JP2004217999A - Electrode for electrolysis and method for manufacturing the electrode - Google Patents

Electrode for electrolysis and method for manufacturing the electrode Download PDF

Info

Publication number
JP2004217999A
JP2004217999A JP2003006216A JP2003006216A JP2004217999A JP 2004217999 A JP2004217999 A JP 2004217999A JP 2003006216 A JP2003006216 A JP 2003006216A JP 2003006216 A JP2003006216 A JP 2003006216A JP 2004217999 A JP2004217999 A JP 2004217999A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
electrolysis
metal catalyst
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006216A
Other languages
Japanese (ja)
Inventor
Yutaka Ideno
裕 出野
Yoko Hasegawa
陽子 長谷川
Youzou Kakudate
洋三 角舘
Shiyuu Usuha
州 薄葉
Hiroyuki Yokoi
裕之 横井
Kazunori Umeda
一徳 梅田
Akihiro Tanaka
章浩 田中
Sokichi Takatsu
宗吉 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Fuji Electric Retail Systems Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Fuji Electric Retail Systems Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003006216A priority Critical patent/JP2004217999A/en
Publication of JP2004217999A publication Critical patent/JP2004217999A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for electrolysis having the long useful life and superior durability, and a method for manufacturing the electrode. <P>SOLUTION: This manufacturing method comprises mixing a substrate with a metal catalyst and an oxide catalyst with a mixer to manufacture such a starting material having the catalysts dispersively exist in the substrate, sintering the starting material in a discharge plasma apparatus to manufacture an electrode made into one whole substrate incorporating the catalyst therein. The substrate includes electroconductive ceramics containing any one or more compounds among titanium nitride, titanium boride, zirconium nitride and zirconium boride, as main components. The metal catalyst includes alloys containing any one or more metals among palladium, rubidium, rhodium, iridium and platinum, as the main components. In addition, the oxide catalyst includes oxides containing any one or more elements among palladium, rubidium, rhodium, iridium and platinum, as the main components. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、食塩水電解、水電解の電極に用いられたときに、優れた耐久性をもつ電気分解用電極およびその電極の製造方法に関するものである。
【0002】
【従来の技術】
従来の食塩水電解の電極としては、たとえば特許文献1に示すように、金属チタン板の表面を導電性の酸化ルテニウム、酸化イリジウムまたは白金が主成分の層で被覆した電極が用いられており、また水道水などの水電解の電極としては、金属チタン板の表面に白金や酸化イリジウムが主成分の層で被覆した電極が用いられている。
【0003】
この食塩水電解や水電解では、このような電極を陽極に用い、陽極と陰極に電流を流すことによって塩素が発生し、この塩素が食塩水と反応することで次亜塩素酸を発生させ、この次亜塩素酸によって、たとえば水道水などに抗菌力を持たせていた。このような構造の電極においては、上述した被覆層は、電気分解のために投入された電荷量に対して、一定量が溶出してしまうので、電極の耐久性を高めるためには、この被覆層を厚く生成する必要があった。
【0004】
【特許文献1】
特開平6−146045号公報(第2−5頁)
【0005】
【発明が解決しようとする課題】
しかしながら、このような構造の電極では、被覆層を厚く生成するのには限界があり、このために電極の使用寿命をある一定期間以上に延ばすことが困難になるという問題点があった。
【0006】
また、この電気分解では、水中にカルシウムなどのミネラル分が多い場合には、陰極に付着するスケールを除去するために、電極の極性切り替えを行っていた。しかし、この極性反転を頻繁に行うと、金属チタン板と被覆層との剥離発生の時期が早まることとなり、これも電極の使用寿命を短くする原因になるという問題点があった。
【0007】
このように、金属チタン板に酸化ルテニウム、酸化イリジウムまたは白金が主成分の層で被覆した従来の電極では、上述した問題点により電極の使用寿命を延ばすことは困難であった。また、従来では、被覆が施されていない人口黒鉛やフェライトよりなるバルク型の電極も使用されていたが、機械的特性が悪く、壊れやすいために、電極の使用寿命を延ばすことは、この場合も困難であった。
【0008】
この発明は、上記問題点に鑑みなされたもので、使用寿命が長く、耐久性に優れた電気分解用電極およびその電極の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる電気分解用電極では、導電性セラミックスからなる基材と、前記基材に添加される金属触媒および酸化物触媒からなることを特徴とする電気分解用電極が提供される。
【0010】
また、請求項2にかかる電気分解用電極では、前記基材中に前記金属触媒および酸化物触媒が分散されて混合するように添加されて構成されることを特徴とする電気分解用電極が提供される。
【0011】
また、請求項3にかかる電気分解用電極では、前記基材に対する前記金属触媒および酸化物触媒の重量比が、40対1以上であることを特徴とする電気分解用電極が提供される。
【0012】
また、請求項4にかかる電気分解用電極では、前記基材に対する前記金属触媒および酸化物触媒の重量比が、20対1以上であることを特徴とする電気分解用電極が提供される。
【0013】
また、請求項5にかかる電気分解用電極では、基材は、窒化チタン、ホウ化チタン、窒化ジルコニウム、ホウ化ジルコニウムのいずれか1種またはこれらを主成分とする導電性セラミックスからなることを特徴とする電気分解用電極が提供される。
【0014】
また、請求項6にかかる電気分解用電極では、金属触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする合金からなることを特徴とする電気分解用電極が提供される。
【0015】
また、請求項7にかかる電気分解用電極では、酸化物触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする酸化物からなることを特徴とする電気分解用電極が提供される。
【0016】
また、請求項8にかかる電気分解用電極の製造方法では、導電性セラミックスからなる基材に金属触媒および酸化物触媒を添加し、前記基材中に前記金属触媒および酸化物触媒を分散させて混合する混合工程と、前記金属触媒および酸化物触媒が混合された前記基材を放電プラズマ焼結する焼結工程とを含む電気分解用電極の製造方法が提供される。
【0017】
【発明の実施の形態】
以下の図1〜図5に添付図面を参照して、この発明にかかる電気分解用電極およびその電極の製造方法の好適な実施の形態を説明する。
【0018】
この発明にかかる電極は、基材と、金属触媒と、酸化物触媒とから構成されており、基材は窒化チタン、ホウ化チタン、窒化ジルコニウム、ホウ化ジルコニウムのいずれか1種またはこれらを主成分とする導電性セラミックスからなる。また、金属触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする合金からなり、酸化物触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする酸化物からなる。
【0019】
そして、この実施の形態では、粉体からなるこの基材に、同じく粉体からなる金属触媒および酸化物触媒を添加して、図1に示すように、これら触媒12が基材11内に満遍なく分散されるように混合させて、被加工粉体(出発原料)10を製造する。このために、この実施の形態では、たとえばミルと呼ばれるミキサーを使用し、このミキサー内で基材とこれら触媒とを混合し、基材中に満遍なく触媒が分散されるように、微粉砕処理を行う。
【0020】
この時に添加される基材に対する触媒の重量比は、40対1以上、好ましくは20対1以上であり、原子数の比率で表すと、基材の原子数に対して触媒の原子数が2%以上であることが初期特性として好ましい。この比率は、いずれの種類の基材や触媒の組み合わせにおいても共通している。
【0021】
このミキサーによって生成された出発原料は、放電プラズマ焼結装置で焼結される。図2は、この実施の形態で使用される放電プラズマ焼結装置の概略構成を示す構成図である。図2において、放電プラズマ焼結装置は、水冷真空チャンバー21と、パンチ電極22,23を兼ねた加圧機構24と、焼結電源25と、加圧機構24および焼結電源25を制御する制御装置26とから構成されている。
【0022】
この放電プラズマ装置では、出発原料10を黒鉛製の焼結ダイ27とパンチ28,29の型に充填し、制御装置26の制御によって、焼結電源25からオン−オフで繰り返し電圧・電流を印加することで、加圧機構24で圧力がかけられた被加工粉体内で放電点とジュール発熱点が移動し、出発原料10全体に分散されてオンの状態での現象(ジュール熱による溶解)と効果(高速拡散)が、出発原料10内に均一に繰り返される結果、効率の良い焼結が施される。
【0023】
すなわち、この実施の形態では、図3の電気分解用電極の製造作業を説明するためのフローチャートに示すように、まずミルのミキサー内に基材11と金属および酸化物の触媒12を取り込み(ステップ101)、微粉砕処理を行って混合し(ステップ102)、出発原料10を製造する(ステップ103)。
【0024】
次に、この製造された出発原料10を、焼結ダイ27とパンチ28,29の型に充填する(ステップ104)。そして、この型を水冷真空チャンバー21内の焼結ステージ30にセットして(ステップ105)、焼結作業を行って(ステップ106)、電気分解用電極を製造する(ステップ106)。
【0025】
次に、この発明の発明者らは、以下に示す検証を行った。まず、基材には、窒化チタン粉体を用い、金属および酸化物触媒には、イリジウム粉体を用い、さらにその重量比を20対1として、これらをミキサーなどで良く混合し、窒化チタン粉体中に、イリジウム粉体が満遍なく分散されるようにして、出発原料を製造した。
【0026】
次に、この出発原料を、黒鉛製の型に充填し、放電プラズマ装置にセットして焼結を行って、電気分解用電極を製造した。なお、このときの焼結条件は、焼結圧力50MPaで、かつ焼結温度1500℃で5分保持とした。
【0027】
この方法により製造した2つのピースを電極とし、水道水の流水下で連続電解を行って、電極の使用寿命を計測した。一方、同一形状の被覆型電極を用意し、比較のため、同一条件で連続電解を行った。なお、この実験では、実験結果を迅速に得るために、電解電流密度を10A/dmの強負荷の状態としたが、通常の電気分解用電極として用いる場合には、1A/dm〜5A/dmの電解電流密度で行う。
【0028】
これら電極は、陰極に炭酸カルシウムなどのスケールが付着するのを防止するために、同一条件で一定時間ごとに電極の極性を反転させ、かつ一定時間ごとに生成された有効塩素濃度(次亜塩素酸濃度)を、濃度計で測定した。この測定結果を図4に、電極表面の顕微鏡写真を図5に示す。なお、図中、横軸は、電解時間(Hr)であり、縦軸は、電解効率(%)であり、Aは、この発明にかかる電極(以下、「本発明電極」という)であり、Bは、従来の被覆型電極(以下、「従来電極」という)である。
【0029】
この実験結果から明らかなように、従来電極Bは、3000時間の電解時間で、有効塩素が生成できなくなったが、本発明電極Aは、倍の6000時間が過ぎても有効塩素生成能力の低下が見られなかった。これは、従来電極Bでは被覆層の溶出または金属チタン板と被覆層との剥離が生じたために、有効塩素が生成できなくなったためである。
【0030】
このように、この実施の形態では、基材と触媒を混合して、基材中に触媒が満遍なく分散されるようにして(図1参照)、出発原料を製造した後に、放電プラズマ装置で、この製造した出発原料を焼結して、電気分解用電極を製造するので、電極に被覆層がなくなり一つの基材全体となり、このために触媒の溶出がなくなり、使用寿命が長く、電極の耐久性を高めることができる。
【0031】
また、この実施の形態では、基材中に触媒が満遍なく分散されるようにしたので、焼結された電極でも、図5の電極表面の顕微鏡写真に示すように、基材31中に、触媒の微粒子32が満遍なく分散して存在することとなり、このため電極の極性反転が繰り返されても、被覆型電極のように、基材と触媒が剥離することもないので、このことからも使用寿命が長く、耐久性に優れた電気分解用電極を得ることができる。
【0032】
なお、この実施の形態では、基材が窒化チタン、触媒がイリジウムの場合の検証のみを示したが、基材中のチタンとジルコニウムとは、同じ族の元素であり、触媒中のパラジウム、ロジウム、イリジウムおよび白金は、同じ族の元素であり、それぞれが類似した性質を示すので、これらを組み合わせて電極を製造した場合も、窒化チタンとイリジウムを混合した場合と、類似した結果が得られる。
【0033】
この発明は、これら実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々の変形実施が可能である。たとえば、この発明にかかる電極は、めっき、有機物電解合成、陰極防食などの電極として用いることも可能である。
【0034】
【発明の効果】
以上説明したように、この発明では、導電性セラミックスからなる基材に、金属触媒および酸化物触媒を添加することで、電極が被覆層ではなく一つの基材となり、このために触媒の溶出が減少し、電極が短い時間で消耗することがなくなるので、電極使用寿命が長く、電極の耐久性を高めることができる。
【0035】
また、この発明では、基材中に金属触媒および酸化物触媒が分散されて満遍なく分散されるように混合するので、被覆型電極のように、基材と触媒が剥離することもなくなり、このため、電極の耐久性は非常に優れていて使用寿命は長くなり、水道水中における殺菌のために注入される次亜塩素酸(有効塩素)を生じさせる電極を提供できる。
【0036】
また、この発明では、基材に対する金属触媒および酸化物触媒の重量比が、40対1以上、好ましくは20対1以上とするので、実験結果のように、良好な特性を得ることができる。
【0037】
また、この発明では、基材中に触媒が分散させて混合した後に、放電プラズマ焼結を行うので、基材と触媒の良好な焼結がなされることとなり、使用寿命が長く、耐久性に優れた電気分解用電極を製造することができる。
【図面の簡単な説明】
【図1】混合時の基材と触媒の分散状態を示す図である。
【図2】この発明の実施の形態で使用される放電プラズマ焼結装置の概略構成を示す構成図である。
【図3】この発明にかかる電気分解用電極の製造作業を説明するためのフローチャートの図である。
【図4】本発明電極と従来電極における電解時間と電解効率の関係を示す関係図である。
【図5】この発明にかかる電極表面の顕微鏡写真に基づく図である。
【符号の説明】
10 出発原料
11,31 基材
12 触媒
20 放電プラズマ装置
21 水冷真空チャンバー
22,23 パンチ電極
24 加圧機構
25 焼結電源
26 制御装置
27 焼結ダイ
28,29 パンチ
30 焼結ステージ
32 触媒の微粒子
A 本発明電極
B 従来電極
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis having excellent durability when used for an electrode for saline solution electrolysis and water electrolysis, and a method for producing the electrode.
[0002]
[Prior art]
As an electrode for conventional saline electrolysis, for example, as shown in Patent Document 1, an electrode in which the surface of a metal titanium plate is coated with a layer mainly composed of conductive ruthenium oxide, iridium oxide or platinum is used. As an electrode for water electrolysis such as tap water, an electrode in which the surface of a metal titanium plate is coated with a layer containing platinum or iridium oxide as a main component is used.
[0003]
In this saline electrolysis and water electrolysis, such an electrode is used as an anode, chlorine is generated by passing an electric current between the anode and the cathode, and the chlorine reacts with the saline to generate hypochlorous acid, By this hypochlorous acid, for example, tap water has antibacterial activity. In an electrode having such a structure, the coating layer described above elutes a certain amount with respect to the amount of charge supplied for electrolysis, and therefore, in order to increase the durability of the electrode, the coating layer is used. It was necessary to produce a thick layer.
[0004]
[Patent Document 1]
JP-A-6-146045 (pages 2-5)
[0005]
[Problems to be solved by the invention]
However, in the electrode having such a structure, there is a limit in forming a thick coating layer, and there is a problem that it is difficult to extend the service life of the electrode beyond a certain period.
[0006]
In addition, in this electrolysis, when there is a large amount of minerals such as calcium in water, the polarity of the electrodes is switched to remove scale adhering to the cathode. However, if this polarity reversal is frequently performed, the timing of the occurrence of separation between the metal titanium plate and the coating layer is accelerated, which also causes a problem that the service life of the electrode is shortened.
[0007]
As described above, in the conventional electrode in which the metal titanium plate is coated with the layer mainly composed of ruthenium oxide, iridium oxide or platinum, it is difficult to extend the service life of the electrode due to the above-mentioned problems. Conventionally, bulk type electrodes made of artificial graphite or ferrite without coating were also used.However, since the mechanical properties are poor and the electrodes are fragile, extending the service life of the electrodes is a problem in this case. Was also difficult.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrode for electrolysis having a long service life and excellent durability, and a method for manufacturing the electrode.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the electrode for electrolysis according to claim 1, comprising a base made of conductive ceramics, and a metal catalyst and an oxide catalyst added to the base. An electrode is provided.
[0010]
Further, in the electrode for electrolysis according to claim 2, the metal electrode and the oxide catalyst are added to the base material so as to be dispersed and mixed, and the electrode for electrolysis is provided. Is done.
[0011]
Further, in the electrode for electrolysis according to claim 3, an electrode for electrolysis is provided, wherein the weight ratio of the metal catalyst and the oxide catalyst to the base material is 40: 1 or more.
[0012]
The electrode for electrolysis according to claim 4 is provided, wherein the weight ratio of the metal catalyst and the oxide catalyst to the substrate is 20: 1 or more.
[0013]
Further, in the electrode for electrolysis according to claim 5, the base material is made of any one of titanium nitride, titanium boride, zirconium nitride, zirconium boride, or a conductive ceramic containing these as a main component. Is provided.
[0014]
Further, in the electrode for electrolysis according to claim 6, the metal catalyst is made of any one of palladium, rubidium, rhodium, iridium, platinum or an alloy containing these as a main component. Is provided.
[0015]
Further, in the electrode for electrolysis according to claim 7, the oxide catalyst is made of any one of palladium, rubidium, rhodium, iridium, and platinum or an oxide containing these as a main component. Electrodes are provided.
[0016]
In the method for producing an electrode for electrolysis according to claim 8, a metal catalyst and an oxide catalyst are added to a base made of conductive ceramics, and the metal catalyst and the oxide catalyst are dispersed in the base. A method for producing an electrode for electrolysis is provided, comprising: a mixing step of mixing; and a sintering step of spark plasma sintering the base material in which the metal catalyst and the oxide catalyst are mixed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of an electrode for electrolysis according to the present invention and a method for manufacturing the electrode will be described with reference to the accompanying drawings in FIGS.
[0018]
The electrode according to the present invention includes a base material, a metal catalyst, and an oxide catalyst, and the base material mainly includes any one of titanium nitride, titanium boride, zirconium nitride, and zirconium boride, or a mixture thereof. It is made of conductive ceramics as a component. Further, the metal catalyst is made of any one of palladium, rubidium, rhodium, iridium, and platinum or an alloy containing these as a main component, and the oxide catalyst is any one of palladium, rubidium, rhodium, iridium, and platinum. Alternatively, it is made of an oxide containing these as main components.
[0019]
In this embodiment, a metal catalyst and an oxide catalyst also made of powder are added to the base made of powder, and these catalysts 12 are evenly distributed in the base 11 as shown in FIG. The powder to be processed (starting raw material) 10 is manufactured by mixing so as to be dispersed. For this purpose, in this embodiment, for example, a mixer called a mill is used, the base material and these catalysts are mixed in the mixer, and the fine pulverization treatment is performed so that the catalyst is evenly dispersed in the base material. Do.
[0020]
The weight ratio of the catalyst to the base material added at this time is 40: 1 or more, preferably 20: 1 or more. In terms of the ratio of the number of atoms, the number of catalyst atoms is 2 to the number of base materials. % Or more is preferable as the initial characteristics. This ratio is common to all types of base materials and catalyst combinations.
[0021]
The starting materials produced by this mixer are sintered in a spark plasma sintering apparatus. FIG. 2 is a configuration diagram showing a schematic configuration of a spark plasma sintering apparatus used in this embodiment. In FIG. 2, the discharge plasma sintering apparatus includes a water-cooled vacuum chamber 21, a pressurizing mechanism 24 also serving as punch electrodes 22 and 23, a sintering power supply 25, and a control for controlling the pressurizing mechanism 24 and the sintering power supply 25. And the device 26.
[0022]
In this discharge plasma apparatus, the starting material 10 is filled in a mold of graphite sintering die 27 and punches 28 and 29, and a voltage / current is repeatedly applied on and off from a sintering power supply 25 under the control of a controller 26. As a result, the discharge point and the Joule heating point move within the powder to be processed to which the pressure is applied by the pressurizing mechanism 24, and are dispersed throughout the starting material 10 and turned on (dissolution by Joule heat). As a result, the effect (high-speed diffusion) is uniformly repeated in the starting material 10, so that efficient sintering is performed.
[0023]
That is, in this embodiment, as shown in the flowchart for explaining the manufacturing operation of the electrode for electrolysis in FIG. 3, first, the base material 11 and the metal and oxide catalyst 12 are introduced into the mixer of the mill (step). 101), a fine pulverizing process is performed and mixed (Step 102) to produce a starting material 10 (Step 103).
[0024]
Next, the produced starting material 10 is filled into a mold of the sintering die 27 and the punches 28 and 29 (step 104). Then, the mold is set on the sintering stage 30 in the water-cooled vacuum chamber 21 (Step 105), and sintering is performed (Step 106) to manufacture an electrode for electrolysis (Step 106).
[0025]
Next, the inventors of the present invention performed the following verification. First, titanium nitride powder is used for the base material, iridium powder is used for the metal and oxide catalyst, and the weight ratio is set to 20: 1. The starting material was produced such that the iridium powder was uniformly dispersed throughout the body.
[0026]
Next, this starting material was filled in a graphite mold, set in a discharge plasma apparatus, and sintered to produce an electrode for electrolysis. The sintering was performed at a sintering pressure of 50 MPa and a sintering temperature of 1500 ° C. for 5 minutes.
[0027]
The two pieces manufactured by this method were used as electrodes, and continuous electrolysis was performed under running tap water to measure the service life of the electrodes. On the other hand, coated electrodes having the same shape were prepared, and continuous electrolysis was performed under the same conditions for comparison. In this experiment, the electrolytic current density was set to a high load of 10 A / dm 2 in order to quickly obtain the experimental result. However, when used as a normal electrode for electrolysis, 1 A / dm 2 to 5 A was used. / Dm 2 of the electrolytic current density.
[0028]
In order to prevent scales such as calcium carbonate from adhering to the cathode, these electrodes reverse the polarity of the electrodes at regular intervals under the same conditions, and have an effective chlorine concentration (hypochlorite) generated at regular intervals. Acid concentration) was measured with a densitometer. FIG. 4 shows the measurement results, and FIG. 5 shows a micrograph of the electrode surface. In the figure, the horizontal axis is the electrolysis time (Hr), the vertical axis is the electrolysis efficiency (%), A is an electrode according to the present invention (hereinafter, referred to as “electrode of the present invention”), B is a conventional coated electrode (hereinafter, referred to as “conventional electrode”).
[0029]
As is clear from the experimental results, the conventional electrode B was unable to generate effective chlorine in an electrolysis time of 3000 hours, but the electrode A of the present invention showed a decrease in the effective chlorine generation ability even after 6000 hours. Was not seen. This is because in the conventional electrode B, effective chlorine was not able to be generated due to elution of the coating layer or separation of the metal titanium plate and the coating layer.
[0030]
As described above, in this embodiment, the base material and the catalyst are mixed so that the catalyst is evenly dispersed in the base material (see FIG. 1). Since the starting material thus produced is sintered to produce an electrode for electrolysis, there is no coating layer on the electrode, and the entire substrate is eliminated, thereby eliminating catalyst elution, extending the service life, and improving the durability of the electrode. Can be enhanced.
[0031]
In this embodiment, the catalyst is evenly dispersed in the base material. Therefore, even in the case of a sintered electrode, as shown in the micrograph of the electrode surface in FIG. Particles 32 are uniformly dispersed and exist, and even if the polarity reversal of the electrode is repeated, the base material and the catalyst do not peel off unlike the coated electrode. , And an electrode for electrolysis having excellent durability can be obtained.
[0032]
In this embodiment, only the verification in the case where the base material is titanium nitride and the catalyst is iridium is shown, but titanium and zirconium in the base material are elements of the same group, and palladium and rhodium in the catalyst are used. , Iridium and platinum are elements of the same group and exhibit similar properties. Therefore, even when an electrode is manufactured by combining these elements, similar results are obtained as when titanium nitride and iridium are mixed.
[0033]
The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the electrode according to the present invention can be used as an electrode for plating, organic substance electrolytic synthesis, cathodic protection, and the like.
[0034]
【The invention's effect】
As described above, in the present invention, by adding a metal catalyst and an oxide catalyst to a base material made of conductive ceramics, the electrode becomes one base material instead of the coating layer. Since the number of electrodes decreases and the electrodes are not consumed in a short time, the service life of the electrodes is long and the durability of the electrodes can be increased.
[0035]
Further, in the present invention, since the metal catalyst and the oxide catalyst are dispersed and mixed so as to be evenly dispersed in the base material, the base material and the catalyst are not separated from each other as in the case of the coated electrode. In addition, the durability of the electrode is very good, the service life is long, and an electrode for generating hypochlorous acid (available chlorine) injected for sterilization in tap water can be provided.
[0036]
Further, in the present invention, the weight ratio of the metal catalyst and the oxide catalyst to the substrate is 40: 1 or more, preferably 20: 1 or more, so that good characteristics can be obtained as shown in the experimental results.
[0037]
In addition, according to the present invention, the spark plasma sintering is performed after the catalyst is dispersed and mixed in the base material, so that the base material and the catalyst are sintered satisfactorily, and the service life is long and the durability is improved. An excellent electrode for electrolysis can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a dispersion state of a base material and a catalyst during mixing.
FIG. 2 is a configuration diagram showing a schematic configuration of a spark plasma sintering apparatus used in the embodiment of the present invention.
FIG. 3 is a flowchart for explaining the manufacturing operation of the electrode for electrolysis according to the present invention.
FIG. 4 is a relationship diagram showing a relationship between electrolysis time and electrolysis efficiency in the electrode of the present invention and a conventional electrode.
FIG. 5 is a diagram based on a micrograph of an electrode surface according to the present invention.
[Explanation of symbols]
Reference Signs List 10 Starting materials 11, 31 Base material 12 Catalyst 20 Discharge plasma device 21 Water-cooled vacuum chamber 22, 23 Punch electrode 24 Pressing mechanism 25 Sintering power supply 26 Control device 27 Sintering die 28, 29 Punch 30 Sintering stage 32 Catalyst fine particles A electrode of the present invention B conventional electrode

Claims (8)

導電性セラミックスからなる基材と、前記基材に添加される金属触媒および酸化物触媒からなることを特徴とする電気分解用電極。An electrode for electrolysis, comprising a base made of conductive ceramics, and a metal catalyst and an oxide catalyst added to the base. 前記電気分解用電極は、前記基材中に前記金属触媒および酸化物触媒が分散されて混合するように添加されて構成されることを特徴とする請求項1に記載の電気分解用電極。The electrode for electrolysis according to claim 1, wherein the electrode for electrolysis is configured to be added so that the metal catalyst and the oxide catalyst are dispersed and mixed in the base material. 前記電気分解用電極は、前記基材に対する前記金属触媒および酸化物触媒の重量比が、40対1以上であることを特徴とする請求項1または2に記載の電気分解用電極。3. The electrode according to claim 1, wherein a weight ratio of the metal catalyst and the oxide catalyst to the base material is 40: 1 or more. 4. 前記電気分解用電極は、前記基材に対する前記金属触媒および酸化物触媒の重量比が、20対1以上であることを特徴とする請求項1または2に記載の電気分解用電極。3. The electrode according to claim 1, wherein a weight ratio of the metal catalyst and the oxide catalyst to the base material is 20: 1 or more. 4. 前記基材は、窒化チタン、ホウ化チタン、窒化ジルコニウム、ホウ化ジルコニウムのいずれか1種またはこれらを主成分とする導電性セラミックスからなることを特徴とする請求項1または2に記載の電気分解用電極。3. The electrolysis according to claim 1, wherein the substrate is made of any one of titanium nitride, titanium boride, zirconium nitride, and zirconium boride, or a conductive ceramic containing these as a main component. Electrodes. 前記金属触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする合金からなることを特徴とする請求項1または2に記載の電気分解用電極。The electrode for electrolysis according to claim 1, wherein the metal catalyst is made of any one of palladium, rubidium, rhodium, iridium, and platinum or an alloy containing these as a main component. 前記酸化物触媒は、パラジウム、ルビジウム、ロジウム、イリジウム、白金のいずれか1種またはこれらを主成分とする酸化物からなることを特徴とする請求項1または2に記載の電気分解用電極。The electrode according to claim 1, wherein the oxide catalyst is made of any one of palladium, rubidium, rhodium, iridium, and platinum, or an oxide containing these as a main component. 導電性セラミックスからなる基材に金属触媒および酸化物触媒を添加し、前記基材中に前記金属触媒および酸化物触媒を分散させて混合する混合工程と、
前記金属触媒および酸化物触媒が混合された前記基材を放電プラズマ焼結する焼結工程と、
を含むことを特徴とする電気分解用電極の製造方法。
A mixing step of adding a metal catalyst and an oxide catalyst to a substrate made of conductive ceramics, dispersing and mixing the metal catalyst and the oxide catalyst in the substrate,
A sintering step of spark plasma sintering the base material in which the metal catalyst and the oxide catalyst are mixed,
A method for producing an electrode for electrolysis, comprising:
JP2003006216A 2003-01-14 2003-01-14 Electrode for electrolysis and method for manufacturing the electrode Pending JP2004217999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006216A JP2004217999A (en) 2003-01-14 2003-01-14 Electrode for electrolysis and method for manufacturing the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006216A JP2004217999A (en) 2003-01-14 2003-01-14 Electrode for electrolysis and method for manufacturing the electrode

Publications (1)

Publication Number Publication Date
JP2004217999A true JP2004217999A (en) 2004-08-05

Family

ID=32896660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006216A Pending JP2004217999A (en) 2003-01-14 2003-01-14 Electrode for electrolysis and method for manufacturing the electrode

Country Status (1)

Country Link
JP (1) JP2004217999A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008469A (en) * 2004-06-28 2006-01-12 Fuji Electric Retail Systems Co Ltd Metallic nitride member and method of manufacturing metallic nitride member
JP2007023320A (en) * 2005-07-13 2007-02-01 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis
JP2008049245A (en) * 2006-08-23 2008-03-06 Fuji Electric Retail Systems Co Ltd Water softener
JP2009102669A (en) * 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
CN102925923A (en) * 2012-10-26 2013-02-13 复旦大学 Preparation method of nano-palladium or palladium-nickel alloy catalyst having three-dimensional porous structure
WO2015064808A1 (en) * 2013-10-29 2015-05-07 희성금속 주식회사 Oxide dispersion strengthened platinum-rhodium alloy manufacturing method for manufacturing lcd glass by using spark plasma sintering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008469A (en) * 2004-06-28 2006-01-12 Fuji Electric Retail Systems Co Ltd Metallic nitride member and method of manufacturing metallic nitride member
JP2007023320A (en) * 2005-07-13 2007-02-01 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
US8652319B2 (en) 2006-02-20 2014-02-18 Walter Kothe System and method for splitting water
JP2008049245A (en) * 2006-08-23 2008-03-06 Fuji Electric Retail Systems Co Ltd Water softener
JP2009102669A (en) * 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
CN102925923A (en) * 2012-10-26 2013-02-13 复旦大学 Preparation method of nano-palladium or palladium-nickel alloy catalyst having three-dimensional porous structure
WO2015064808A1 (en) * 2013-10-29 2015-05-07 희성금속 주식회사 Oxide dispersion strengthened platinum-rhodium alloy manufacturing method for manufacturing lcd glass by using spark plasma sintering

Similar Documents

Publication Publication Date Title
KR101991730B1 (en) Anode for alkaline water electrolysis and method for producing anode for alkaline water electrolysis
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
JP2006097122A (en) Electrode for electrolysis and method of manufacturing electrode for electrolysis
JP2004217999A (en) Electrode for electrolysis and method for manufacturing the electrode
JP2008133532A (en) Electrode for hydrogen generation and process for preparation thereof
JP2005290403A (en) Electrolysis method by conductive diamond particle and method for manufacturing conductive diamond particle
KR102360423B1 (en) Anode for Alkaline Water Electrolysis having Porous Ni-Fe-Al Catalyst Layer and Preparation Method thereof
JPWO2019182088A1 (en) Method for manufacturing low-order titanium oxide powder
JP2008516762A (en) Improved COD removal method for electrochemical oxidation
JPS648288A (en) Cathode for electrolysis and manufacture thereof
JP2009102669A (en) Electrode for electrolysis and manufacturing method therefor
JP2007023320A (en) Electrode for electrolysis
JP2009520881A (en) Ozone generating electrolysis cell
JP2008156679A (en) Hydrogen producing apparatus and hydrogen producing method
US4078988A (en) Electrode for electrochemical processes and method of producing the same
JP2005325417A (en) Diamond electrode and production method therefor
JP2004332108A (en) Diamond electrode for electrolysis
CN109112329A (en) A kind of graphene/magnesium alloy and preparation method thereof with excellent interfacial characteristics
JP4817218B2 (en) Metal nitride member and method for manufacturing metal nitride member
JP4121322B2 (en) Electrochemical processing equipment
JP5873071B2 (en) Method for producing anode catalyst body and method for producing electrolytic cell for ozone generation
JP3337273B2 (en) Water sterilizer and method for manufacturing water sterilizer
RU2424382C1 (en) Electrolyte-suspension on base of iron for production of wear resistant coating on parts of machines including nano powder on base of tungsten carbide
JP4851376B2 (en) Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film
JP2008049245A (en) Water softener

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916