】
また、本発明者らは、元来は不溶出性のケイ酸のみを含有する石炭灰を溶融状態のスラグに混合すれば、冷却後のスラグがダイカルシウムシリケートを含むスラグであれば、石炭灰中のケイ酸が溶出性に変質することを見出すことにより本発明をなしたものである。
【0020】
本発明は、主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0であることを特徴とするスラグである。本発明において、スラグの主成分は、CaO、SiO、MgO、Alから構成され、その合計量は90mass%以上、好ましくは95mass%以上あれば良い。一般に、スラグには主成分以外に、Mn、Fe、Cr、Ti等の金属酸化物、およびCaF、S等が含まれている。
【0021】
なお、CaOとCaF中のCa分は分離して分析することが難しいために、CaO/SiO質量比(一般的に、塩基度と言う)中のCaOはCaF中のCaもCaOに換算されて求められた値となっている。
【0022】
通常、製錬工程で発生するスラグは溶銑、溶鋼から分離された後、専用容器で徐冷されるために、結晶質の鉱物相が生成する。生成する鉱物相は溶融状態のスラグ組成に依存し、主成分がCaO、SiO、MgO、Alからなるスラグの場合には、メルビナイト(3CaO・MgO・2SiO)、ブレディガイト(7CaO・MgO・4SiO)、カルシウムシリケート(CaO・SiO)、ダイカルシウムシリケート、カルシウムアルミネート(CaO・Al)等の鉱物相が生成する。
【0023】
これらの鉱物相の中で、pH=5〜7と高いpH域で高いケイ酸溶出性を持つ鉱物相はダイカルシウムシリケートのみであり、従来のケイカル肥料に用いられたスラグは主にカルシムシリケートおよびメルビナイトにより構成されているために、ケイ酸溶出性が低いことが確認された。
【0024】
次に、本発明者らはダイカルシウムシリケートを生成するスラグ組成条件について検討した。ダイカルシウムシリケートを生成する重要な因子はCaO/SiO質量比であり、該質量比が1.0〜1.2の範囲ではカルシウムシリケートを生成するが、1.2を越えると次第にダイカルシウムシリケートを生成し始め、質量比の増大に伴い、ダイカルシウムシリケート量が増大し、含まれるSiO分のpH=5〜7でのケイ酸溶出量の割合が増大する。しかし、質量比が大きくなり過ぎると、SiOの含有量自体が低下してくるために、ケイ酸溶出量自体が低下する。
【0025】
肥料に好適なダイカルシウムシリケート量を確保する条件として、CaO/SiO質量比で1.4〜2.0の範囲にする必要があり、かつCaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含むスラグとする必要があることが見出された。この中で、CaOとSiOはダイカルシウムシリケート量の確保に重要であり、MgOはダイカルシウムシリケートの生成を助長するともに、肥料成分としても有効であることから、5〜15mass%が必要である。Alは少ないほど良いが、スラグには不可避的に含有されるために、0〜5mass%とした。
【0026】
図1にCaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含んだ製錬工程で発生したスラグのCaO/SiO質量比とpH=5〜7でのケイ酸溶出濃度の関係を示す。なお、ケイ酸溶出濃度は溶出前の蒸留水をpH=1〜4の範囲に調整し、溶出操作を行った後に、水溶液のpHが5〜7になった場合のみに水溶液中に含まれるケイ酸を分析した値である。図1より、CaO/SiO質量比が本発明の条件範囲である 1.4〜2.0の範囲でケイ酸溶出濃度が10mass%以上の高位に安定することが確認された。
【0027】
石炭灰は石炭の燃え殻で微粉末状であり、主にSiOとAlを含有するが、石炭灰中のSiOは不溶性であり、そのままでは肥料としては使えない。この石炭灰を室温域でスラグに混合しても、SiOの変質は起こらず、ケイ酸溶出量が増加するようなことはない。本発明者らは、溶融状態のスラグに少量の石炭灰を混合した場合には石炭灰中のSiOの結合状態が崩れ、結合の一部をスラグ中のCaOが代替する結合状態となることを確認した。この変質した石炭灰のSiOは可溶性となり、ケイ酸溶出量が増大することが確認された。
【0028】
なお、一般的に石炭灰中にはSiOが60mass%以上含まれるが、石炭の燃焼が不十分な場合に発生したものや不純物を多量に含んだもの等のSiOが60mass%未満となる石炭灰ではケイ酸溶出量の増加代は小さいことから、スラグに混合する石炭灰はSiOを60mass%以上含む必要がある。また、溶融状態のスラグと石炭灰を混合する操作は溶鋼からスラグを分離する際の容器に予め所定量の石炭灰を入れておくか、スラグを分離した後に、上方より石炭灰を添加するだけの簡単な操作で良いことが確認された。
【0029】
図2にCaOを52mass%、SiOを31mass%、MgOを11mass%、Alを3mass%含んだ製錬工程で発生したスラグの溶融状態で石炭灰を混合した場合の石炭灰のスラグに対する混合割合とpH=5〜7でのケイ酸溶出量の石炭灰無混合(0%)に対する増加濃度の関係を示す。なお、ケイ酸溶出濃度は溶出前の蒸留水をpH=1〜3の範囲に調整し、溶出操作を行った後に、水溶液のpHが5〜7になった場合のみに水溶液中に含まれるケイ酸を分析した値である。
【0030】
図2より、石炭灰の混合割合の増加に伴い、ケイ酸溶出濃度も増加するが、15%を越えると増加することなく、次第に低下する。これは、石炭灰の混合量が増加し過ぎると、石炭灰に加えられる熱量が低下して、石炭灰中のSiOが変質しにくくなるためである。また、2%未満の石炭灰の混合割合ではケイ酸溶出濃度の増加濃度は1%以下と低いことが確認された。これより、石炭灰の混合割合は2〜15%が望ましいことが確認された。
【0031】
本発明のスラグ組成はステンレス鋼の精錬工程で発生するスラグ組成に近似する。通常、ステンレス鋼は電気炉にて溶解した粗溶鋼をAOD炉、上底吹き転炉、VOD炉にて脱炭精錬後、還元精錬を行い、目標の成分範囲となるように精錬されて、その後連続鋳造により粗鋼が得られる。
【0032】
ステンレスの精錬工程では脱炭精錬中に酸化したクロムを還元するために、一般にフェロシリコン(Fe−Si)を添加して還元を行うために、SiOが多量に生成する。また、還元中の脱酸・脱硫を効率的に行う目的で多量のCaOを添加する。さらに、炉体耐火物の保護のために、適度のMgOの添加を行うと共に、耐火物の溶損によりMgOがスラグ中に溶け込む。Alは原料に含まれるAlの酸化および耐火物の溶損によりスラグ中に不可避的に含有される。
【0033】
ステンレス鋼の精錬工程で発生したスラグの中で、本発明の条件範囲に入るスラグのみを分別回収すれば、特許文献3に例示されるような無機組成物を混合、溶解して、冷却するような肥料の製造工程を要せず、目標組成の肥料が容易に得られることになる。また、スラグは産業廃棄物として取り扱われることから、資源の有効利用にも貢献することになる。
【0034】
さらに、本発明の条件範囲に入るスラグの冷却前の溶融状態で、石炭灰を適量混合すれば、さらにケイ酸溶出量の高い肥料が容易に得られる。石炭灰はスラグと同様、産業廃棄物として取り扱われることから、資源の有効利用にさらに貢献することになる。なお、石炭灰を混合するスラグは溶融状態であれば良いが、好ましくは石炭灰との混合操作を容易にするために、1350℃以上にすることが好ましいことが確認された。
なお、石炭灰を混合したスラグは白色のスラグ中に石炭灰の茶黒色の粒子が存在することより確認できる。また、図2に示されたように、同一の組成のスラグよりも、pH=5〜7の溶出ケイ酸濃度が高くなることからも、混合の可否が分別できる。
【0035】
肥料の製造では、一般に粉末状にした原料をペレタイザー等の成型機によりペレット状に成型して製造される。従来のケイカル肥料では固形スラグを粉末状にするために労力を要していた。スラグが冷却後、粉末状であればその労力を回避できる。
【0036】
ステンレス鋼の精錬工程で発生するスラグはCaO/SiO質量比が高いほど、冷却後に粉末状になる。これは、ダイカルシウムシリケートが冷却時に固相変態により膨張することに起因する。従って、粉末の粒子が細かいスラグほどダイカルシウムシリケートの生成量が多いことに繋がる。本発明の組成範囲にあるスラグを分別回収する方法は、ステンレス鋼の精錬工程で発生するスラグで、少なくとも冷却後に粉末状となったスラグを回収すればよく、従来の肥料製造工程に比べ、省工程となり、エネルギー的にも有利となる。
【0037】
また、本発明のスラグに石炭灰を混合する処理も、石炭灰は融点が高く、溶融状態とならないために、一部は焼結状態とはなるが、容易に粉末状とすることが可能であり、新たに労力を増やすようなことはない。
【0038】
本発明の条件範囲の組成であり、ステンレス鋼の精錬工程で発生した粉末状のスラグ、あるいは溶融状態で石炭灰を適量混合したスラグはそのままでも肥料、土壌改質剤として利用できるが、更に、必要に応じて粉砕や造粒をすることにより、施肥の際に取り扱い易くした形態にして供給することもできる。また、必要に応じて、窒素、カリなどの他の肥料を混合して、所望の組成の複合肥料とすることもできる。
【0039】
【実施例】
以下、本発明例および比較例に基づいて、本発明を更に詳細に説明する。表1に本発明例と比較例の水稲用の肥料を示す。本発明例のNo.1〜4の肥料は全て、ステンレス鋼の精錬工程で発生したスラグより製造した。採取したスラグを必要な粒度に粒度調整した後に、ペレット状に加工した。なお、本発明例のNo.1では一部、塊状のスラグが存在したために、塊状部分を篩い分けし、粉状部分のみを肥料に利用した。
【0040】
また、本発明例のNo.5〜7の肥料は全て、ステンレス鋼の精錬工程で発生したスラグに、溶融状態で石炭灰を添加した後冷却した。冷却後、No.1〜4の肥料と同様に、ペレット状に加工した。
【0041】
比較例のNo.8〜15もステンレス鋼精錬工程で発生したスラグより製造したが、No.9とNo.10は塊状であったために、破砕した後に肥料に製造した。比較例のNo.13〜15はステンレス鋼精錬工程で発生したスラグに石炭灰を混合した。比較例のNo.16は高炉の水砕スラグ、No.17は普通鋼の転炉スラグを使用し、破砕、粒度調整を行った後に、肥料を製造した。また、比較例のNo.18は粒状の無機組成物を混合して肥料を製造した。
【0042】
【表1】

Figure 2004218065
【0043】
【表2】
Figure 2004218065
【0044】
表2に、表1の肥料を製造するために要したコストを本発明例のNo.1を100として換算した指数で示す。また、表2には前記分析方法で分析したpH=5〜7の範囲でのケイ酸の溶出濃度の分析結果および施肥効果を示す。施肥効果は同一の土壌条件およびケイ酸質肥料以外の肥料の施肥条件などは同一として、水稲を栽培し、最終的に得られた米の収量を、本発明例のNo.1を100として換算した値である。
【0045】
表2より、本発明例では粉末状のスラグを使用するために、肥料の製造コストが低位に安定しており、pH=5〜7でのケイ酸溶出濃度は10%以上に高位に安定していることから、施肥の効果が十分に得られることが確認された。また、1350℃以上の溶融状態のスラグに石炭灰を添加することで、肥料の製造コストは若干、上昇するが、ケイ酸溶出濃度が上昇し、施肥の効果がさらに向上することが確認された。
【0046】
一方、比較例では粉末状のスラグを使用した場合には製造コストが安い場合もあるが、pH=5〜7でのケイ酸溶出濃度が低いために、本発明例に比べ、施肥効果が十分ではないことが確認された。また、石炭灰を混合する場合には本発明の条件範囲外の条件であれば、十分な効果が得られないことが確認された。
【0047】
【発明の効果】
本発明のスラグは、pH=5〜7のケイ酸溶出濃度が10%以上であり、土壌中への可溶性ケイ酸を多く含むという特徴を有しているので、土壌中のケイ酸分が有用な働きをする作物、特に稲作用の土壌改良剤あるいは肥料として有用である。しかも素材形状が粉末状であることから、肥料や土壌改良剤として製造し易いという特徴を有する。また、石炭灰を適正な条件で混合すれば、さらに土壌中への可溶性ケイ酸量が増大し、有用な働きをする。
【0048】
また、本発明の肥料、土壌改質剤はいずれも、土壌中への可溶性ケイ酸を多く含むので少ない施肥量で充分であり、農家の省力化が可能となる特徴がある。
【0049】
また、燐酸分を含まない、若しくは少量であることから、各種単肥との混合散布により個々の土地に適した施肥が可能である。また、ケイ酸質の土壌への吸収性が良く作物の病虫害の発生が抑制されることにより、各種の肥料成分の吸収を助長し、作物の収量を増加させることができる。さらには、緩効性であり肥料あたりを起こさないことにより、作物の収量を増加させることができるとともに、水には難溶性であるので雨水に流亡しないので肥料散布の回数を減らすことができる等の数々の利点を有する。
【図面の簡単な説明】
【図1】スラグのCaO/SiO質量比とpH=5〜7でのケイ酸溶出濃度の関係を示す図である。
【図2】スラグへの石炭灰の混合割合とpH=5〜7でのケイ酸溶出濃度の増加濃度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slag that can be used as a soil conditioner and fertilizer (hereinafter sometimes referred to as materials) useful for rice cultivation that requires a silicic acid content in the soil.
[0002]
[Prior art]
Conventionally, silicate and potassium silicate fertilizers are used as siliceous fertilizers useful for rice cultivation. Calcium is produced from slag as a raw material, and is a soil modifier for mainly supplementing alkali and silicic acid with SiO 2 , CaO, MgO, and Al 2 O 3 as main components. However, although the calcium-soluble silicic acid content exceeds 30% by mass, elution is extremely reduced in the region of 5-7, which is close to the actual pH of the soil, and it is very efficient as a source of silicic acid. It is considered to be a bad material.
[0003]
Therefore, in actual use, it is necessary to fertilize a large amount of 200 kg per rice field 10a, and the labor required for this is a heavy burden on the farmers.
[0004]
Various attempts have been made to improve silicic acid elution, which is a drawback of calcium. Among them, a novel fertilizer composition (for example, patent document 1) based on a method of adding a potassium component, focusing on the relatively high silicic acid elution of the potassium silicate fertilizer, and a slow effect The manufacturing method (patent document 2) of a soluble melt | dissolution potassium silicate bitter fertilizer is disclosed.
[0005]
The potassium component generally facilitates vitrification of the composition and improves silicic acid elution. However, since the potash raw material is expensive, the resulting product is also expensive, and it is uneconomical to increase the potash content in order to ensure sufficiently high silicic acid elution. In addition, because potassium is a strong alkali, it erodes the furnace material of the manufacturing equipment. Furthermore, adding potassium increases the viscosity of the melt, making it difficult to operate, and if the temperature is raised to lower the viscosity, the potash will volatilize. And so on.
[0006]
Because calcium is a material that does not contain any of the three elements of fertilizer, it is common to use it mixed with other fertilizers. For example, 40 kg of Yorin is mixed with 200 kg of calcium and sprayed. It is a widely used prescription. Yorin is known to have high silicic acid elution in a pH range close to neutrality, and it has been confirmed that it is a phosphoric fertilizer and at the same time a supply source of silicic acid.
[0007]
On the other hand, it has been confirmed that the potassium silicate fertilizer has a high silicic acid elution, but it is inferior at pH 5-7 compared to yorin and is not sufficient. Potassium silicate fertilizers are often fertilized in a mixed manner with Yorin as in the case of Kyal, and Yorin also plays a role as a source of siliceous material here.
[0008]
It is known that silicic acid contained in yolin has a high elution property and a high plant absorbability. SiO 2 is of the order of 20 to 25 wt% contained in the phosphorus as commercially available, increasing the silica content of the elution rate is known to be reduced. That is, according to a test example (non-patent document 1) in which silicic acid is dissolved in a 2% aqueous citric acid solution by adding silica to a general raw material composition of dissolved phosphorus fertilizer and heating and melting and quenching. It is described that the amount of silicic acid eluted in a 2% citric acid solution (the initial pH value is 2) reaches a peak at about 30% by mass.
[0009]
As a fertilizer that solves these problems, Patent Document 3 proposes a fertilizer and a soil conditioner. This fertilizer and the like are characterized in that the main components are MgO, SiO 2 and CaO, contain 1 to 20 mass% of MgO, 30 to 50 mass% of SiO 2 , and are amorphous. However, the fertilizer is amorphous in order to enhance the silicic acid elution in the neutral region in the soil. As a result, a special treatment for quenching the melt obtained by blending the raw materials into a desired composition and heating and melting is necessary, and it is not an economically useful fertilizer.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 1-24759 [Patent Document 2]
Japanese Patent Publication No. 2-35514 [Patent Document 3]
JP 2000-34481 A [Non-Patent Document 1]
The Journal of Industrial Chemistry, Vol. 60, 1109, 1957 [0011]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention has a high silicic acid elution property around pH 5-7 of the soil, and is therefore effective with a small amount of fertilization. In particular, the siliceous fertilizer and soil used for rice cultivation and the like that require silicic acid content in the soil An object is to provide an improving agent. Furthermore, the slag generated in the steel smelting process can be used as it is, or a simple treatment can be performed in the molten state of the slag, and no special treatment is required. The purpose is to provide an agent.
[0012]
[Means for Solving the Problems]
The present invention, main component is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, the SiO 2 25~40mass%, 5~15mass% of MgO, 0 to the Al 2 O 3 The slag contains 5 mass% and has a CaO / SiO 2 mass ratio of 1.4 to 2.0.
[0013]
In the present invention, the main components are CaO, SiO 2 , MgO, Al 2 O 3 , CaO 40-60 mass%, SiO 2 25-40 mass%, MgO 5-15 mass%, Al 2 O 3 . wherein 0~5Mass%, and the slag CaO / SiO 2 mass ratio is 1.4 to 2.0, a slag characterized in that the coal ash is mixed.
[0014]
The present invention is characterized in that the slag is slag generated in a refining process of stainless steel, and further, the slag is powdery after cooling.
[0015]
Moreover, this invention is the fertilizer or soil modifier characterized by containing the said slag.
[0016]
The present invention is mainly composed is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, the SiO 2 25~40mass%, MgO of 5~15mass%, the Al 2 O 3 0~5mass The slag manufacturing method is characterized by mixing coal ash with molten slag having a CaO / SiO2 mass ratio of 1.4 to 2.0 and 2 to 15 mass% with respect to the slag.
[0017]
Further, the present invention is characterized in that the temperature of the slag is mixed with coal ash at 1350 ° C. or higher, the coal ash to further mixing is a method for manufacturing the slag, characterized in that it comprises a SiO 2 more than 60 mass%.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
As a result of searching for a composition containing SiO 2 having a high elution property in a high pH range of pH = 5 or higher, the present inventors have found that a silica phase is not included in the mineral phase constituting the crystalline slag. The present invention has been made by finding that a mineral phase having a high acid-eluting property exists, and in particular, dicalcium silicate (2CaO · SiO 2 ) exhibits a high silicic acid-eluting property.
[0019]
In addition, the inventors of the present invention, if coal ash originally containing only non-eluting silicic acid is mixed with molten slag, if the slag after cooling is slag containing dicalcium silicate, coal ash The present invention has been made by finding that the silicic acid contained therein is altered to elution.
[0020]
The present invention, main component is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, the SiO 2 25~40mass%, 5~15mass% of MgO, 0 to the Al 2 O 3 The slag contains 5 mass% and has a CaO / SiO 2 mass ratio of 1.4 to 2.0. In the present invention, the main component of slag is composed of CaO, SiO 2 , MgO, and Al 2 O 3 , and the total amount may be 90 mass% or more, preferably 95 mass% or more. In general, the slag contains metal oxides such as Mn, Fe, Cr, Ti, CaF 2 , S and the like in addition to the main components.
[0021]
Since Ca in CaO and CaF 2 is difficult to separate and analyze, CaO in the CaO / SiO 2 mass ratio (generally referred to as basicity) is equivalent to Ca in CaF 2 being CaO. It is the value obtained by conversion.
[0022]
Usually, the slag generated in the smelting process is separated from the hot metal and molten steel and then gradually cooled in a dedicated container, so that a crystalline mineral phase is generated. The generated mineral phase depends on the molten slag composition. When the main component is slag composed of CaO, SiO 2 , MgO, Al 2 O 3 , melvinite (3CaO · MgO · 2SiO 2 ), bredigite (7CaO Mineral phases such as MgO · 4SiO 2 ), calcium silicate (CaO · SiO 2 ), dicalcium silicate, calcium aluminate (CaO · Al 2 O 3 ) are formed.
[0023]
Among these mineral phases, the only mineral phase with high silicic acid elution at pH = 5-7 and high pH is dicalcium silicate, and the slag used for conventional calcium fertilizer is mainly calsim silicate and Since it is composed of melvinite, it was confirmed that silicic acid elution was low.
[0024]
Next, the present inventors examined slag composition conditions for producing dicalcium silicate. An important factor for producing dicalcium silicate is the CaO / SiO 2 mass ratio. When the mass ratio is in the range of 1.0 to 1.2, calcium silicate is produced. When the mass ratio exceeds 1.2, dicalcium silicate gradually increases. As the mass ratio increases, the amount of dicalcium silicate increases, and the proportion of the amount of silicic acid eluted at pH = 5-7 of the SiO 2 content contained increases. However, if the mass ratio becomes too large, the content of SiO 2 itself is lowered, so that the silicic acid elution amount itself is lowered.
[0025]
As conditions for ensuring the amount of dicalcium silicate suitable for fertilizer, it is necessary to make CaO / SiO 2 mass ratio in the range of 1.4 to 2.0, and CaO is 40 to 60 mass%, SiO 2 is 25 to 40 mass. %, MgO 5 to 15 mass%, and Al 2 O 3 0 to 5 mass%. In this, CaO and SiO 2 is important to ensure Dicalcium silicate weight, MgO both promotes the production of Dicalcium silicate, since it is also effective as a fertilizer ingredient, it is required 5~15Mass% . The smaller the amount of Al 2 O 3 is, the better. However, since it is inevitably contained in the slag, the content is set to 0 to 5 mass%.
[0026]
40~60Mass% of CaO in Figure 1, the SiO 2 25~40mass%, MgO of 5~15mass%, CaO / SiO 2 mass ratio of the slag generated the Al 2 O 3 in 0~5Mass% inclusive smelting process And the silicic acid elution concentration at pH = 5-7. The silicic acid elution concentration is adjusted by adjusting the distilled water before elution to a pH of 1 to 4, and after the elution operation, the silica contained in the aqueous solution is contained only when the pH of the aqueous solution becomes 5 to 7. It is the value analyzed for acid. From FIG. 1, it was confirmed that the silicic acid elution concentration was stabilized at a high level of 10 mass% or more when the CaO / SiO 2 mass ratio was in the range of 1.4 to 2.0, which is the condition range of the present invention.
[0027]
Coal ash is a coal husk that is finely powdered and mainly contains SiO 2 and Al 2 O 3. However, SiO 2 in coal ash is insoluble and cannot be used as it is as a fertilizer. Even when this coal ash is mixed with slag at room temperature, the SiO 2 is not altered and the amount of silicic acid eluted does not increase. When the present inventors mix a small amount of coal ash with molten slag, the bonding state of SiO 2 in the coal ash collapses, and a bonded state in which CaO in the slag substitutes part of the bonding. It was confirmed. It was confirmed that SiO 2 of the altered coal ash became soluble and the amount of silicic acid eluted increased.
[0028]
In general, the coal ash contains SiO 2 in an amount of 60 mass% or more, but the SiO 2 such as those generated when coal combustion is insufficient or contains a large amount of impurities becomes less than 60 mass%. Since the increase amount of silicic acid elution amount is small in coal ash, the coal ash mixed with slag needs to contain 60 mass% or more of SiO 2 . In addition, the operation of mixing molten slag and coal ash can be done by adding a predetermined amount of coal ash to the container when separating slag from molten steel, or by adding coal ash from above after separating the slag. It was confirmed that simple operation is good.
[0029]
52Mass% of CaO 2, the SiO 2 31mass%, MgO of 11Mass%, slag coal ash in the case of mixing the coal ash in the molten state of the slag generated the Al 2 O 3 at 3 mass% inclusive smelting process The relationship of the increase ratio with respect to the coal ash non-mixing (0%) of the mixing ratio with respect to and the silicic acid elution amount in pH = 5-7 is shown. In addition, the silicic acid elution concentration is adjusted by adjusting the distilled water before elution to a range of pH = 1 to 3, and after the elution operation, the silicic acid elution concentration is contained in the aqueous solution only when the pH of the aqueous solution becomes 5 to 7. It is the value analyzed for acid.
[0030]
As shown in FIG. 2, the elution concentration of silicic acid increases with an increase in the mixing ratio of coal ash, but when it exceeds 15%, it gradually decreases without increasing. This is because if the amount of coal ash mixed increases too much, the amount of heat applied to the coal ash decreases, making it difficult for the SiO 2 in the coal ash to deteriorate. It was also confirmed that the increase in silicic acid elution concentration was as low as 1% or less at a coal ash mixing ratio of less than 2%. From this, it was confirmed that the mixing ratio of coal ash is preferably 2 to 15%.
[0031]
The slag composition of the present invention approximates the slag composition generated in the refining process of stainless steel. Normally, stainless steel is refined to a target component range after decarburizing and refining crude molten steel melted in an electric furnace after decarburizing and refining in an AOD furnace, top-bottom blowing converter, and VOD furnace. Crude steel is obtained by continuous casting.
[0032]
In the refining process of stainless steel, in order to reduce chromium oxidized during decarburization refining, generally ferrosilicon (Fe—Si) is added and reduction is performed, so that a large amount of SiO 2 is generated. Further, a large amount of CaO is added for the purpose of efficiently performing deoxidation and desulfurization during reduction. Furthermore, in order to protect the furnace body refractory, moderate addition of MgO is performed, and MgO is dissolved in the slag due to melting of the refractory. Al 2 O 3 is inevitably contained in the slag due to oxidation of Al contained in the raw material and melting of the refractory.
[0033]
In the slag generated in the refining process of stainless steel, if only the slag that falls within the condition range of the present invention is separated and recovered, the inorganic composition as exemplified in Patent Document 3 is mixed, dissolved, and cooled. Therefore, a fertilizer having a target composition can be easily obtained without requiring a simple fertilizer manufacturing process. Moreover, since slag is handled as industrial waste, it will contribute to the effective use of resources.
[0034]
Furthermore, if a suitable amount of coal ash is mixed in the molten state before cooling of the slag that falls within the condition range of the present invention, a fertilizer having a higher silicic acid elution amount can be easily obtained. Coal ash, like slag, is handled as industrial waste, thus further contributing to the effective use of resources. In addition, although the slag which mixes coal ash should just be a molten state, in order to make mixing operation with coal ash easy, it was confirmed that it is preferable to set it as 1350 degreeC or more.
The slag mixed with coal ash can be confirmed from the presence of brown black particles of coal ash in the white slag. Moreover, as shown in FIG. 2, the elution silicic acid concentration at pH = 5 to 7 is higher than the slag having the same composition, so that it is possible to determine whether mixing is possible.
[0035]
In the manufacture of fertilizers, generally, powdered raw materials are formed into pellets by a molding machine such as a pelletizer. Conventional calcium fertilizers require labor to make solid slag powder. If the slag is in powder form after cooling, the labor can be avoided.
[0036]
The slag generated in the refining process of stainless steel becomes powder after cooling as the CaO / SiO 2 mass ratio is higher. This is because dicalcium silicate expands due to solid phase transformation during cooling. Therefore, the finer the powder particles, the greater the amount of dicalcium silicate produced. The method for separating and recovering slag in the composition range of the present invention is a slag generated in a refining process of stainless steel, and it is sufficient to recover at least powdered slag after cooling, compared to the conventional fertilizer manufacturing process. It becomes a process and it is advantageous in terms of energy.
[0037]
Also, in the process of mixing coal ash with the slag of the present invention, since coal ash has a high melting point and does not enter a molten state, a part of the coal ash is in a sintered state, but can be easily powdered. There is no new increase in labor.
[0038]
Although it is a composition within the condition range of the present invention, powdered slag generated in the refining process of stainless steel, or slag mixed with a suitable amount of coal ash in a molten state can be used as it is as a fertilizer, soil modifier, It can also be supplied in a form that facilitates handling during fertilization by grinding or granulating as necessary. Further, if necessary, other fertilizers such as nitrogen and potash can be mixed to obtain a composite fertilizer having a desired composition.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail based on examples of the present invention and comparative examples. Table 1 shows fertilizers for paddy rice of the examples of the present invention and comparative examples. No. of the example of the present invention. All fertilizers 1-4 were produced from slag generated during the refining process of stainless steel. The collected slag was adjusted to the required particle size and then processed into pellets. In addition, No. of the example of the present invention. In 1 partly, since the blocky slag existed, the blocky part was sieved and only the powdery part was used for the fertilizer.
[0040]
In addition, No. of the present invention example. All fertilizers 5-7 were cooled after adding coal ash in a molten state to slag generated in the refining process of stainless steel. After cooling, no. It processed into the pellet form similarly to the fertilizer of 1-4.
[0041]
Comparative Example No. Nos. 8 to 15 were manufactured from slag generated in the stainless steel refining process. 9 and no. Since 10 was massive, it was made into a fertilizer after crushing. Comparative Example No. 13-15 mixed coal ash with the slag generated in the stainless steel refining process. Comparative Example No. No. 16 is granulated slag from the blast furnace. No. 17 used a converter slag made of ordinary steel, and after crushing and adjusting the particle size, fertilizer was produced. Moreover, No. of the comparative example. No. 18 produced a fertilizer by mixing a granular inorganic composition.
[0042]
[Table 1]
Figure 2004218065
[0043]
[Table 2]
Figure 2004218065
[0044]
In Table 2, the cost required for producing the fertilizer of Table 1 is shown in No. of the present invention. An index converted from 1 as 100 is shown. Table 2 shows the analysis results of the elution concentration of silicic acid in the range of pH = 5 to 7 analyzed by the analysis method and the fertilization effect. The fertilization effect is the same as the soil conditions and the fertilizer conditions other than the siliceous fertilizer, and the rice yield is finally determined. 1 is a value converted to 100.
[0045]
From Table 2, since the powdery slag is used in the example of the present invention, the production cost of the fertilizer is stable at a low level, and the silicic acid elution concentration at pH = 5-7 is stable at a high level of 10% or more. Therefore, it was confirmed that the effect of fertilization was sufficiently obtained. Moreover, it was confirmed that by adding coal ash to molten slag of 1350 ° C or higher, the production cost of fertilizer slightly increases, but the elution concentration of silicic acid increases and the effect of fertilization is further improved. .
[0046]
On the other hand, in the comparative example, when powdered slag is used, the production cost may be low, but since the silicic acid elution concentration at pH = 5 to 7 is low, the fertilizing effect is sufficient compared to the present invention example. It was confirmed that it was not. In addition, when coal ash is mixed, it has been confirmed that sufficient effects cannot be obtained if the conditions are outside the condition range of the present invention.
[0047]
【The invention's effect】
Since the slag of the present invention has a characteristic that the elution concentration of silicic acid at pH = 5 to 7 is 10% or more and has a large amount of soluble silicic acid in the soil, the silicic acid content in the soil is useful. It is useful as a soil-improving agent or fertilizer for rice. And since the raw material shape is powdery, it has the characteristics that it is easy to manufacture as a fertilizer or a soil conditioner. In addition, if coal ash is mixed under appropriate conditions, the amount of soluble silicic acid in the soil is further increased, which serves a useful function.
[0048]
In addition, since the fertilizer and soil modifier of the present invention both contain a large amount of soluble silicic acid in the soil, a small amount of fertilizer is sufficient, and the labor saving of the farmer is possible.
[0049]
Moreover, since it does not contain phosphoric acid or is in a small amount, fertilization suitable for individual land is possible by mixed spraying with various simple fertilizers. In addition, the absorption of silicic acid into the soil is good, and the occurrence of pests and pests in the crop is suppressed, so that the absorption of various fertilizer components can be promoted and the crop yield can be increased. Furthermore, it is slow-acting and does not cause per fertilizer, so it can increase the yield of crops, and it is sparingly soluble in water, so it does not run away in rainwater, so the number of fertilizer spraying can be reduced, etc. Has numerous advantages.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the CaO / SiO 2 mass ratio of slag and the silicic acid elution concentration at pH = 5-7.
FIG. 2 is a diagram showing the relationship between the mixing ratio of coal ash to slag and the increasing concentration of silicic acid elution concentration at pH = 5-7.

Claims (10)

主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0であることを特徴とするスラグ。Main component is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, wherein the SiO 2 25~40mass%, MgO of 5~15mass%, 0~5mass% of Al 2 O 3, and slag CaO / SiO 2 mass ratio is characterized in that 1.4 to 2.0. 主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0であるスラグに、石炭灰が混合されていることを特徴とするスラグ。Main component is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, wherein the SiO 2 25~40mass%, MgO of 5~15mass%, 0~5mass% of Al 2 O 3, and slag CaO / SiO 2 mass ratio in the slag is 1.4 to 2.0, wherein the coal ash is mixed. 前記スラグがステンレス鋼の精錬工程で発生するスラグであることを特徴とする請求項1又は請求項2に記載のスラグ。The slag according to claim 1 or 2, wherein the slag is slag generated in a refining process of stainless steel. 前記石炭灰のSiO含有量が60mass%以上であることを特徴とする請求項2又は請求項3に記載のスラグ。Slag according to claim 2 or claim 3 SiO 2 content of the coal ash is characterized in that at least 60 mass%. 前記スラグが冷却後、粉末状であることを特徴とする請求項1乃至請求項4のいずれかに記載のスラグ。The slag according to any one of claims 1 to 4, wherein the slag is in a powder form after cooling. 請求項1乃至請求項5のいずれかに記載のスラグを含有することを特徴とする肥料。A fertilizer comprising the slag according to any one of claims 1 to 5. 請求項1乃至請求項5のいずれかに記載のスラグを含有することを特徴とする土壌改良材。A soil improvement material comprising the slag according to any one of claims 1 to 5. 主成分がCaO、SiO、MgO、Alからなり、CaOを40〜60mass%、SiOを25〜40mass%、MgOを5〜15mass%、Alを0〜5mass%含み、かつCaO/SiO質量比が1.4〜2.0である溶融スラグに、石炭灰を該スラグに対し、2〜15mass%混合することを特徴とするスラグの製造方法。Main component is CaO, SiO 2, MgO, from Al 2 O 3, 40~60mass% of CaO, wherein the SiO 2 25~40mass%, MgO of 5~15mass%, 0~5mass% of Al 2 O 3, and the molten slag CaO / SiO 2 mass ratio is 1.4 to 2.0, the coal ash to the slag, the production method of the slag, which comprises mixing 2~15mass%. 前記石炭灰のSiOの含有量が60mass%以上であることを特徴とする請求項8のスラグの製造方法。Method for producing a slag according to claim 8 in which the content of SiO 2 of the coal ash is characterized in that at least 60 mass%. 前記スラグの温度が1350℃以上で石炭灰を混合することを特徴とする請求項8又は請求項9に記載のスラグの製造方法。The slag manufacturing method according to claim 8 or 9, wherein coal ash is mixed at a temperature of the slag of 1350 ° C or higher.
JP2003179367A 2002-11-20 2003-06-24 Silicic fertilizer Expired - Fee Related JP4040542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179367A JP4040542B2 (en) 2002-11-20 2003-06-24 Silicic fertilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002336054 2002-11-20
JP2003179367A JP4040542B2 (en) 2002-11-20 2003-06-24 Silicic fertilizer

Publications (2)

Publication Number Publication Date
JP2004218065A true JP2004218065A (en) 2004-08-05
JP4040542B2 JP4040542B2 (en) 2008-01-30

Family

ID=32910788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179367A Expired - Fee Related JP4040542B2 (en) 2002-11-20 2003-06-24 Silicic fertilizer

Country Status (1)

Country Link
JP (1) JP4040542B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214184A (en) * 2008-03-21 2008-09-18 Nippon Yakin Kogyo Co Ltd Slag for fertilizer and method for manufacturing the same
CN101113114B (en) * 2006-07-28 2011-05-11 贵州世纪天元矿业有限公司 Co-produced calcium magnesium phosphate fertilizer by magnesium-smelting and preparation method thereof
JP2014198642A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2014198641A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2014198640A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
CN104446983A (en) * 2014-12-02 2015-03-25 山西省农业科学院农业环境与资源研究所 Special fertilizer for inland saline-alkali sugar beets and preparation method of special fertilizer
JP2016113312A (en) * 2014-12-11 2016-06-23 新日鐵住金株式会社 Iron-containing material for rice, manufacturing method of iron-containing material for rice and application method of iron-containing material for rice
JP2017137203A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Siliceous fertilizer and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563005A (en) 2017-06-28 2019-04-02 新日铁住金株式会社 Fertilizer material copper smelter slag, the manufacturing method of fertilizer material copper smelter slag, the manufacturing method of fertilizer and fertilizing method
TWI675815B (en) 2017-06-28 2019-11-01 日商日本製鐵股份有限公司 Steelmaking slag for fertilizer source material, method for producing steelmaking slag for fertilizer source material, method for producing fertilizer, and fertilizer application method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101113114B (en) * 2006-07-28 2011-05-11 贵州世纪天元矿业有限公司 Co-produced calcium magnesium phosphate fertilizer by magnesium-smelting and preparation method thereof
JP2008214184A (en) * 2008-03-21 2008-09-18 Nippon Yakin Kogyo Co Ltd Slag for fertilizer and method for manufacturing the same
JP2014198642A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2014198641A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2014198640A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
CN104446983A (en) * 2014-12-02 2015-03-25 山西省农业科学院农业环境与资源研究所 Special fertilizer for inland saline-alkali sugar beets and preparation method of special fertilizer
JP2016113312A (en) * 2014-12-11 2016-06-23 新日鐵住金株式会社 Iron-containing material for rice, manufacturing method of iron-containing material for rice and application method of iron-containing material for rice
JP2017137203A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Siliceous fertilizer and manufacturing method therefor

Also Published As

Publication number Publication date
JP4040542B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4246782B2 (en) Manufacturing method of siliceous fertilizer
JP4040542B2 (en) Silicic fertilizer
JP6497493B1 (en) Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer and fertilizing method
CN101891521A (en) Silicon-calcium-magnesium-sulfur fertilizer and preparation process thereof
JP6003911B2 (en) Phosphate fertilizer raw material, phosphate fertilizer and production method thereof
JP4091745B2 (en) Manufacturing method of siliceous fertilizer
CN100436380C (en) Method for producing compound micronutrient fertilizer by utilizing waste steel slag
JP2006306696A (en) Raw material for siliceous fertilizer and method of manufacturing the same
JP5105322B2 (en) Silica phosphate fertilizer raw material and method for producing the same
TWI675814B (en) Steelmaking slag for fertilizer source material, method for producing steelmaking slag for fertilizer source material, method for producing fertilizer, and fertilizer application method
JP6930473B2 (en) Phosphate fertilizer manufacturing method and phosphoric acid fertilizer
JP2004137136A (en) Raw material for silicate phosphate fertilizer, and its manufacturing method
JPH1160359A (en) Slow-release potassium fertilizer
JP3661748B2 (en) INORGANIC COMPOSITION AND METHOD FOR MANUFACTURING THE SAME
JP6988532B2 (en) Phosphoric acid fertilizer raw material, silicic acid phosphoric acid fertilizer raw material and their manufacturing method
JP6006654B2 (en) Method for producing siliceous fertilizer
JP6119704B2 (en) Raw material for phosphosilicate fertilizer and method for producing the same
JP2000290090A (en) Slow-release potash fertilizer
KR20050042021A (en) Raw material for silicate fertilizer and method for production thereof
CN1364749A (en) Silicon fertilizer and its producing method
JP6776892B2 (en) Phosphate fertilizer raw material and its manufacturing method
JP2000226285A (en) Slow acting potassic fertilizer
KR20040060838A (en) Raw material for silicate phosphate fertilizer and method for production thereof
JP3649029B2 (en) K2O-CaO-SiO2 crystal material and slow-release potash fertilizer
JP4268300B2 (en) Rice fertilizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4040542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees